Lecture 17
Deep Neural Generative Models |l
CMSC 35246: Deep Learning

Shubhendu Trivedi
&
Risi Kondor

University of Chicago

May 24, 2017

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Recap: Linear Factor Models

e Sample latent factors h ~ P(h)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Recap: Linear Factor Models

e Sample latent factors h ~ P(h)
o Generate x =Wh+b +e¢

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Recap: Linear Factor Models

e Sample latent factors h ~ P(h)
o Generate x =Wh+b +e¢
@ In Probabilistic PCA:
e Latent Factors: h ~ N'(h;0, 1)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Recap: Linear Factor Models

e Sample latent factors h ~ P(h)
@ Generatex=Wh+b+e¢
@ In Probabilistic PCA:

e Latent Factors: h ~ N'(h;0, 1)
. e~ N(0,0%)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Linear Factor Models

e Sample latent factors h ~ P(h)
o Generate x =Wh+b +e¢
@ In Probabilistic PCA:
e Latent Factors: h ~ N'(h;0, 1)
. e~ N(0,0%])
o Estimate W, b, 02 by maximum likelihood estimation or
Expectation Maximization (EM)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Recap: Linear Factor Models

@ Sample latent factors h ~ P(h)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Recap: Linear Factor Models

@ Sample latent factors h ~ P(h)
o Generatex =Wh+b +¢

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Recap: Linear Factor Models

@ Sample latent factors h ~ P(h)
o Generatex =Wh+b +¢

@ In Factor Analysis:
e Latent Factors: h ~ N (h;0,1)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Recap: Linear Factor Models

@ Sample latent factors h ~ P(h)
o Generatex =Wh+b +¢

@ In Factor Analysis:

e Latent Factors: h ~ N (h;0,1)
. ;€ ~ N(0,diag([0},03,...,02])

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Linear Factor Models

Sample latent factors h ~ P(h)
Generate x = Wh + b + ¢

@ In Factor Analysis:

e Latent Factors: h ~ N (h;0,1)

. ;€ ~ N(0,diag([0},03,...,02])
Estimate W, b, diag([0?,03,...,03%] by Expectation
Maximization

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Recap: Linear Factor Models

e P(h) is a factorial distribution
h1 ha hs

L1 Z2 x3 Zq Iy

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Sigmoid Belief Networks

h;

FOTO 0,

@ Just like a feedfoward network, but with arrows reversed

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Sigmoid Belief Networks

h;

FOTO 0,

@ Just like a feedfoward network, but with arrows reversed

@ What if we place a class as a latent variable at the top?

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Sigmoid Belief Networks

@ Joint probability factorizes as:

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Sigmoid Belief Networks

@ Joint probability factorizes as:

-1
P(x,hl,...,h!) = P(h) (I1 P(hk|hk+1)>P(x|h1)
k=1

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Sigmoid Belief Networks

@ Joint probability factorizes as:

-1
P(x,hl,...,h!) = P(h) (I1 P(hk|hk+1)>P(x|h1)
k=1

e Marginalization yields P(x)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Recap: Deep Belief Networks

@ The top two layers are a Restricted Boltzmann Machine

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Deep Belief Networks

@ The joint probability factorizes as:

-2
P(x,hl,... ') = P!, hi™) (I1 P(hﬂhk“))P(xyhl)
k=1

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

@ We defined a probability distribution through an energy:

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

@ We defined a probability distribution through an energy:

exp_(EnergY(x))

P(x) = 7

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

@ We defined a probability distribution through an energy:

exp_(EnergY(x))

P(x) = 7

@ Z is a normalizing factor called the Partition Function

Z = Z exp(—Energy(x))

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

@ One formulation of the energy:

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

@ One formulation of the energy:

Energy(x) = Z fi(x)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

@ One formulation of the energy:

Energy(x) = Z fi(x)

e This gave us the Product of Experts Model (PoE):

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

@ One formulation of the energy:

Energy(x) = Z fi(x)

e This gave us the Product of Experts Model (PoE):

