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Introduction

Sequence Learning with Neural Networks
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Some Sequence Tasks
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-
Problems with MLPs for Sequence Tasks

@ The "API" is too limited.
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-
Problems with MLPs for Sequence Tasks

@ The "API" is too limited.

@ MLPs only accept an input of fixed dimensionality and map it
to an output of fixed dimensionality

@ Great e.g.: Inputs - Images, Output - Categories

@ Bad e.g.: Inputs - Text in one language, Output - Text in
another language

@ MLPs treat every example independently. How is this
problematic?

@ Need to re-learn the rules of language from scratch each time

@ Another example: Classify events after a fixed number of
frames in a movie

@ Need to resuse knowledge about the previous events to help in
classifying the current.
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Recurrent Networks

@ Recurrent Neural Networks (Rumelhart, 1986) are a family of
neural networks for handling sequential data
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Recurrent Networks

@ Recurrent Neural Networks (Rumelhart, 1986) are a family of
neural networks for handling sequential data

@ Sequential data: Each example consists of a pair of sequences.
Each example can have different lengths

@ Need to take advantage of an old idea in Machine Learning:
Share parameters across different parts of a model

@ Makes it possible to extend the model to apply it to sequences
of different lengths not seen during training

@ Without parameter sharing it would not be possible to share
statistical strength and generalize to lengths of sequences not
seen during training

@ Recurrent networks share parameters: Each output is a
function of the previous outputs, with the same update rule
applied
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Recurrence

o Consider the classical form of a dynamical system:

s = f(s"1;0)
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@ For some finite number of time steps 7, the graph represented
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.
Recurrence

o Consider the classical form of a dynamical system:

s = f(s"1;0)

@ This is recurrent because the definition of s at time t refers
back to the same definition at time ¢t — 1

@ For some finite number of time steps 7, the graph represented
by this recurrence can be unfolded by using the definition
7 — 1 times. For example when 7 =3

s® = f(s?;0) = £(£(sV;0);0)

@ This expression does not involve any recurrence and can be
represented by a traditional directed acyclic computational

graph
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Recurrent Networks
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Recurrent Networks
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o Consider another dynamical system, that is driven by an
external signal z(*)
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.
Recurrent Networks

e \.-->‘ X

o Consider another dynamical system, that is driven by an
external signal z(*)

s = f(stD, 20, )

@ The state now contains information about the whole past
sequence

@ RNNs can be built in various ways: Just as any function can
be considered a feedforward network, any function involving a
recurrence can be considered a recurrent neural network
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@ We can consider the states to be the hidden units of the
network, so we replace s() by h(*)
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@ We can consider the states to be the hidden units of the
network, so we replace s() by h(*)

A = f(RED 20 9)

@ This system can be drawn in two ways:
GOy GLG
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N

@ We can have additional architectural features: Such as output
layers that read information from h to make predictions

f Unf()l(l
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@ When the task is to predict the future from the past, the
network learns to use A(*) as a summary of task relevant
aspects of the past sequence upto time ¢
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@ When the task is to predict the future from the past, the
network learns to use A(*) as a summary of task relevant
aspects of the past sequence upto time ¢

@ This summary is lossy because it maps an arbitrary length
sequence (a:(l),a:(t_l), e x(2),x(1)) to a fixed vector h(*)

@ Depending on the training criterion, the summary might
selectively keep some aspects of the past sequence with more
precision (e.g. statistical language modeling)

@ Most demanding situation for h(Y): Approximately recover the
input sequence
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Design Patterns of Recurrent Networks

J:!

@0@

S S S

@ Plain Vanilla RNN: Produce an output at each time stamp
and have recurrent connections between hidden units
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Design Patterns of Recurrent Networks
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@ Plain Vanilla RNN: Produce an output at each time stamp
and have recurrent connections between hidden units

@ Is infact Turing Complete (Siegelmann, 1991, 1995, 1995)
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Design Patterns of Recurrent Networks
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Plain Vanilla Recurrent Network
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Recurrent Connections
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Recurrent Connections
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1) can be tanh and ¢ can be softmax
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Unrolling the Recurrence
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Y1
Vv
HL, hy
U U
X1 X2 X3 ce Xr

