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Recap: Unsupervised Deep Learning

Figure: Ruslan Salakhutdinov

Lecture 15 Introduction to Deep Unsupervised Learning II CMSC 35246



Recap: PCA

For a mean-centered dataset X with N datapoints
x1, . . . ,xN ∈ Rd

We wanted to find bases h1, . . . ,hp such that each:

x̃i =

p∑
j=1

ai,jhj

To minimize the error: Error =
∑N

i=1(x̃i − xi)
2

Solution: h1, . . . ,hp are the first p eigenvectors of the
sample covariance matrix

The bases are orthogonal. Coefficient vectors are dense
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Recap: Linear Autoencoder

x1 x2 x3 x4 x5 x6 x7

x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7

Encoding: x→ h = Wx. Decoding: h→ x̃ = V h

Objective: minW,V ‖x− VWx‖22
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Recap: Simple Non-Linear Autoencoder

x1 x2 x3 x4 x5 x6 x7

x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7

Encoding: x 7→ h = tanh(Wx). Decoding:
h 7→ x̃ = tanh(V h)

Objective: minW,V ‖x− x̃‖22
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Recap: Non-Linear Autoencoder

x1 x2 x3 x4 x5 x6

. . .
xd

. . .

. . .

x̃1 x̃2 x̃3 x̃4 x̃5 x̃6
. . .

x̃d

Encoding: h = tanh(W2 tanh(W1x)). Decoding:
x̃ = tanh(W

′
1 tanh(W

′
2h))

Objective: min
W2,W1,W

′
1,W

′
2
‖x− x̃‖22
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Recap: Non-Linear Autoencoders

So far we have only seen auto-encoders that have a bottleneck

The forms for encoding and decoding can be different than
those specified

We get non-linear projections or representations of the data

Can be seen as a form of non-linear PCA
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Recap: Sparse Coding

Objective: Given a set of input vectors x1,x2, . . . ,xN , learn a
dictionary of bases h1,h2, . . . ,hp such that:

xi =

p∑
k=1

aikhk

Most aik values are zero i.e. very few factors explain xi

In PCA, the bases h’s were orthogonal and the codes for the
x i.e. a’s were dense.

Here, the bases need not be orthogonal, but the codes are
sparse
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Recap: Sparse Coding

Optimization Problem: Given x1,x2, . . . ,xN ∈ Rd, learn
dictionary h1,h2, . . . ,hp ∈ Rd (arranged as
H = [h1,h2, . . . ,hp] ∈ Rd×p) such that:

min
a1,...,aN ,H

N∑
i=1

‖xi −Hai‖22 + λ

N∑
i=1

‖ai‖1

Reconstruction term: ‖xi −Hai‖22
Sparsity term: ‖ai‖1
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Sparse Coding

The φ’s here are our h
Figure: Honglak Lee
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Sparse Coding:Test Time

Given a new patch x̃ ∈ Rd and learned dictionary
H = [h1 . . . ,hp], we find the code ã as:

min
ã
‖x̃−Hã‖22 + λ‖ã‖1

ã will be a sparse representation for x̃

Again, ã is our representation or code for x̃ that we can use
as features for classification
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Image Classification
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Features for Faces

Figure: Charles Cadieu
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Encoding-Decoding

Encoding: Implicit encoding, non-linear (in x)

Decoding: Explicit linear decoding

Bases is overcomplete

In PCA, plain autoencoders (i.e. Non-Linear PCA)
overcomplete representations don’t make much sense (can
just copy input!)
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Like before, as in the case of PCA, let us try to write sparse
coding as a neural network

Will lead to another kind of auto-encoder
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Implicit Bottleneck

x1 x3 x5

. . .
xd

. . .

x̃1 x̃3 x̃5
. . .

x̃d

Encoding: h = tanh(Wx). Decoding: x̃ = V h

PS: Modified model than the sparse coding model we saw (but
to emphasize nonlinearity in encoding, and linear decoding)
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Stacked Autoencoders
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Pre-Training
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Deep Autoencoders (2006)

G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 2006

It was hard to train deep feedforward networks from scratch in 2006!
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Effect of Unsupervised Pre-training
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Why does Unsupervised Pre-training work?

