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Unsupervised Learning

@ So far we have only looked at discriminative models i.e. we
model Y = f(X;6) or P(Y|X)
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Unsupervised Learning

@ So far we have only looked at discriminative models i.e. we
model Y = f(X;6) or P(Y|X)

@ Recall: P(Y|X) = %

@ P(X) is defined in terms of P(X|Y) or the best model of X

(unsupervised learning) must involve the labels Y as a latent
factor
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-
Unsupervised Learning

@ So far we have only looked at discriminative models i.e. we
model Y = f(X;6) or P(Y|X)

@ Recall: P(Y|X) = %

@ P(X) is defined in terms of P(X|Y) or the best model of X

(unsupervised learning) must involve the labels Y as a latent
factor

@ The idea of representation learning is to uncover the latent
variables that explain X
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Unsupervised Learning

Sanskrit
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Unsupervised Learning
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Unsupervised Learning

Natural Images Learned bases: “Edges”

New example

E =0.8% +0.5 %

X =08% gg *03% Py FO5* e

[0,0,..0.8,..,0.3, .., 0.5, ...] = coefficients (feature representation)
Slide credit: Honglak Lee

+ 0:3/%
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Unsupervised Learning

Learned latent code Reuters dataset: 804,414
newswire stories: unsupervised

European Communit;
O(z \ Interbank Markets Mongtan//Economlc Y
" . o

v H . Disasters and
Accidents
000000 -,

e

Leading Legal/Judicial
Economic
Indicators R
‘ o
Bag of words /‘\mums/ z Govemment
Borrowings

Earnings

G. Hinton and R. Salakhutdinov, " Semantic Hashing”, 2006
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Unsupervised Learning

e Distributed representations (constraints on experts, compare
to localist representations (e.g. Big Yellow Volk))
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Unsupervised Learning

e Distributed representations (constraints on experts, compare
to localist representations (e.g. Big Yellow Volk))

@ Intrinsic latent dimensions
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Unsupervised Learning

e Distributed representations (constraints on experts, compare
to localist representations (e.g. Big Yellow Volk))

@ Intrinsic latent dimensions

@ Visualization
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Unsupervised Learning

e Distributed representations (constraints on experts, compare
to localist representations (e.g. Big Yellow Volk))

@ Intrinsic latent dimensions
@ Visualization

@ Figuring explanatory factors
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Unsupervised Learning

Distributed representations (constraints on experts, compare
to localist representations (e.g. Big Yellow Volk))

Intrinsic latent dimensions
Visualization

Figuring explanatory factors

Learning features for classification
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Unsupervised Learning

Distributed representations (constraints on experts, compare
to localist representations (e.g. Big Yellow Volk))

Intrinsic latent dimensions
Visualization
Figuring explanatory factors

Learning features for classification

Semi-supervised learning
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-
Unsupervised Deep Learning

Unsupervised Learning
Non-probabilistic Models Probabilistic (Generative)
» Sparse Coding Models

» Autoencoders
» Others (e.g. k-means)

# 74
o = \
f 3 \
! Tractable Models Non Tractable MOde.IS i| > Generative Adversarial
i > Fully observed » Boltzmann Machines |1 Networks

! ; i |
i Belief Nets > Variational {| » Moment Matching
i » NADE Autoencoders ) ! Networks
il > PpixelRNN p » Helmholtz Machines
— > Many others... ;
\\ Py

Explicit Density p(x) Implicit Density

Figure: Ruslan Salakhutdinov
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Warm Up
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Linear Projections

@ Suppose we have a mean-centered dataset X with N
datapoints x1,...,xy € R?
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Linear Projections

@ Suppose we have a mean-centered dataset X with N
datapoints x1,...,xy € R?

@ We don’t have labels!
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Linear Projections

@ Suppose we have a mean-centered dataset X with N
datapoints x1,...,xy € R?

@ We don’t have labels!

@ We want to find bases hy, ..., h), such that each:
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Linear Projections
@ Suppose we have a mean-centered dataset X with N
datapoints x1,...,xy € R?

@ We don’t have labels!

@ We want to find bases hy, ..., h), such that each:

p
X =) aijhy
j=1
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Linear Projections

@ Suppose we have a mean-centered dataset X with N
datapoints x1,...,xy € R?