Lecture 11 Recurrent Neural Networks | CMSC 35246



Unrolling the Recurrence

Y1 y2
V Vv
HL, hy
U U
X1 X2 X3 e Xr

Lecture 11 Recurrent Neural Networks | CMSC 35246



Unrolling the Recurrence

Y1 y2
V Vv
HL, hy LH
U U U
X1 X2 X3 e Xr

Lecture 11 Recurrent Neural Networks | CMSC 35246



Unrolling the Recurrence

Y1 y2 V3
V Vv Vv
HL, hy LH
U U U
X1 X2 X3 e Xr

Lecture 11 Recurrent Neural Networks | CMSC 35246



Unrolling the Recurrence

Y1 y2 V3
V Vv Vv
A/ A
HL,hZLhSH,
U U U
X1 X2 X3 e Xr

Lecture 11 Recurrent Neural Networks | CMSC 35246



Unrolling the Recurrence
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Feedforward Propagation

@ This is a RNN where the input and output sequences are of
the same length
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Feedforward Propagation

@ This is a RNN where the input and output sequences are of
the same length

o Feedforward operation proceeds from left to right

@ Update Equations:

ar=b+Why_1 +Uxy
h; = tanh a;
oy =cC+ Vht

¥+ = softmax(oy)
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Feedforward Propagation

@ Loss would just be the sum of losses over time steps

o If L; is the negative log-likelihood of y; given x1,...,Xy, then:

L({Xl,...,xt},{yl,...,yt}> = ZLt

e With:

ZLt = - ZIngmodel (Yt‘{xla e 7Xt})
t

t

@ Observation: Forward propagation takes time O(t); can't be
parallelized
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Backward Propagation

@ Need to find: Vy L, VwL, VyL
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Backward Propagation

@ Need to find: Vy L, VwL, VyL
@ And the gradients w.r.t biases: V.L and V,L

@ Treat the recurrent network as a usual multilayer network and
apply backpropagation on the unrolled network

@ We move from the right to left: This is called
Backpropagation through time
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Backward Propagation

Need to find: Vv L, VwL, VyL
And the gradients w.r.t biases: V.L and VL

Treat the recurrent network as a usual multilayer network and
apply backpropagation on the unrolled network

@ We move from the right to left: This is called
Backpropagation through time

Also takes time O(t)
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Gradient Computation

VvL =) (Vo,L)hf
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Gradient Computation

VvL =) (Vo,L)hf
t

Where:

oL oL 0Ly (i)
t

Vol)i=—==7—5=Y
(Vo, L) 80,9) OL; 80%1) y

- 1i7Yt
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Gradient Computation
VwL = diag(1— (h)?)(Vn,L)h{
t
Where, for t = 7 (one descendant):

(Vi L) = VT(V,, L)

For some t < 7 (two descendants)

0) = () (D) + (52) (Varl)

= W"(V,,, L)diag(1 —hyia?) + V(Vo,L)
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Gradient Computation

VoL = diag(1— (h)?)(Vn,L)x]
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Recurrent Neural Networks

@ But weights are shared across different time stamps? How is
this constraint enforced?
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Recurrent Neural Networks

@ But weights are shared across different time stamps? How is
this constraint enforced?

@ Train the network as if there were no constraints, obtain
weights at different time stamps, average them
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Design Patterns of Recurrent Networks
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e Summarization: Produce a single output and have recurrent
connections from output between hidden units
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Design Patterns of Recurrent Networks

e Summarization: Produce a single output and have recurrent
connections from output between hidden units

e Useful for summarizing a sequence (e.g. sentiment analysis)
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Design Patterns: Fixed vector as input

@ We have considered RNNs in the context of a sequence of
vectors z() with t = 1,...,7 as input
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Design Patterns: Fixed vector as input

@ We have considered RNNs in the context of a sequence of
vectors z() with t = 1,...,7 as input

@ Sometimes we are interested in only taking a single, fixed
sized vector x as input, that generates the y sequence
@ Some common ways to provide an extra input to an RNN are:

— As an extra input at each time step
— As the initial state h(?)
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Design Patterns: Fixed vector as input

@ We have considered RNNs in the context of a sequence of
vectors z() with t = 1,...,7 as input

@ Sometimes we are interested in only taking a single, fixed
sized vector x as input, that generates the y sequence

