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Things we will look at today

• Maximum Likelihood Estimation
• ML for Bernoulli Random Variables
• Maximizing a Multinomial Likelihood: Lagrange

Multipliers
• Multivariate Gaussians
• Properties of Multivariate Gaussians
• Maximum Likelihood for Multivariate Gaussians
• (Time permitting) Mixture Models
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The Principle of Maximum Likelihood

Suppose we have N data points X = {x1, x2, . . . , xN} (or
{(x1, y1), (x2, y2), . . . , (xN , yN )})
Suppose we know the probability distribution function that
describes the data p(x; θ) (or p(y|x; θ))

Suppose we want to determine the parameter(s) θ

Pick θ so as to explain your data best

What does this mean?

Suppose we had two parameter values (or vectors) θ1 and θ2.

Now suppose you were to pretend that θ1 was really the true
value parameterizing p. What would be the probability that
you would get the dataset that you have? Call this P1

If P1 is very small, it means that such a dataset is very
unlikely to occur, thus perhaps θ1 was not a good guess
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The Principle of Maximum Likelihood

We want to pick θML i.e. the best value of θ that explains the
data you have

The plausibility of given data is measured by the ”likelihood
function” p(x; θ)

Maximum Likelihood principle thus suggests we pick θ that
maximizes the likelihood function

The procedure:

• Write the log likelihood function: log p(x; θ) (we’ll see
later why log)

• Want to maximize - So differentiate log p(x; θ) w.r.t θ
and set to zero

• Solve for θ that satisfies the equation. This is θML
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The Principle of Maximum Likelihood

As an aside: Sometimes we have an initial guess for θ
BEFORE seeing the data

We then use the data to refine our guess of θ using Bayes
Theorem

This is called MAP (Maximum a posteriori) estimation (we’ll
see an example)

Advantages of ML Estimation:

• Cookbook, ”turn the crank” method
• ”Optimal” for large data sizes

Disadvantages of ML Estimation

• Not optimal for small sample sizes
• Can be computationally challenging (numerical methods)
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A Gentle Introduction: Coin Tossing
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Problem: estimating bias in coin toss

A single coin toss produces H or T .

A sequence of n coin tosses produces a sequence of values;
n = 4
T ,H,T ,H
H,H,T ,T
T ,T ,T ,H

A probabilistic model allows us to model the uncertainly
inherent in the process (randomness in tossing a coin), as well
as our uncertainty about the properties of the source (fairness
of the coin).
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Probabilistic model

First, for convenience, convert H → 1, T → 0.

• We have a random variable X taking values in {0, 1}
Bernoulli distribution with parameter µ:

Pr(X = 1; µ) = µ.

We will write for simplicity p(x) or p(x;µ) instead of
Pr(X = x;µ)

The parameter µ ∈ [0, 1] specifies the bias of the coin

• Coin is fair if µ = 1
2
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Reminder: probability distributions

Discrete random variable X taking values in set
X = {x1, x2, . . .}
Probability mass function p : X → [0, 1] satisfies the law of
total probability: ∑

x∈X
p(X = x) = 1

Hence, for Bernoulli distribution we know

p(0) = 1− p(1; µ) = 1− µ.
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Sequence probability

Now consider two tosses of the same coin, 〈X1, X2 〉
We can consider a number of probability distributions:

Joint distribution p(X1, X2)
Conditional distributions p(X1 |X2), p(X2 |X1),

Marginal distributions p(X1), p(X2)

We already know the marginal distributions:
p(X1 = 1;µ) ≡ p(X2 = 1;µ) = µ

What about the conditional?
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Sequence probability (contd)

We will assume the sequence is i.i.d. - independently
identically distributed.

Independence, by definition, means

p(X1 |X2) = p(X1), p(X2 |X1) = p(X2)

i.e., the conditional is the same as marginal - knowing that X2

was H does not tell us anything about X1.

Finally, we can compute the joint distribution, using chain rule
of probability:

p(X1, X2) = p(X1)p(X2|X1) = p(X1)p(X2)
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Sequence probability (contd)

p(X1, X2) = p(X1)p(X2|X1) = p(X1)p(X2)

More generally, for i.i.d. sequence of n tosses,

p(x1, . . . , xn;µ) =

n∏
i=1

p(xi;µ).

Example: µ = 1
3 . Then,

p(H,T,H; µ) = p(H; µ)2p(T ; µ) =

(
1

3

)2

· 2

3
=

2

27
.