Regularization. Feature representations that are good for
P (x) are good for P (y|x)

Optimization: Unsupervised pre-training leads to better
regions of the space i.e. better than random initialization
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More Autoencoders

De-noising Autoencoders: Input is corrupted by noise, but we
attempt to reconstruct the uncorrupted image

Contractive Autoencoders: The regularization term penalizes
for the derivative:

Ω(h,x) = λ
∑
i

‖∇xhi‖22
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De-Noising Autoencoder: Intuition

Figure: Goodfellow et al.
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Another Linear Model: ICA

Canonical example: Cocktail party problem
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Another Linear Model: ICA

Suppose x1, . . . ,x7 are the microphone signals

Each xi is a result of linear mixing between the sources hi

xi =
∑
i

aihi or X = AH

Task: Only X is observed, A is unknown, recover H

Here the bases are independent of each other
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Difference with PCA

In PCA X = AH with HTH = I i.e. bases are orthogonal

In ICA X = AH with A invertible

PCA does compression, ICA doesn’t do any compression
(p = d)

Some PCs are more important than others, not in the case
with ICA
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Filters
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Short Digression: Distributed Representations
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All the models that we have seen so far today have something
in common: They are distributed representations

PCA is a dense distributed representation unlike sparse coding

One of the reasons of the power of Deep Networks are
distributed representations (which unlike these toy cases are
highly non-linear)

What are distributed representations?
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Distributed Representations: Intuition

This is a localist representation: Every concept gets a code
that has local structure

Very easy to code, and easy to learn (mixture models build
representations like this)
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Distributed Representations: Intuition

This is a distributed representation:

Each concept is represented by multiple neurons

Given an exponential advantage in representational efficiency
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Representations

Figure: Bruno Olshausen
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Representations

Figure: Yoshua Bengio (FTML Volume)
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Exponential Advantage

A Localist representation will be able to distinguish patterns
linear in the dimension of the representation

A Distributed representation can distinguish patterns
exponential in the dimension of the representation

Exercise inspired from previous figure

How many regions can lines carve in a 2-D space?

- Num. lines + num. intersections + 1

How many regions can m hyperplanes carve in a
d-dimensional space?

- 1 +m+
(
m
2

)
+ · · ·+

(
m
d

)
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End of Digression

Distributed representations are one of the major reasons of
the success of Deep Learning methods in complicated tasks

Just a distributed representation is not enough (e.g. PCA is
distributed)

The representations are non-linear, hierarchical amongst other
things

Note: This is not specific to just unsupervised deep learning
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Approach so far:

We have considered simple models and then constructed their
deep, non-linear variants

Example: PCA (and Linear Autoencoder) to Nonlinear-PCA
(Non-linear (deep?) autoencoders)

Example: Sparse Coding (Sparse Autoencoder with linear
decoding) to Deep Sparse Autoencoders

All the models we have considered so far are completely
deterministic

The encoder and decoders have no stochasticity

We don’t construct a probabilistic model of the data

Can’t sample from the data
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Representations

Figure: Ruslan Salakhutdinov
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To motivate Deep Neural Generative models, like before, let’s
seek inspiration from simple linear models first
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Linear Factor Model

We want to build a probabilistic model of the input P̃ (x)

Like before, we are interested in latent factors h that explain x

We then care about the marginal:

P̃ (x) = EhP̃ (x|h)

h is a representation of the data

Lecture 15 Introduction to Deep Unsupervised Learning II CMSC 35246



Linear Factor Model

We want to build a probabilistic model of the input P̃ (x)

Like before, we are interested in latent factors h that explain x

We then care about the marginal:

P̃ (x) = EhP̃ (x|h)

h is a representation of the data

Lecture 15 Introduction to Deep Unsupervised Learning II CMSC 35246



Linear Factor Model

We want to build a probabilistic model of the input P̃ (x)

Like before, we are interested in latent factors h that explain x

We then care about the marginal:

P̃ (x) = EhP̃ (x|h)

h is a representation of the data

Lecture 15 Introduction to Deep Unsupervised Learning II CMSC 35246



Linear Factor Model

We want to build a probabilistic model of the input P̃ (x)

Like before, we are interested in latent factors h that explain x

We then care about the marginal:

P̃ (x) = EhP̃ (x|h)

h is a representation of the data

Lecture 15 Introduction to Deep Unsupervised Learning II CMSC 35246



Linear Factor Model

The latent factors h are an encoding of the data

Simplest decoding model: Get x after a linear transformation
of x with some noise

Formally: Suppose we sample the latent factors from a
distribution h ∼ P (h)

Then: x = Wh + b + ε
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Linear Factor Model

P (h) is a factorial distribution

x1 x2 x3 x4 x5

h1 h2 h3

x = Wh + b + ε

How do learn in such a model?