@ Some common ways to provide an extra input to an RNN are:

— As an extra input at each time step
— As the initial state h(?)
— both
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Design Patterns: Fixed vector as input

@ The first option (extra input at each time step) is the most
common:
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Design Patterns: Fixed vector as input

@ The first option (extra input at each time step) is the most
common:

@ Maps a fixed vector x into a distribution over sequences Y
(xT R effectively is a new bias parameter for each hidden unit)
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Application: Caption Generation

man in black shirt is playing guitar. construction worker in orange safety  two young girls are playing with lego  boy is doing backflip on wakeboard

Caption Generation
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Design Patterns: Bidirectional RNNs

@ RNNs considered till now, all have a causal structure: state at
time ¢ only captures information from the past z(), ... z(t=1)
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Design Patterns: Bidirectional RNNs

@ RNNs considered till now, all have a causal structure: state at
time ¢ only captures information from the past z(), ... z(t=1)

@ Sometimes we are interested in an output y*) which may
depend on the whole input sequence

@ Example: Interpretation of a current sound as a phoneme may
depend on the next few due to co-articulation

@ Basically, in many cases we are interested in looking into the
future as well as the past to disambiguate interpretations

@ Bidirectional RNNs were introduced to address this need
(Schuster and Paliwal, 1997), and have been used in
handwriting recognition (Graves 2012, Graves and
Schmidhuber 2009), speech recognition (Graves and
Schmidhuber 2005) and bioinformatics (Baldi 1999)
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Design Patterns: Bidirectional RNNs




Design Patterns: Encoder-Decoder

@ How do we map input sequences to output sequences that are
not necessarily of the same length?
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@ How do we map input sequences to output sequences that are
not necessarily of the same length?

@ Example: Input - Kérem jojjenek maskor és kiilonosen
mashoz. Output - 'Please come rather at another time and to
another person.’
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Design Patterns: Encoder-Decoder

@ How do we map input sequences to output sequences that are
not necessarily of the same length?

@ Example: Input - Kérem jojjenek maskor és kiilonosen
mashoz. Output - 'Please come rather at another time and to
another person.’

@ Other example applications: Speech recognition, question
answering etc.

@ The input to this RNN is called the context, we want to find a
representation of the context C

@ C could be a vector or a sequence that summarizes
X ={2M,. . 2z}

Lecture 11 Recurrent Neural Networks | CMSC 35246



Design Patterns: Encoder-Decoder

Economic growth has slowed down in recent years
] S
| aha T
Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .

Economic growth has slowed down in recent years
V. | /

_ { | /|

|

La croissance économique s' est ralentie ces derniéres années .

@ Far more complicated mappings
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Design Patterns: Encoder-Decoder
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@ In the context of Machine Trans. C' is called a thought vector
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Deep Recurrent Networks

@ The computations in RNNs can be decomposed into three
blocks of parameters/associated transformations:
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@ Each of these transforms till now were learned affine
transformations followed by a fixed nonlinearity
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(Graves et al. 2013, Pascanu et al. 2014)

@ The intuition on why depth should be more useful is quite
similar to that in deep feed-forward networks
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Deep Recurrent Networks

@ The computations in RNNs can be decomposed into three
blocks of parameters/associated transformations:
— Input to hidden state
— Previous hidden state to the next
— Hidden state to the output
@ Each of these transforms till now were learned affine
transformations followed by a fixed nonlinearity
@ Introducing depth in each of these operations is advantageous
(Graves et al. 2013, Pascanu et al. 2014)
@ The intuition on why depth should be more useful is quite
similar to that in deep feed-forward networks
@ Optimization can be made much harder, but can be mitigated
by tricks such as introducing skip connections
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Deep Recurrent Networks

ogge
' : J‘\' ©

(b) lengthens shortest paths linking different time steps, (c) mitigates this by introducing skip layers
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Recursive Neural Networks

OO0

@ The computational graph is structured as a deep tree rather
than as a chain in a RNN
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Recursive Neural Networks

e First introduced by Pollack (1990), used in Machine
Reasoning by Bottou (2011)
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@ Successfully used to process data structures as input to neural

networks (Frasconi et al 1997), Natural Language Processing
(Socher et al 2011) and Computer vision (Socher et al 2011)
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to O(log 7)
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Recursive Neural Networks

e First introduced by Pollack (1990), used in Machine
Reasoning by Bottou (2011)