Note: the order of outcomes does not matter, only the
number of Hs and T s.
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The parameter estimation problem

Given a sequence of n coin tosses x1, . . . , xn ∈ {0, 1}n, we
want to estimate the bias µ.

Consider two coins, each tossed 6 times:
coin 1 H,H,T ,H,H,H
coin 2 T ,H,T ,T ,H,H

What do you believe about µ1 vs. µ2?

Need to convert this intuition into a precise procedure
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Maximum Likelihood estimator

We have considered p(x;µ) as a function of x, parametrized
by µ.

We can also view it as a function of µ. This is called the
likelihood function.

Idea for estimator: choose a value of µ that maximizes the
likelihood given the observed data.
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ML for Bernoulli

Likelihood of an i.i.d. sequence X = [x1, . . . , xn]:

L(µ) = p(X;µ) =

n∏
i=1

p(xi;µ) =

n∏
i=1

µxi (1− µ)1−xi

log-likelihood:

l(µ) = log p(X;µ) =

n∑
i=1

[xi logµ + (1− xi) log(1− µ)]

Due to monotonicity of log, we have

argmax
µ

p(X;µ) = argmax
µ

log p(X;µ)

We will usually work with log-likelihood (why?)
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ML for Bernoulli (contd)

ML estimate is
µ̂ML = argmaxµ {

∑n
i=1 [xi logµ + (1− xi) log(1− µ)]}

To find it, set the derivative to zero:

∂

∂µ
log p(X;µ) =

1

µ

n∑
i=1

xi −
1

1− µ
n∑
j=1

(1− xj) = 0

1− µ
µ

=

∑n
j=1(1− xj)∑n

i=1 xi

µ̂ML =
1

n

n∑
i=1

xi

ML estimate is simply the fraction of times that H came up.
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Are we done?

µ̂ML =
1

n

n∑
i=1

xi

Example: H,T ,H,T → µ̂ML = 1
2

How about: H H H H? → µ̂ML = 1
Does this make sense?

Suppose we record a very large number of 4-toss sequences
for a coin with true µ = 1

2 .
We can expect to see H,H,H,H about 1/16 of all sequences!

A more extreme case: consider a single toss.
µ̂ML will be either 0 or 1.
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Bayes rule

To proceed, we will need to use Bayes rule

We can write the joint probability of two RV in two ways,
using chain rule:

p(X,Y ) = p(X)p(Y |X) = p(Y )p(X|Y ).

From here we get the Bayes rule:

p(X|Y ) =
p(X)p(Y |X)

p(Y )
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Bayes rule and estimation

Now consider µ to be a RV. We have

p(µ |X) =
p(X |µ)p(µ)

p(X)

Bayes rule converts prior probability p(µ) (our belief about µ
prior to seeing any data) to posterior p(µ|X), using the
likelihood p(X|µ).
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MAP estimation

p(µ |X) =
p(X |µ)p(µ)

p(X)

The maximum a-posteriori (MAP) estimate is defined as

µ̂MAP = argmax
µ

p(µ|X)

Note: p(X) does not depend on µ, so if we only care about
finding the MAP estimate, we can write

p(µ|X) ∝ p(X|µ)p(µ)

What’s p(µ)?
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Choice of prior

Bayesian approach: try to reflect our belief about µ

Utilitarian approach: choose a prior which is computationally
convenient

• Later in class: regularization - choose a prior that leads
to better prediction performance

One possibility: uniform p(µ) ≡ 1 for all µ ∈ [0, 1].
“Uninformative” prior: MAP is the same as ML estimate
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Constrained Optimization: A Multinomial Likelihood
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Problem: estimating biases in Dice

A dice is rolled n times: A single roll produces one of
{1, 2, 3, 4, 5, 6}
Let n1, n2, . . . n6 count the outcomes for each value

This is a multinomial distribution with parameters
θ1, θ2, . . . , θ6

The joint distribution for n1, n2, . . . , n6 is given by

p(n1, n2, . . . , n6;n, θ1, θ2, . . . , θ6) =

(
n!

n1!n2!n3!n4!n5!n6!

)
6∏
i=1

θni
i

Subject to
∑

i θi = 1 and
∑

i ni = n
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A False Start

The likelihood is

L(θ1, θ2, . . . , θ6) =

(
n!

n1!n2!n3!n4!n5!n6!

)
6∏
i=1

θni
i

The Log-Likelihood is

l(θ1, θ2, . . . , θ6) =

(
log

n!

n1!n2!n3!n4!n5!n6!