Let’s look at a simple example
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Probabilistic PCA

Suppose underlying latent factor has a Gaussian distribution

h ∼ N (h; 0, I)

Now, we need to specify a noise model. Assume it comes
from an isotropic Gaussian with covariance σ2I

For this simple model, x is also a multivariate Gaussian:

x ∼ N (x; b,WW T + σ2I)

Standard PCA: In the limit as σ → 0

Gives a simple generative model for the data; can draw
samples!
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Factor Analysis

Suppose we fix the latent factor prior to be the unit Gaussian:

h ∼ N (h; 0, I)

Noise is sampled from a Gaussian with a diagonal covariance:

Ψ = diag([σ21, σ
2
2, . . . , σ

2
d])

Still consider linear relationship between inputs and observed
variables x ∼ N (x; b,WW T + Ψ)

Already harder to analyze than PPCA
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Probabilistic PCA

We only need to make a small change in our general factor
analysis model

Still sample h as before:

h ∼ N (h; 0, I)

But now we assume a noise model which is a Gaussian with
covariance σ2i I

Then, the conditional distribution becomes:

x ∼ N (x; b,WW T + σ2I)

Or x = Wh + b + noise

Approaches PCA as σ → 0
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More General Models

Suppose P (h) can not be assumed to have a nice Gaussian
form

The decoding of the input from the latent states is a
complicated non-linear function

Estimation and inference can get complicated!

Let’s look at an approach to write these problems in a general
form
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Energy Based Models

Energy-Based Models assign a scalar energy with every
configuration of variables under consideration

Learning: Change the energy function so that its final shape
has some desirable properties

We can define a probability distribution through an energy:

P (x) =
exp−(Energy(x))

Z

Energies are in the log-probability domain:

Energy(x) = log
1

(ZP (x))
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Energy Based Models

P (x) =
exp−(Energy(x))

Z

Z is a normalizing factor called the Partition Function

Z =
∑
x

exp(−Energy(x))

How do we specify the energy function?
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Product of Experts Formulation

In this formulation, the energy function is:

Energy(x) =
∑
i

fi(x)

Therefore:

P (x) =
exp−(

∑
i fi(x))

Z

We have the product of experts:

P (x) ∝
∏
i

Pi(x) ∝
∏
i

exp(−fi(x))
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Product of Experts Formulation

P (x) ∝
∏
i

Pi(x) ∝
∏
i

exp(−fi(x))

Every expert fi can be seen as enforcing a constraint on x

If fi is large =⇒ Pi(x) is small i.e. the expert thinks x is
implausible (constraint violated)

If fi is small =⇒ Pi(x) is large i.e. the expert thinks x is
plausible (constraint satisfied)

Contrast this with mixture models
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Latent Variables

x is observed, let’s say h are hidden factors that explain x

The probability then becomes:

P (x,h) =
exp−(Energy(x,h))

Z

We only care about the marginal:

P (x) =
∑
h

exp−(Energy(x,h))

Z
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Latent Variables

P (x) =
∑
h

exp−(Energy(x,h))

Z

We introduce another term from statistical physics: free
energy:

P (x) =
exp−(FreeEnergy(x))

Z

Free Energy is just a marginalization of energies in the
log-domain:

FreeEnergy(x) = − log
∑
h

exp−(Energy(x,h))

Lecture 15 Introduction to Deep Unsupervised Learning II CMSC 35246



Latent Variables

P (x) =
∑
h

exp−(Energy(x,h))

Z

We introduce another term from statistical physics: free
energy:

P (x) =
exp−(FreeEnergy(x))

Z

Free Energy is just a marginalization of energies in the
log-domain:

FreeEnergy(x) = − log
∑
h

exp−(Energy(x,h))

Lecture 15 Introduction to Deep Unsupervised Learning II CMSC 35246



Latent Variables

P (x) =
∑
h

exp−(Energy(x,h))

Z

We introduce another term from statistical physics: free
energy:

P (x) =
exp−(FreeEnergy(x))

Z

Free Energy is just a marginalization of energies in the
log-domain:

FreeEnergy(x) = − log
∑
h

exp−(Energy(x,h))

Lecture 15 Introduction to Deep Unsupervised Learning II CMSC 35246