@ Successfully used to process data structures as input to neural
networks (Frasconi et al 1997), Natural Language Processing
(Socher et al 2011) and Computer vision (Socher et al 2011)

@ Advantage: For sequences of length 7, the number of
compositions of nonlinear operations can be reduced from 7
to O(log 7)

@ Choice of tree structure is not very clear

e A balanced binary tree, that does not depend on the
structure of the data has been used in many applications

e Sometimes domain knowledge can be used: Parse trees
given by a parser in NLP (Socher et al 2011)

@ The computation performed by each node need not be the
usual neuron computation - it could instead be tensor
operations etc (Socher et al 2013)
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Long-Term Dependencies

Lecture 11 Recurrent Neural Networks | CMSC 35246



Challenge of Long-Term Dependencies

@ Basic problem: Gradients propagated over many stages tend
to vanish (most of the time) or explode (relatively rarely)
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e Difficulty with long term interactions (involving multiplication
of many jacobians) arises due to exponentially smaller
weights, compared to short term interactions
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Challenge of Long-Term Dependencies

@ Basic problem: Gradients propagated over many stages tend
to vanish (most of the time) or explode (relatively rarely)

e Difficulty with long term interactions (involving multiplication
of many jacobians) arises due to exponentially smaller
weights, compared to short term interactions

@ The problem was first analyzed by Hochreiter and
Schmidhuber 1991 and Bengio et a/ 1993
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Challenge of Long-Term Dependencies

@ Recurrent Networks involve the composition of the same
function multiple times, once per time step
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@ Recurrent Networks involve the composition of the same
function multiple times, once per time step

@ The function composition in RNNs somewhat resembles
matrix multiplication
o Consider the recurrence relationship:

B — wTpE=1)

@ This could be thought of as a very simple recurrent neural
network without a nonlinear activation and lacking x
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Challenge of Long-Term Dependencies

@ Recurrent Networks involve the composition of the same
function multiple times, once per time step

@ The function composition in RNNs somewhat resembles
matrix multiplication

o Consider the recurrence relationship:

B — wTpE=1)

@ This could be thought of as a very simple recurrent neural
network without a nonlinear activation and lacking x

@ This recurrence essentially describes the power method and
can be written as:

h) = (WHTpO)
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Challenge of Long-Term Dependencies

o If W admits a decomposition W = QAQ” with orthogonal @
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@ The recurrence becomes:
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Challenge of Long-Term Dependencies

o If W admits a decomposition W = QAQ” with orthogonal @

@ The recurrence becomes:

h(t) _ (Wt)Th(O) _ QTAtQh(O)

o Eigenvalues are raised to ¢: Quickly decay to zero or explode
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Challenge of Long-Term Dependencies

If W admits a decomposition W = QAQ™ with orthogonal @

The recurrence becomes:

(]

h(t) _ (Wt)Th(O) _ QTAtQh(O)

Eigenvalues are raised to t: Quickly decay to zero or explode

Problem particular to RNNs
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e
Solution 1: Echo State Networks

@ ldea: Set the recurrent weights such that they do a good job
of capturing past history and learn only the output weights
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e
Solution 1: Echo State Networks

@ ldea: Set the recurrent weights such that they do a good job
of capturing past history and learn only the output weights

@ Methods: Echo State Machines, Liquid State Machines
@ The general methodology is called reservoir computing

@ How to choose the recurrent weights?
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e
Echo State Networks

o Original idea: Choose recurrent weights such that the
hidden-to-hidden transition Jacobian has eigenvalues close to
1
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@ In particular we pay attention to the spectral radius of J;

o Consider gradient g, after one step of backpropagation it
would be Jg and after n steps it would be J"g

Lecture 11 Recurrent Neural Networks | CMSC 35246



e
Echo State Networks

o Original idea: Choose recurrent weights such that the

hidden-to-hidden transition Jacobian has eigenvalues close to
1

@ In particular we pay attention to the spectral radius of J;
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Echo State Networks

o Original idea: Choose recurrent weights such that the

hidden-to-hidden transition Jacobian has eigenvalues close to
1

@ In particular we pay attention to the spectral radius of J;

o Consider gradient g, after one step of backpropagation it
would be Jg and after n steps it would be J"g