)
+

6∑
i=1

ni log θi

Optimize by taking derivative and setting to zero:

∂l

∂θ1
=
n1
θ1

= 0

Therefore: θ1 =∞
What went wrong?
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A Possible Solution

We forgot that
∑6

i=1 θi = 1

We could use this constraint to eliminate one of the variables:

θ6 = 1−
5∑
i=1

θi

and then solve the equations

∂l

∂θi
=
n1
θi
− n6

1−∑5
i=1 θi

= 0

Gets messy
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A More Elegant Solution: Lagrange
Multipliers

General constrained optimization problem:

max
θ
f(θ) subject to g(θ)− c = 0

We can then define the Lagrangian

L(θ, λ) = f(θ)− λ(g(θ)− c)

Is equal to f when the constraint is satisfied

Now do unconstrained optimization over θ and λ:

Optimizing the Lagrange multiplier λ enforces constraint

More constraints, more multipliers
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Back to Rolling Dice

Recall

l(θ1, θ2, . . . , θ6) =

(
log

n!

n1!n2!n3!n4!n5!n6!

)
+

6∑
i=1

ni log θi

The Lagrangian may be defined as:

L = log
n!∏
i ni!

+

6∑
i=1

ni log θi − λ
( 6∑
i=1

θi − 1
)
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Back to Rolling Dice

Taking derivative with respect to θi and setting to 0

∂L
∂θi

= 0

Let optimal θi = θ∗i
ni
θ∗i
− λ∗ = 0 =⇒ ni

λ∗
= θ∗i

6∑
i=1

ni
λ∗

=

6∑
i=1

θ∗i = 1

λ∗ =
6∑
i=1

ni =⇒ θ∗i =
ni∑6
i=1 ni
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Multivariate Gaussians
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Quick Review: Discrete/Continuous Random
Variables

A Random Variable is a function X : Ω 7→ R
The set of all possible values a random variable X can take is
called its range

Discrete random variables can only take isolated values
(probability of a random variable taking a particular value
reduces to counting)

Discrete Example: Sum of two fair dice

Continuous Example: Speed of a car
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Discrete Distributions

Assume X is a discrete random variable. We would like to
specify probabilities of events {X = x}
If we can specify the probabilities involving X, we can say
that we have specified the probability distribution of X

For a countable set of values x1, x2, . . . xn, we have
P(X = xi) > 0, i = 1, 2, . . . , n and

∑
i P(X = xi) = 1

We can then define the probability mass function f of X by
f(X) = P(X = x)

Sometimes write as fX
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Probability Mass Function

Example: Toss a die and let X be its face value. X is discrete
with range {1, 2, 3, 4, 5, 6}. The pmf is

Another example: Toss two dice and let X be the largest face
value. The pmf is
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Probability Density Functions

A random variable X taking values in set X is said to have a
continuous distribution if P(X = x) = 0 for all x ∈ X
The probability density function of a continuous random
variable X satisfies

• f(x) ≥ ∀ x
•
∫∞
−∞ f(x)dx = 1

• P(a ≤ X ≤ b) =
∫ b
a f(x)dx ∀ a, b

Probabilities correspond to areas under the curve f(x)

Reminder: No longer need to have
P(a ≤ X ≤ b) =

∫ b
a f(x)dx ≤ 1 but must have∫∞

−∞ f(x)dx = 1
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Why Gaussians?

Gaussian distributions are widely used in machine learning:

• Central Limit Theorem!

X̄n = X1 +X2 + · · ·+Xn

√
nX̄n

d−→ N
(
x; µ, σ2

)
• Actually, there are a set of ”Central Limit Theorems”

(e.g. corresponding to p-Stable Distributions)
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Why Gaussians?
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Why Gaussians?

Gaussian distributions are widely used in machine learning:

• Central Limit Theorem!
• Gaussians are convenient computationally;
• Mixtures of Gaussians (just covered in class) are

sufficient to approximate a wide range of distributions;
• Closely related to squared loss (have seen earlier in class),

an important error measure in statistics.
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Reminder: univariate Gaussian distribution

N (x; µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x− µ)2

}

mean µ determines location

variance σ2;
standard deviation

√
σ2

determines the spread
around µ

N (x|µ, σ2)

x

2σ

µ
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Moments

Reminder: expectation of a RV x is E [x] ,
∫
xp(x)dx, so

E [x] =

∫ ∞
−∞

xN (x;µ, σ2)dx = µ

Variance of x is varx , E
[
(x− E [x])2

]
, and

varx =

∫ ∞
−∞

(x− µ)2N (x;µ, σ2)dx = σ2
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Multivariate Gaussian

Gaussian distribution of a random vector x in Rd:

N (x; µ,Σ) =
1

(2π)d/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

The 1
(2π)d/2|Σ|1/2 factor

ensures it’s a pdf (integrates
to one).
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Matrix notation

N (x; µ,Σ) =
1

(2π)d/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

Boldfaced lowercase vectors x, uppercase matrices Σ.