P(x) x HB(X) x Hexp(_f"(x))

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

@ x is observed, h represents hidden factors

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

@ x is observed, h represents hidden factors
@ Joint probability:
exp—(Energy(x,h))

P(x,h) = 7

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

@ x is observed, h represents hidden factors
@ Joint probability:
exp—(Energy(x,h))

P(x,h) = 7

@ We only care about the marginal:

exp_(Energy(xﬂh))

P(x) =) 7

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

@ x is observed, h represents hidden factors
@ Joint probability:
exp—(Energy(x,h))

P(x,h) = 7

@ We only care about the marginal:

exp_(Energy(xﬂh))

P(x) =) 7

@ We can write the marginal in terms of free energy:

(FreeEnergy(x))
VA

exp

P(X) = with Z = Zexp—FreeEnergy(x)

X

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

0log P(x)
06

P

e OFreeEnergy(x) +E OFreeEnergy(x)
=—5p 00 P 00

@ P is the empirical training distribution

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

0log P(x)
06

P

e OFreeEnergy(x) +E OFreeEnergy(x)
=—5p 00 P 00

@ P is the empirical training distribution

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

| 0log P(x)
g 00

p =—Ep

P

00 00

OFreeE
ree nergy(x)]+EP

8FreeEnergy(x)]

@ P is the model distribution (exponentially many
configurations!)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

| 0log P(x)
g 00

p =—Ep

P

00 00

OFreeE
ree nergy(x)]+EP

8FreeEnergy(x)]

@ P is the model distribution (exponentially many
configurations!)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Recap: Energy Based Models

0log P(x)
00

E =

p =—Ep

P

OFreeEnergy(x)
20 +Ep

OFreeEnergy(x)
00

@ P is the model distribution (exponentially many
configurations!)

@ Resort to Markov Chain Monte Carlo to get a stochastic
estimator of the gradient

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

End of recap

Lecture 17 Deep Neural Generative Models |l CMSC 3

-
A Special Case

@ Suppose the energy has the following form:

Energy(x, h))+ Z% x, h;)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
A Special Case

@ Suppose the energy has the following form:

Energy(x, h))+ Z% x, h;)

expf(FreeEnefg}’(x)) eXpﬁ

P(x) = 7 = Zexp 70 hs)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
A Special Case

@ Suppose the energy has the following form:

Energy(x, h))+ E ~i(x, hy)
— (FreeEnergy(x) B(x
exp exp x,
P(x) = 7 = || g exp iR

FreeEnergy(x) = —log P(x) — log Z

=—p- Z log Z exp (b
i h;

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Restricted Boltzmann Machines

@ Form of energy:

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Restricted Boltzmann Machines

@ Form of energy:

Energy(x,h) = —bTx — ¢’h — hTWx

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Restricted Boltzmann Machines

@ Form of energy:

Energy(x,h) = —bTx — ¢’h — hTWx

T

@ Takes the earlier nice form with 5(x) = b*x and

7i(x, hi) = hi(c; + W;x)
@ Originally proposed by Smolensky (1987) who called them
Harmoniums as a special case of Boltzmann Machines

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Restricted Boltzmann Machines

@ Form of energy:

Energy(x,h) = —bTx — ¢’h — hTWx

T

@ Takes the earlier nice form with 5(x) = b*x and

7i(x, hi) = hi(c; + W;x)
@ Originally proposed by Smolensky (1987) who called them
Harmoniums as a special case of Boltzmann Machines

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Restricted Boltzmann Machines

o With 8(x) = b"x and 7;(x, h;) = h;(c; + Wix):

P(x) = eXp H Z exp i(ei+Wix)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Restricted Boltzmann Machines

o With 8(x) = b"x and 7;(x, h;) = h;(c; + Wix):

P(x) = eXp H Z exp™i i(CitWix)

o Likewise, plugging in, we have:

FreeEnergy(x) Tx — Z log Z expli(CitWix)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Restricted Boltzmann Machines

o With 8(x) = b"x and 7;(x, h;) = h;(c; + Wix):

