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Unsupervised Learning

So far we have only looked at discriminative models i.e. we
model Y = f(X; θ) or P (Y |X)

Recall: P (Y |X) = P (X|Y )P (Y )
P (X)

P (X) is defined in terms of P (X|Y ) or the best model of X
(unsupervised learning) must involve the labels Y as a latent
factor

The idea of representation learning is to uncover the latent
variables that explain X
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Unsupervised Learning

Slide credit: Honglak Lee
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Unsupervised Learning

G. Hinton and R. Salakhutdinov, ”Semantic Hashing”, 2006
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Unsupervised Learning

Distributed representations (constraints on experts, compare
to localist representations (e.g. Big Yellow Volk))

Intrinsic latent dimensions

Visualization

Figuring explanatory factors

Learning features for classification

Semi-supervised learning
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Unsupervised Deep Learning

Figure: Ruslan Salakhutdinov
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Warm Up
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Linear Projections

Suppose we have a mean-centered dataset X with N
datapoints x1, . . . ,xN ∈ Rd

We don’t have labels!

We want to find bases h1, . . . ,hp such that each:

x̃i =

p∑
j=1

αi,jhj

We want to minimize:

Error =
N∑
i=1

(x̃i − xi)
2
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Linear Projections

Note that for bases h1, . . . ,hN

xi =
N∑
j=1

αi,jhj

We can now re-write the error:

Error =
N∑
i=1

(
p∑

j=1

αi,jhj −
N∑
j=1

αi,jhj

)2

After some basic manipulation (αi,j = xihj):

Error =
N∑
i=1

N∑
j=p+1

αi,j
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Linear Projections

Error =

N∑
i=1

N∑
j=p+1

αi,j

Note that αi,j = hjxi, therefore:

Error =
N∑
i=1

N∑
j=p+1

(hjxi)
2

Which is just:

Error =

N∑
i=1

N∑
j=p+1

hT
j xix

T
i hj
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Linear Projections

Error =

N∑
j=p+1

hT
j Σhj

Now to find the minimizer, solve:

min
u

uΣu + λ(1− uTu)

The extra terms enforces orthonormality

Take derivative, and set to zero:

uiΣ = λiui

Solutions are eigenvectors!
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PCA on Face Images: Eigenfaces

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



Eigenfaces: Features
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A Linear Neural Network

x1 x2 x3 x4 x5 x6 x7

x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



A Linear Neural Network

x1 x2 x3 x4 x5 x6 x7

x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7

Encoding: x→ h = Wx. Decoding: h→ x̃ = V h
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A Linear Neural Network

x1 x2 x3 x4 x5 x6 x7

x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7

Objective:
min
W,V
‖x− VWx‖22
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A Linear Neural Network

x1 x2 x3 x4 x5 x6 x7

x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7

This is a linear Autoencoder
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Autoencoder: Non-Linear PCA
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Autoencoder: Implicit Bottleneck
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Another Linear Model: ICA

Canonical example: Cocktail party problem
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Another Linear Model: ICA

Suppose x1, . . . ,x7 are the microphone signals

Each xi is a result of linear mixing between the sources hi

xi =
∑
i

aihi or X = AH

Task: Only X is observed, A is unknown, recover H

Here the bases are independent of each other
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Difference with PCA

In PCA X = AH with HTH = I i.e. bases are orthogonal

In ICA X = AH with A invertible

PCA does compression, ICA doesn’t do any compression
(p = d)

Some PCs are more important than others, not in the case
with ICA
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Difference with PCA
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Filters
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Sparse Coding

Objective: Given a set of input vectors x1,x2, . . . ,xN , learn a
dictionary of bases h1,h2, . . . ,hp such that:

xi =

p∑
k=1

aikhk

This such that most aik are zero i.e. very few bases explain xi

Like before, but data is now a sparse linear combination of
bases
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Sparse Coding
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Sparse Coding