@ We don’t have labels!

@ We want to find bases hy, ..., h), such that each:
P
X =) aijhy
j=1

@ We want to minimize:
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Linear Projections

@ Suppose we have a mean-centered dataset X with N
datapoints x1,...,xy € R?

@ We don’t have labels!

@ We want to find bases hy, ..., h), such that each:
P
X =) aijhy
j=1

@ We want to minimize:

N

Error = Z(f{z — xi)2

i=1
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Linear Projections

@ Note that for bases hy,..., hy
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Linear Projections

@ Note that for bases hy,..., hy

N
x; =y aijh,
j=1
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Linear Projections

@ Note that for bases hy,..., hy
N
X; = Za@jh
Jj=1

@ We can now re-write the error:

Error = Z Z a; jh; Z a; jh

=1

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



Linear Projections

@ Note that for bases hy,..., hy
N
X; = Za@jh
j=1

@ We can now re-write the error:

Error:E E a; jh; E a; jh

=1

o After some basic manipulation (o, ; = x;h;):
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Linear Projections

@ Note that for bases hy,..., hy
N
X; = Za@jh
Jj=1

@ We can now re-write the error:

Error = Z Z a; jh; Z a; jh
=1
o After some basic manipulation (o, ; = x;h;):

N N
Errorzg E o j

i=1 j=p+1
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Linear Projections

N N
Error = g E Q; j

i=1 j=p+1
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Linear Projections

N N
Errorzg E Q; j

i=1 j=p+1

e Note that «; ; = h;x;, therefore:
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Linear Projections

N N
Errorzg E Q; j

i=1 j=p+1

e Note that «; ; = h;x;, therefore:

N N
Error = Z Z (hjxi)2

i=1 j=p+1
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Linear Projections

N N
Errorzg E Q; j

i=1 j=p+1

e Note that «; ; = h;x;, therefore:
N N
Error = Z Z (h;x;)?

i=1 j=p+1
@ Which is just:

N N

Error = Z Z h;‘-rxixiThj

i=1 j=p+1
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Linear Projections

N
Error = Z thEhj
J=p+1

@ Now to find the minimizer, solve:

T

minuXu+ A(1 —u” u)
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Linear Projections

N
Error = Z thEhj
Jj=p+1

@ Now to find the minimizer, solve:

T

minuXu+ A(1 —u” u)

@ The extra terms enforces orthonormality
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Linear Projections

N
Error = Z thEhj
J=p+1

@ Now to find the minimizer, solve:

T

minuXu+ A(1 —u” u)

@ The extra terms enforces orthonormality
@ Take derivative, and set to zero:

uiE = )\iui
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Linear Projections

N
Error = Z thEhj
J=p+1

@ Now to find the minimizer, solve:

T

minuXu+ A(1 —u” u)

@ The extra terms enforces orthonormality
@ Take derivative, and set to zero:

uiE = )\iui

@ Solutions are eigenvectors!
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PCA on Face Images: Eigenfaces

=
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Eigenfaces: Features
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A Linear Neural Network
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A Linear Neural Network

Wx. Decoding: h - x=Vh

@ Encoding: x — h

©
<
N
5]
®
(9]
0
>
(9]

ning

vised Lear
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A Linear Neural Network

@ Objective:

2
2

in||x — VIVx]||

min
W,V
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A Linear Neural Network

@ This is a linear Autoencoder

©
<
N
5]
®
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(9]
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vised Lear
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Autoencoder: Non-Linear PCA

. A 2
min |x — X|

W, M
. 1 X
M
— b4
W
[ ] X
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Autoencoder: Implicit Bottleneck

. 1 X

y Limited capacity
units
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e
Another Linear Model: ICA

@ Canonical example: Cocktail party problem

3 ol
=

. & . ( .
( (&) : £
. N\ ]
1 1L o
m
Sources Mixtures S:zjzt:sd
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e
Another Linear Model: ICA

@ Suppose x1,...,X7 are the microphone signals
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e
Another Linear Model: ICA

@ Suppose x1,...,X7 are the microphone signals

@ Each x; is a result of linear mixing between the sources h;
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e
Another Linear Model: ICA