@ Now consider a perturbed version of g i.e. g+ dv, after n
steps we will have J"(g + 0v)

e Infact, the separation is exactly |A|”
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Echo State Networks

o Original idea: Choose recurrent weights such that the
hidden-to-hidden transition Jacobian has eigenvalues close to
1

@ In particular we pay attention to the spectral radius of J;

o Consider gradient g, after one step of backpropagation it
would be Jg and after n steps it would be J"g

@ Now consider a perturbed version of g i.e. g+ dv, after n
steps we will have J"(g + 0v)

e Infact, the separation is exactly |A|”

@ When |A > 1/, 6|\|™ grows exponentially large and vice-versa
g
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e
Echo State Networks

@ For a vector h, when a linear map W always shrinks h, the
mapping is said to be contractive
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@ For a vector h, when a linear map W always shrinks h, the
mapping is said to be contractive
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intuition
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Echo State Networks

@ For a vector h, when a linear map W always shrinks h, the
mapping is said to be contractive

@ The strategy of echo state networks is to make use of this
intuition

@ The Jacobian is chosen such that the spectral radius
corresponds to stable dynamics
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e
Other ldeas

@ Skip Connections
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e
Other ldeas

@ Skip Connections

o Leaky Units
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-
Long Short Term Memory

h; = tanh(Wh;_; + Uxy)

Xt
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Long Short Term Memory

Ct—1
h;_; —|tanh {b
¢; = tanh(Why_1 + Uxy)
Ct = Ct—1 + ét
Ct

Xt
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Long Short Term Memory

Ct—1

Forget Gate fi= J(thtfl * fot)

/ @
h;_4 tanh
¢; = tanh(Why_1 + Uxy)
ct=fiOci_1+¢
Ct
x

t
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Long Short Term Memory

Ct—1
fi=o(Wshi_1 + Usxy)
€D i = (T(VV,‘ht—l + UL‘Xt)

Input ¢; = tanh(Why_1 + Uxy)
@ ct=frtOci—1+ 1 O

” ‘
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Long Short Term Memory

Ct—1
fi=0c(Wrhi_1 + Urxy)
@ i = o(Wihy—1 + Uixy)
/ 0 = c(Wohy_1 + Upxy)
h;_¢ tanh a9\
/ ¢; = tanh(Why_1 + Uxy)
Ct = ft@Ct_l +it®ét

@ @
Xt ——(@——D Ct h; = 0; ® tanh(cy)
Y

A
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.
Gated Recurrent Unit

o Let hy = tanh(Why;_1 + Ux;) and hy = h;
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Gated Recurrent Unit

o Let hy = tanh(Why;_1 + Ux;) and hy = h;
@ Reset gate: 7, = o(W,hy—1 + Uyxy)
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.
Gated Recurrent Unit

o Let flt = tanh(Wht,l + UXt) and ht = flt
@ Reset gate: 7, = o(W,hy—1 + Uyxy)
o New h; = tanh(W (ry @ hy—1) + Uxy)
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Gated Recurrent Unit

Let h, = tanh(Why_; + Ux,;) and hy = h,
Reset gate: r, = o(W,hy—1 + U, xy)

New h; = tanh(W (ry @ hy—1) + Uxy)
Find: 2z = c(W,hy—1 + U,xy)
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Gated Recurrent Unit

Let h, = tanh(Why_; + Ux,;) and hy = h,
Reset gate: r, = o(W,hy—1 + U, xy)

New h; = tanh(W (ry @ hy—1) + Uxy)
Find: 2z = c(W,hy—1 + U,xy)

Update hy = z; ©® flt
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.
Gated Recurrent Unit

Let h, = tanh(Why_; + Ux,;) and hy = h,

Reset gate: r, = o(W,hy—1 + U, xy)

New h; = tanh(W (ry @ hy—1) + Uxy)

Find: 2z = c(W,hy—1 + U,xy)

Update hy = z; ©® flt

Finally: hy = (1 — 2) @ hy_; + 2 © hy

Comes from attempting to factor LSTM and reduce gates

Lecture 11 Recurrent Neural Networks | CMSC 35246