Determinant |Σ|
Matrix inverse Σ−1

Transpose xT ,ΣT
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Mean of the Gaussian

By definition,

E [x] =

∫ ∞
−∞

. . .

∫ ∞
−∞

xN (x;µ,Σ)dx1 . . . dxd

Solving this we indeed get

E [x] = µ
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Covariance

Variance of a RV x with mean µ: σ2x = E
[
(x− µ)2

]
Generalization to two variables: covariance

Covx1,x2 , E [(x1 − µ1)(x2 − µ2)]

Measures how the two variables deviate together from their
means (“co-vary”).

Note: Covx,x ≡ var(x) = σ2x
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Correlation vs. covariance

Correlation:

cor(a, b) ,
Cova,b
σaσb

.

cor ≈ 1 −1 < cor < 0 cor ≈ 0

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

a

b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

a

b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

b

cor(a, b) measures the linear relationship between a and b.

−1 ≤ cor(a, b) ≤ +1 ; +1 or −1 means a is a linear function
of b.
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Covariance matrix

For a random vector x = [x1, . . . , xd]
T with mean µ,

Covx ,


σ2x1 Covx1,x2 . . . . . . . Covx1,xd

Covx2,x1 σ2x2 . . . . . . . Covx2,xd
. . .

. . .
. . .

Covxd,x1 Covxd,x2 . . . . . σ2xd

 .

Square, symmetric, non-negative main diagonal–why?
variances ≥ 0, and Cov(x, y) = Cov(y, x) by definition

One can show (directly from definition):

Covx = E
[
(x− µ)(x− µ)T

]
i.e. expectation of the outer product of x− E [x] with itself.

Note: so far nothing Gaussian-specific!
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Covariance of the Gaussian

We need to calculate E
[
(x− µ)(x− µ)T

]
With a bit of algebra, we get

E
[
xxT

]
= µµT + Σ

Now, we already have E [x] = µ, and

E
[
(x− µ)(x− µ)T

]
= E

[
xxT − µxT − xµT + µµT

]
= E

[
xxT

]
−
{
µ(E [x])T + E [x]µT − µµT

}︸ ︷︷ ︸
=µµT

= E
[
xxT

]
− µµT = Σ
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Properties of the covariance

Consider the eigenvector equation: Σu = λu

As a covariance matrix, Σ is symmetric d× d matrix.
Therefore, we have d solutions {λi,ui}di=1 where the
eigenvalues λi are real, and the eigenvectors ui are
orthonormal, i.e., inner product

uTj ui =

{
0 if i 6= j,

1 if i = j.

The covariance matrix Σ then may be written as:

Σ =
∑
i

λiuiu
T
i

Thus, the inverse covariance may be written as:

Σ−1 =
∑
i

1

λi
uiu

T
i
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Continued..

The quadratic form (x− µ)TΣ−1(x− µ) becomes:

∑
i

y2i
λi

where yi = uTi (x− µ)

{yi} may be interpreted as a new coordinate system defined
by the orthonormal vectors ui that are shifted and rotated
with respect to the original coordinate system

Stack the d transposed orthonormal eigenvectors of Σ into

U =

 uT1
· · ·
uTd

. Then, y = U(x− µ) defines rotation (and

possibly reflection) of x, shifted so that µ becomes origin.
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Geometry of the Gaussian

√
λi gives scaling along ui

Example in 2D:

x1

x2

λ
1/2
1

λ
1/2
2

y1

y2

u1

u2

µ
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Geometry Continued ...