@ Suppose x1,...,X7 are the microphone signals

@ Each x; is a result of linear mixing between the sources h;

X; :Zaihi or X = AH

(2
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e
Another Linear Model: ICA

@ Suppose x1,...,X7 are the microphone signals

@ Each x; is a result of linear mixing between the sources h;

X; :Zaihi or X = AH

(2

@ Task: Only X is observed, A is unknown, recover H
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e
Another Linear Model: ICA

Suppose X1, ...,Xx7 are the microphone signals

Each x; is a result of linear mixing between the sources h;

X; :Zaihi or X = AH

(2

Task: Only X is observed, A is unknown, recover H

Here the bases are independent of each other
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e
Difference with PCA

e In PCA X = AH with HTH = I i.e. bases are orthogonal
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e
Difference with PCA

e In PCA X = AH with HTH = I i.e. bases are orthogonal
o In ICA X = AH with A invertible
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e
Difference with PCA

e In PCA X = AH with HTH = I i.e. bases are orthogonal
o In ICA X = AH with A invertible

@ PCA does compression, ICA doesn't do any compression
(p=d)
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e
Difference with PCA

e In PCA X = AH with HTH = I i.e. bases are orthogonal

e In ICA X = AH with A invertible

@ PCA does compression, ICA doesn't do any compression
(p=d)

@ Some PCs are more important than others, not in the case
with 1CA
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e
Difference with PCA

PCA ¢ ICA
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-
Sparse Coding

@ Objective: Given a set of input vectors x1,Xo,...,Xy, learn a
dictionary of bases hi, hy, ... h, such that:

p
x; = _ ahy
k=1
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-
Sparse Coding

@ Objective: Given a set of input vectors x1,Xo,...,Xy, learn a
dictionary of bases hi, hy, ... h, such that:

p
x; = _ ahy
k=1

@ This such that most a;, are zero i.e. very few bases explain x;

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



-
Sparse Coding

@ Objective: Given a set of input vectors x1,Xo,...,Xy, learn a
dictionary of bases hi, hy, ... h, such that:

p
x; = _ ahy
k=1

@ This such that most a;, are zero i.e. very few bases explain x;

@ Like before, but data is now a sparse linear combination of
bases
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-
Sparse Coding

Natural Images Learned bases: “Edges”
T

New example

E:os* +o.5*

X =08% ¢hys t03F ¢y  FTO5E s

[0,0,..0.8, ..,0.3, ..., 0.5, ...] = coefficients (feature representation)

+ D3 *
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-
Sparse Coding

e Optimization: Given x1,Xs,...,xy € R% learn dictionary
hi,hy, ..., h, € R? (arranged as
H = [hy, hy, ... hy] € R¥P) such that:

min Z l|x; — Hay||3 + /\Z llag]|1

ai,...,an,H
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-
Sparse Coding

e Optimization: Given x1,Xs,...,xy € R% learn dictionary
hi,hy, ..., h, € R? (arranged as
H = [hy, hy, ... hy] € R¥P) such that:

min Z:HxZ HaZH2+/\Z\aZH1

ai,...,an,H

@ Reconstruction term: ||x; — Ha,||3

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



-
Sparse Coding

e Optimization: Given x1,Xs,...,xy € R% learn dictionary
hi,hy, ..., h, € R? (arranged as
H = [hy, hy, ... hy] € R¥P) such that:

min Z l|x; — Hay||3 + /\Z llag]|1

ai,...,an,H

@ Reconstruction term: ||x; — Ha,||3

@ Sparsity term: ||a;||1
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-
Sparse Coding

ai,..,aN,

N N
min HZ Ixi — Hag[|3 + A Jlaills
=1 =1
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-
Sparse Coding

N N
min Z l|x: — Hang + )‘Z [CH
ai,...,an,H i—1 =1

@ Optimization:

Initialize a1,...,ay and H = [h; ..., h,] randomly
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-
Sparse Coding

N N
min Z l|x: — Hang + )‘Z [CH
ai,...,an,H i—1 =1

@ Optimization:

Initialize a1,...,ay and H = [h; ..., h,] randomly
Fix bases H = [h; ..., h,] and optimize for codes a;
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-
Sparse Coding