Optimization: Given x1,x2, . . . ,xN ∈ Rd, learn dictionary
h1,h2, . . . ,hp ∈ Rd (arranged as
H = [h1,h2, . . . ,hp] ∈ Rd×p) such that:

min
a1,...,aN ,H

N∑
i=1

‖xi −Hai‖22 + λ

N∑
i=1

‖ai‖1

Reconstruction term: ‖xi −Hai‖22
Sparsity term: ‖ai‖1
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Sparse Coding

min
a1,...,aN ,H

N∑
i=1

‖xi −Hai‖22 + λ

N∑
i=1

‖ai‖1

Optimization:

1 Initialize a1, . . . ,aN and H = [h1 . . . ,hp] randomly
2 Fix bases H = [h1 . . . ,hp] and optimize for codes ai
3 Fix codes ai and optimize for H (convex)
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Sparse Coding:Test Time

Given a new patch x̃ ∈ Rd and learned dictionary
H = [h1 . . . ,hp], we find the code ã as:

min
ã
‖x̃−Hã‖22 + λ‖ã‖1

ã will be a sparse representation for x̃
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Image Classification
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Features for Faces

Figure: Charles Cadieu
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Encoding-Decoding

Encoding: Implicit non-linear (in x) encoding

Decoding: Explicit linear decoding

Can be overcomplete
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Encoding-Decoding

Simple Neural Network
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Sparse Autoencoders
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Stacked Autoencoders

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



Pre-Training
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Deep Autoencoders (2006)

G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 2006

It was hard to train deep feedforward networks from scratch in 2006!
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Effect of Unsupervised Pre-training
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Effect of Unsupervised Pre-training
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Why does Unsupervised Pre-training work?

Regularization. Feature representations that are good for
P (x) are good for P (y|x)

Optimization: Unsupervised pre-training leads to better
regions of the space i.e. better than random initialization
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More Autoencoders

De-noising Autoencoders: Input is corrupted by noise, but we
attempt to reconstruct the uncorrupted image

Contractive Autoencoders: The regularization term penalizes
for the derivative:

Ω(h,x) = λ
∑
i

‖∇xhi‖22
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De-Noising Autoencoder: Intuition

Figure: Goodfellow et al.
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Back to Simple Models
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Linear Factor Model

We want to build a probabilistic model of the input P̃ (x)

Often we might be interested in latent factors h that explain x

We then care about the marginal:

P̃ (x) = EhP̃ (x|h)

h is a representation of the data
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Linear Factor Model

The latent factors h are an encoding of the data

Simplest decoding model: Get x after a linear transformation
of x with some noise

Formally: Suppose we sample the latent factors from a
distribution h ∼ P (h)

Then: x = Wh + b + ε

How do we figure good representations that explain the data
well?

What would explaining the data mean?
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Factor Analysis

Suppose we fix the latent factor prior to be the unit Gaussian:

h ∼ N (h; 0, I)

Now, we need to specify a noise model. Assume it comes
from a Gaussian with covariance Σ = diag(σ2i )

For this simple model, x is also a multivariate Gaussian:

x ∼ N (x; b,WW T + Σ)

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



Factor Analysis

Suppose we fix the latent factor prior to be the unit Gaussian:

h ∼ N (h; 0, I)

Now, we need to specify a noise model. Assume it comes
from a Gaussian with covariance Σ = diag(σ2i )

For this simple model, x is also a multivariate Gaussian:

x ∼ N (x; b,WW T + Σ)

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



Factor Analysis

Suppose we fix the latent factor prior to be the unit Gaussian:

h ∼ N (h; 0, I)

Now, we need to specify a noise model. Assume it comes
from a Gaussian with covariance Σ = diag(σ2i )

For this simple model, x is also a multivariate Gaussian:

x ∼ N (x; b,WW T + Σ)

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



Factor Analysis

Suppose we fix the latent factor prior to be the unit Gaussian:

h ∼ N (h; 0, I)