The determinant of the covariance matrix may be written as

the product of its eigenvalues i.e. |Σ| 12 =
∏
j λ

1
2
j

Thus, in the yi coordinate system, the Gaussian distribution
takes the form:

p(y) =
∏
j

1

(2πλj)
1
2

exp

(
−
y2j
2λj

)

which is the product of d independent univariate Gaussians

The eigenvectors thus define a new set of shifted and rotated
coordinates w.r.t which the joint probability distribution
factorizes into a product of independent distributions
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Density contours

What are the constant density
contours?

x1

x2

λ
1/2
1

λ
1/2
2

y1

y2

u1

u2

µ

1

(2π)d/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
= const

(x− µ)TΣ−1(x− µ) = const

This is a quadratic form, whose solution is an ellipsoid (in 2D,
simply an ellipse)
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Density Contours are Ellipsoids

We saw that: (x− µ)TΣ−1(x− µ) = const2

Recall that Σ−1 =
∑
i

1

λi
uiu

T
i

Thus we have: ∑
i

y2i
λi

= const2

where yi = uTi (x− µ)

Recall the expression for an ellipse in 2D:
(x
a

)2
+
(y
b

)2
= 1
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Intuition so far

N (x; µ,Σ) =
1

(2π)d/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

Falls off exponentially as a
function of (squared)
Euclidean distance to the
mean ‖x− µ‖2;

the covariance matrix Σ
determines the shape of the
density;

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

0.05 max

0.5 max

0.9 max

Determinant |Σ| measures the “spread” (analogous to σ2).

N is the joint density of coordinates x1, . . . , xd.
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Linear functions of a Gaussian RV

For any RV x, and for any A and b,

E [Ax + b] = AE [x]+b, Cov(Ax+b) = A Cov(x)AT .

Let x ∼ N (·; µ,Σ); then p(z) = N
(
z; Aµ + b, AΣAT

)
.

Consider a row vector aT that “selects” a single component
from x, i.e., ak = 1 and aj = 0 if j 6= k. Then, z = aTx is
simply the coordinate xk.

We have: E [z] = aTµ = µk, and Cov(z) = var(z) = Σk,k.
i.e., marginal of a Gaussian is also a Gaussian
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Conditional and marginal

Marginal (“projection” of the Gaussian on a subset of
coordinates) is Gaussian

Conditional (“slice” through Gaussian at fixed values for a
subset of coordinates) is Gaussian

xa

xb = 0.7

xb

p(xa, xb)

0 0.5 1
0

0.5

1

xa

p(xa)

p(xa|xb = 0.7)

0 0.5 1
0

5

10
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Log-likelihood

N (x; µ,Σ) =
1

(2π)d/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

Take the log, for a single example x:

logN (x; µ,Σ) = −d
2

log 2π−1

2
log |Σ| −1

2
(x−µ)TΣ−1(x−µ)

Can ignore terms independent of parameters:

logN (x; µ,Σ) = −1

2
log |Σ| − 1

2
(x−µ)TΣ−1(x−µ) + const
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Log-likelihood (contd)

logN (x; µ,Σ) = −1

2
log |Σ| − 1

2
(x− µ)TΣ−1(x− µ) + const

Given a set X of n i.i.d. vectors, we have

logN (X; µ,Σ) = −n
2

log |Σ| − 1

2

n∑
i=1

(xi−µ)TΣ−1(xi−µ) + const

We are now ready to compute ML estimates for µ and Σ.
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ML for parameters

logN (X; µ,Σ) = −n
2

log |Σ| − 1

2

n∑
i=1

(xi−µ)TΣ−1(xi−µ) + const

To find ML estimate, we use the rule

∂

∂a
aTb =

∂

∂a
bTa = b,

and set derivative w.r.t. µ to zero:

∂

∂µ
logN (X; µ,Σ) =

n∑
i=1

Σ−1(xi − µ) = 0,

which yields µ̂ML = 1
n

∑n
i=1 xi.
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ML for parameters (contd)

A somewhat lengthier derivation produces ML estimate for
the covariance:

Σ̂ML =
1

n

n∑
i=1

(xi − µ)(xi − µ)T .

Note: the µ above is the ML estimate µ̂ML.

Thus ML estimates for the mean is the sample mean of the
data, and ML estimate for the covariance is the sample
covariance of the data.
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Mixture Models and Expected Log Likelihood
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Mixture Models

Assumptions:

• k underlying types (clusters/components)
• yi is the identity of the component ”responsible” for xi
• yi is a hidden (latent) variable: never observed

A mixture model:

p(x;π) =

k∑
c=1

p(y = c)p(x|y = c)

πc are called mixing probabilities

The component densities p(x|y = c) needs to be
parameterized

Next few slides adapted from TTIC 31020 by Gregory Shakhnarovich
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Parametric Mixtures