N N
min Z l|x: — Hang + )‘Z [CH
ai,...,an,H i—1 =1

@ Optimization:

Initialize a1,...,ay and H = [h; ..., h,] randomly
Fix bases H = [h; ..., h,] and optimize for codes a;
Fix codes a; and optimize for H (convex)
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-
Sparse Coding:Test Time

@ Given a new patch X € R? and learned dictionary
H = [hy ..., h,], we find the code a as:
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-
Sparse Coding:Test Time

@ Given a new patch X € R? and learned dictionary
H = [hy ..., h,], we find the code a as:

min % — Ha&J + Al
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-
Sparse Coding:Test Time

@ Given a new patch X € R? and learned dictionary
H = [hy ..., h,], we find the code a as:

min % — Ha&J + Al

@ a will be a sparse representation for x
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Image Classification

Evaluated on Caltech101 object category dataset.

EE

Classification
_—

- Algorithm
=] (SVM)
Learned :

Input Image bases Features (coefficients)

9K images, 101 classes
Algorithm Accuracy Eﬁ@%l“ﬁi
Baseline (Fei-Fei et al., 2004) 16% nm
PCA 37% W FEgm
Sparse Coding 47% 5;)3n‘kém ‘,

Slide Credit: Honglak Lee

Lee, Battle, Raina, Ng, 2006
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Features for Faces

=
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-
Encoding-Decoding

e Encoding: Implicit non-linear (in x) encoding
@ Decoding: Explicit linear decoding

@ Can be overcomplete
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-
Encoding-Decoding

Simple Neural Network
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Sparse Autoencoders

. 1 X
A
M
(sparse)
|90 00O @®@O0O®@O0O00O®@O0O0000e®000O0 eOo | y
A
[ ] X
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Stacked Autoencoders

Class Labels

Decoder Encoder

”,-—:T?’ [ Features J
M @édi} Encoder
' Features ]
Sparsity Decoder @nc‘gdij
Input x )
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Pre-Training

Class Labels

Decoder Encoder

fv [ Features
Spar3|ty Decoder Encoder
Features

(

| Greedy Layer-wise Learning.
Spt.
— O B

[ Input x
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Lecture 14 Introduction to

Deep Autoencoders (2006)

S Decoder:

g

2000 ]

Wi

[30] Code layer

Wy

Wy

s
S
S
S

Pretraining

.
Encoder

Unrolling

Fine-tuning

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the “data” for training the next RBM in the stack. After the pretraining, the RBMs are
“unrolled” to create a deep autoencoder, which is then fine-tuned using backpropagation of

error derivatives.

eep Unsupervised Learni

G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 2006

It was hard to train deep feedforward networks from scratch in 2006!
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Effect of Unsupervised Pre-training

AISTATS 2009
=1 layer with pretraining 5 fﬁA layers without pretraining
Els =4 layers with pretraining |4

count

tast amor test error

Lecture 14 Introduction to Deep Unsupervised Learning




test classification error (perc)

Effect of Unsupervised Pre-training

w/o pre-training

number of layers

Lecture 14 Introduction to Deep Unsupervised Learning

test classification error (perc)

with pre-training

T = <

=

i
T
!
=

number of layers




Why does Unsupervised Pre-training work?

@ Regularization. Feature representations that are good for
P(x) are good for P(y|z)
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Why does Unsupervised Pre-training work?

@ Regularization. Feature representations that are good for
P(x) are good for P(y|z)

@ Optimization: Unsupervised pre-training leads to better
regions of the space i.e. better than random initialization
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More Autoencoders

@ De-noising Autoencoders: Input is corrupted by noise, but we
attempt to reconstruct the uncorrupted image
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More Autoencoders

@ De-noising Autoencoders: Input is corrupted by noise, but we
attempt to reconstruct the uncorrupted image

@ Contractive Autoencoders: The regularization term penalizes
for the derivative:

Q(h,x) =AY || Vxhil3
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De-Noising Autoencoder: Intuition

Figure: Goodfellow et al.
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Back to Simple Models
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Linear Factor Model

@ We want to build a probabilistic model of the input P(x)
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Linear Factor Model