Now, we need to specify a noise model. Assume it comes
from a Gaussian with covariance Σ = diag(σ2i )

For this simple model, x is also a multivariate Gaussian:

x ∼ N (x; b,WW T + Σ)

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



Probabilistic PCA

We only need to make a small change in our general factor
analysis model

Still sample h as before:

h ∼ N (h; 0, I)

But now we assume a noise model which is a Gaussian with
covariance σ2i I

Then, the conditional distribution becomes:

x ∼ N (x; b,WW T + σ2I)

Or x = Wh + b + noise

Approaches PCA as σ → 0
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Energy Based Models and PoE

Energy-Based Models assign a scalar energy with every
configuration of variables under consideration

Learning: Change the energy function so that its final shape
has some desirable properties

We can define a probability distribution through an energy:

P (x) =
exp−(Energy(x))

Z

Energies are in the log-probability domain:

Energy(x) = log
1

(ZP (x))
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Energy Based Models and PoE

P (x) =
exp−(Energy(x))

Z

Z is a normalizing factor called the Partition Function

Z =
∑
x

exp(−Energy(x))

How do we specify the energy function?
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Product of Experts Formulation

In this formulation, the energy function is:

Energy(x) =
∑
i

fi(x)

Therefore:

P (x) =
exp−(

∑
i fi(x))

Z

We have the product of experts:

P (x) ∝
∏
i

Pi(x) ∝
∏
i

exp(−fi(x))
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Product of Experts Formulation

P (x) ∝
∏
i

Pi(x) ∝
∏
i

exp(−fi(x))

Every expert fi can be seen as enforcing a constraint on x

If fi is large =⇒ Pi(x) is small i.e. the expert thinks x is
implausible (constraint violated)

If fi is small =⇒ Pi(x) is large i.e. the expert thinks x is
plausible (constraint satisfied)

Contrast this with mixture models

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



Product of Experts Formulation

P (x) ∝
∏
i

Pi(x) ∝
∏
i

exp(−fi(x))

Every expert fi can be seen as enforcing a constraint on x

If fi is large =⇒ Pi(x) is small i.e. the expert thinks x is
implausible (constraint violated)

If fi is small =⇒ Pi(x) is large i.e. the expert thinks x is
plausible (constraint satisfied)

Contrast this with mixture models

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



Product of Experts Formulation

P (x) ∝
∏
i

Pi(x) ∝
∏
i

exp(−fi(x))

Every expert fi can be seen as enforcing a constraint on x

If fi is large =⇒ Pi(x) is small i.e. the expert thinks x is
implausible (constraint violated)

If fi is small =⇒ Pi(x) is large i.e. the expert thinks x is
plausible (constraint satisfied)

Contrast this with mixture models

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



Product of Experts Formulation

P (x) ∝
∏
i

Pi(x) ∝
∏
i

exp(−fi(x))

Every expert fi can be seen as enforcing a constraint on x

If fi is large =⇒ Pi(x) is small i.e. the expert thinks x is
implausible (constraint violated)

If fi is small =⇒ Pi(x) is large i.e. the expert thinks x is
plausible (constraint satisfied)

Contrast this with mixture models

Lecture 14 Introduction to Deep Unsupervised Learning CMSC 35246



Latent Variables

x is observed, let’s say h are hidden factors that explain x

The probability then becomes:

P (x,h) =
exp−(Energy(x,h))

Z

We only care about the marginal:

P (x) =
∑
h

exp−(Energy(x,h))

Z
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Latent Variables

P (x) =
∑
h

exp−(Energy(x,h))

Z

We introduce another term from statistical physics: free
energy:

P (x) =
exp−(FreeEnergy(x))

Z

Free Energy is just a marginalization of energies in the
log-domain:

FreeEnergy(x) = − log
∑
h

exp−(Energy(x,h))
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