Suppose the parameters of the c-th component are θc. Then
we can denote θ = [θ1, . . . , θk] and write

p(x; θ, π) =

k∑
c=1

πcp(x, θc)

Any valid setting of θ and π, such that
∑k

c=1 πc = 1 produces
a valid pdf

Example: Mixture of Gaussians
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Generative Model for a Mixture

The generative process with a k-component mixture:
• The parameters θc for each component are fixed
• Draw yi ∼ [π1, . . . , πk]
• Given yi, draw xi ∼ p(x|yi; θyi)

The entire generative model for x and y

p(x, y; θ, π) = p(y;π)p(x|y; θy)

What does this mean? Any data point xi could have been
generated in k ways

If the c-th component is Gaussian i.e.
p(x|y = c) = N (x;µc,Σc)

p(x; θ, π) =

k∑
c=1

πcN (x;µc,Σc)

where θ = [µ1, . . . , µk,Σ1, . . . ,Σk]
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Likelihood of a Mixture Model

Usual Idea: Estimate set of parameters that maximize
likelihood given observed data

The log-likelihood of π, θ for X = {x1, . . . , xN}:

log p(X;π, θ) =

N∑
i=1

log

k∑
c=1

πcN (xi;µc,Σc)

No closed form solution because of sum inside log

How will we estimate parameters?
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Scenario 1: Known Labels. Mixture Density
Estimation

Suppose that we do observe yi ∈ {1, . . . , k} for each
i = 1, . . . , N

Let us introduce a set of binary indicator variables
zi = [zi1, . . . , zik], where:

zic =

{
1 if yi = c

0 otherwise

The count of examples from c-th component

Nc =
N∑
i=1

zic
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Scenario 1: Known Labels. Mixture Density
Estimation

If we know zi, the ML estimates of the Gaussian components
are simply (as we have seen earlier)

π̂c =
Nc

N

µ̂c =
1

Nc

N∑
i=1

zicxi,

Σ̂c =
1

Nc

N∑
i=1

zic(xi − µ̂c)(xi − µ̂cT
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Scenario 2: Credit Assignment

When we don’t know y, we face a credit assignment problem:
Which component is responsible for xi?

Suppose for a moment that we do know the component
parameters θ = [µ1, . . . , µk,Σ1, . . . ,Σk] and mixing
probabilities π = [π1, . . . , πk]

Then, we can compute the posterior of each label using
Bayes’ theorem:

γic = p̂(y = c|x; θ, π) =
πcp(x;µc,Σc)∑k
l=1 πlp(x;µl,Σl)

We call γic the responsibility of the c-th component for x
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Expected Likelihood

The ”complete data” likelihood (when z are known):

p(X,Z;π, θ) =∝
N∏
i=1

k∏
c=1

(πcN (xi;µc,Σc))
zic

and the log

p(X,Z;π, θ) = const +

N∑
i=1

k∑
c=1

zic(log πc+logN (xi;µc,Σc))

We can’t compute it (why?), but can take the expectation
w.r.t the posterior of z, which is just γic i.e. E[zic] = γic
The expected likelihood of the data:

E[log p(X,Z;π, θ)] = const +

N∑
i=1

k∑
c=1

γic(log πc+logN (xi;µc,Σc))
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Expectation Maximization

The expected likelihood of the data:

E[log p(X,Z;π, θ)] = const +

N∑
i=1

k∑
c=1

γic(log πc+logN (xi;µc,Σc))

We can find π, θ that maximizes this expected likelihood - by
setting derivatives to zero and for π, using Lagrange
Multipliers to enforce

∑
c πc = 1

Tutorial on Estimation and Multivariate Gaussians STAT 27725/CMSC 25400



Expectation Maximization

If we know the parameters and indicators (assignments) we
are done

If we know the indicators but not the parameters, we can do
ML estimation of the parameters - and we are done

If we know the parameters but not the indicators, we can
compute the posteriors of the indicators. With known
posteriors, we can estimate parameters that maximize the
expected likelihood - and then we are done

In reality, we know neither the parameters nor the indicators
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Expectation Maximization for Mixture Models

General Mixture Models: p(x) =
∑k

c=1 πcp(x; θc)

Initialize π, θold, and iterate until convergence:

• E-Step: Compute responsibilities:

γic =
πoldc p(xi; θ

old
c )∑k

l=1 π
old
l p(xi; θold)

• M-Step: Re-estimate mixture parameters:

πold, θnew = arg max
θ,π

N∑
i=1

k∑
c=1

γic(log πc + log p(xi; θc))
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