@ We want to build a probabilistic model of the input P(x)

@ Often we might be interested in latent factors h that explain x
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Linear Factor Model

@ We want to build a probabilistic model of the input P(x)
@ Often we might be interested in latent factors h that explain x

@ We then care about the marginal:

P(x) = EyP(x|h)
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Linear Factor Model

@ We want to build a probabilistic model of the input P(x)
@ Often we might be interested in latent factors h that explain x

@ We then care about the marginal:

P(x) = EyP(x|h)

@ h is a representation of the data
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Linear Factor Model

@ The latent factors h are an encoding of the data
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Linear Factor Model

@ The latent factors h are an encoding of the data

@ Simplest decoding model: Get x after a linear transformation
of x with some noise
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Linear Factor Model

@ The latent factors h are an encoding of the data

@ Simplest decoding model: Get x after a linear transformation
of x with some noise

@ Formally: Suppose we sample the latent factors from a
distribution h ~ P(h)
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Linear Factor Model

@ The latent factors h are an encoding of the data

@ Simplest decoding model: Get x after a linear transformation
of x with some noise

@ Formally: Suppose we sample the latent factors from a
distribution h ~ P(h)

@ Then: x=Wh+b+e¢

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



e
Linear Factor Model

@ The latent factors h are an encoding of the data

@ Simplest decoding model: Get x after a linear transformation
of x with some noise

@ Formally: Suppose we sample the latent factors from a
distribution h ~ P(h)

@ Then: x=Wh+b+e¢

@ How do we figure good representations that explain the data
well?
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e
Linear Factor Model

@ The latent factors h are an encoding of the data

@ Simplest decoding model: Get x after a linear transformation
of x with some noise

@ Formally: Suppose we sample the latent factors from a
distribution h ~ P(h)

@ Then: x=Wh+b+e¢

@ How do we figure good representations that explain the data
well?

What would explaining the data mean?
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Factor Analysis

@ Suppose we fix the latent factor prior to be the unit Gaussian:

h ~ N (h;0,1)
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Factor Analysis

@ Suppose we fix the latent factor prior to be the unit Gaussian:

h ~ N (h;0,1)

@ Now, we need to specify a noise model. Assume it comes
from a Gaussian with covariance X = diag(o?)
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Factor Analysis

@ Suppose we fix the latent factor prior to be the unit Gaussian:

h ~ N (h;0,1)

@ Now, we need to specify a noise model. Assume it comes
from a Gaussian with covariance X = diag(o?)

@ For this simple model, x is also a multivariate Gaussian:
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Factor Analysis

@ Suppose we fix the latent factor prior to be the unit Gaussian:

h ~ N (h;0,1)

@ Now, we need to specify a noise model. Assume it comes
from a Gaussian with covariance X = diag(o?)

@ For this simple model, x is also a multivariate Gaussian:

x ~ N(x; b, WIWT 4+ %)
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e
Probabilistic PCA

@ We only need to make a small change in our general factor
analysis model
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e
Probabilistic PCA

@ We only need to make a small change in our general factor
analysis model

@ Still sample h as before:

h ~ N (h;0,1)
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e
Probabilistic PCA

@ We only need to make a small change in our general factor
analysis model

@ Still sample h as before:

h ~ N (h;0,1)

@ But now we assume a noise model which is a Gaussian with
covariance UZ»QI
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e
Probabilistic PCA

@ We only need to make a small change in our general factor
analysis model

@ Still sample h as before:

h ~ N (h;0,1)

@ But now we assume a noise model which is a Gaussian with
covariance UZ»QI

@ Then, the conditional distribution becomes:

x ~ N (x;b, WWT + 521)
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e
Probabilistic PCA

We only need to make a small change in our general factor
analysis model

Still sample h as before:

h ~ N (h;0,1)

@ But now we assume a noise model which is a Gaussian with
covariance UZ»QI

Then, the conditional distribution becomes:

x ~ N (x;b, WWT + 521)
@ Or x = Wh + b + noise
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e
Probabilistic PCA

We only need to make a small change in our general factor
analysis model

@ Still sample h as before:

h ~ N (h;0,1)

@ But now we assume a noise model which is a Gaussian with
covariance UZ»QI

@ Then, the conditional distribution becomes:

x ~ N (x;b, WWT + 521)

@ Or x =Wh + b + noise
@ Approaches PCA as 0 — 0
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-
Energy Based Models and PoE

@ Energy-Based Models assign a with every
configuration of variables under consideration
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@ Learning: Change the energy function so that its final shape
has some desirable properties

@ We can define a probability distribution through an energy:

expf(EnergY(x))

P(x) = Z
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-
Energy Based Models and PoE

@ Energy-Based Models assign a with every
configuration of variables under consideration

@ Learning: Change the energy function so that its final shape
has some desirable properties

@ We can define a probability distribution through an energy:

expf(EnergY(x))

P(x) = Z

@ Energies are in the log-probability domain:

Energy(x) = log m
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-
Energy Based Models and PoE
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-
Energy Based Models and PoE

@ Z is a normalizing factor called the Partition Function

Z = Z exp(—Energy(x))

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



-
Energy Based Models and PoE

@ Z is a normalizing factor called the Partition Function

Z = Z exp(—Energy(x))

@ How do we specify the energy function?
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Product of Experts Formulation

@ In this formulation, the energy function is:

Energy(x) = > fi(x)
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Product of Experts Formulation

@ In this formulation, the energy function is:

Energy(x) = > fi(x)

@ Therefore:
. expf(Zi fz(x))

P(x) Z
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Product of Experts Formulation

@ In this formulation, the energy function is:

Energy(x) = > fi(x)

@ Therefore:
. expf(Zi fz(x))

P(x) Z

@ We have the product of experts:

P(x) x HR(X) x Hexp(*f"(x))
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Product of Experts Formulation

P(x) x HR(X) x Hexp(_f"(x))

@ Every expert f; can be seen as enforcing a constraint on x
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Product of Experts Formulation

P(x) x HH(X) x Hexp(_f"(x))

@ Every expert f; can be seen as enforcing a constraint on x

o If fjis large = P;(x) is small i.e. the expert thinks x is
implausible (constraint violated)
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Product of Experts Formulation

P(x) x HH(X) x Hexp(_f"(x))

@ Every expert f; can be seen as enforcing a constraint on x

o If fjis large = P;(x) is small i.e. the expert thinks x is
implausible (constraint violated)

o If f;is small = Pj(x) is large i.e. the expert thinks x is
plausible (constraint satisfied)
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Product of Experts Formulation

P(x) x HH(X) x Hexp(_f"(x))

(]

Every expert f; can be seen as enforcing a constraint on x

If f; is large = P;(x) is small i.e. the expert thinks x is
implausible (constraint violated)

If fi is small = P;(x) is large i.e. the expert thinks x is
plausible (constraint satisfied)

Contrast this with mixture models
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Latent Variables

@ x is observed, let's say h are hidden factors that explain x
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Latent Variables

@ x is observed, let's say h are hidden factors that explain x

@ The probability then becomes:

—(Energy(x,h))
P(x,h) = 2P ~
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Latent Variables

@ x is observed, let's say h are hidden factors that explain x

@ The probability then becomes:

—(Energy(x,h))
P(x,h) = 2P ~

@ We only care about the marginal:

eXp—(Energy(x,h))

P(x) =) 7
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Latent Variables

@ x is observed, let's say h are hidden factors that explain x

@ The probability then becomes:

—(Energy(x,h))
P(x,h) = 2P ~

@ We only care about the marginal:

eXp—(Energy(x,h))

P(x) =) 7
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Latent Variables

Energy(x,h))

ex —(
Px) =Y =P ~

h
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Latent Variables

Energy(x,h))

ex —(
Px) =Y =P ~

h

@ We introduce another term from statistical physics: free

energy:
(FreeEnergy(x))

Z

exp

P(x) =
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Latent Variables

exp_(EnergY(xvh))

P(x)=>)_ ~

@ We introduce another term from statistical physics: free

energy:
FreeEnergy(x))

Z

—(
P(x) = exp

o Free Energy is just a marginalization of energies in the
log-domain:

FreeEnergy(x) = — log Z exp~(Energy(x.h)
h
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