P(x) = eXp H Z exp™i i(CitWix)

o Likewise, plugging in, we have:

FreeEnergy(x) Tx — Z log Z expli(CitWix)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Restricted Boltzmann Machines

@ We have an expression for P(x) and the Free Energy can be
computed analytically

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Restricted Boltzmann Machines

@ We have an expression for P(x) and the Free Energy can be
computed analytically

@ The conditional probability:

exp (b'x + c’h + hTWx)

P(h|x) = A =[] Philx)
Yoiexp (bTx +cTh+hTWx)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Restricted Boltzmann Machines

@ x and h play symmetric roles:

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Restricted Boltzmann Machines

@ x and h play symmetric roles:

P(x[h) =]] P(xilh)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Restricted Boltzmann Machines

@ x and h play symmetric roles:

P(x[h) =]] P(xilh)

@ The common transfer (for the binary case):

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Restricted Boltzmann Machines

@ x and h play symmetric roles:

P(x[h) =]] P(xilh)

@ The common transfer (for the binary case):

P(h; = 1|x) = o(c; + W;x)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Restricted Boltzmann Machines

@ x and h play symmetric roles:

P(x[h) =]] P(xilh)

@ The common transfer (for the binary case):

P(h; = 1|x) = o(c; + W;x)

P(x; = 1h) = o(b; + W.}h)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Restricted Boltzmann Machines

@ x and h play symmetric roles:

P(x[h) =]] P(xilh)

@ The common transfer (for the binary case):

P(h; = 1|x) = o(c; + W;x)

P(x; = 1h) = o(b; + W.}h)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Approximate Learning and Gibbs Sampling

0log P(x)

Ep o0

_ | OFreeEnergy(x) OFreeEnergy(x)
- EP[a0 e a0

@ We saw the expression for Free Energy for a RBM. But the
second term was intractable. How do learn in this case?

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Approximate Learning and Gibbs Sampling

0log P(x)

Ep o0

_ | OFreeEnergy(x) OFreeEnergy(x)
- EP[a0 e a0

@ We saw the expression for Free Energy for a RBM. But the
second term was intractable. How do learn in this case?

@ Replace the average over all possible input configurations by
samples

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Approximate Learning and Gibbs Sampling

0log P(x)

Ep o0

_ | OFreeEnergy(x) OFreeEnergy(x)
- EP[a0 e a0

@ We saw the expression for Free Energy for a RBM. But the
second term was intractable. How do learn in this case?

@ Replace the average over all possible input configurations by
samples

@ Run Markov Chain Monte Carlo (Gibbs Sampling):

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Approximate Learning and Gibbs Sampling

0log P(x)
06

Ep p 00 00

_ _E. laFreeEnergy(x)] LEp [8FreeEnergy(x)]

@ We saw the expression for Free Energy for a RBM. But the
second term was intractable. How do learn in this case?

@ Replace the average over all possible input configurations by
samples

@ Run Markov Chain Monte Carlo (Gibbs Sampling):

o We want P(x) ~ P(x)

e First sample x; ~ P(x), then hy ~ P(h|x1), then
x3 ~ P(x|hy), then hy ~ P(h|x2) till xg41

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Approximate Learning, Alternating Gibbs
Sampling

P(h|v)

hOO OO OO
v OOO OOO OOO

Data T= infinity

I Equilibrium
Distribution

@ We have already seen: P(x|h) = HP (xi/h) and

P(h|x) = HPh|x

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Approximate Learning, Alternating Gibbs
Sampling

P(h|v)

hOO OO OO
v OOO OOO OOO

Data T= infinity

I Equilibrium
Distribution

@ We have already seen: P(x|h) = HP (xi/h) and

P(h|x) = HPh|x

e With: P(hI = 1|x) = o(c; + W;x) and
P(x; = 1|h) = o(b; + W.;h)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Training a RBM: The Contrastive Divergence
Algorithm

@ Start with a training example on the visible units

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Training a RBM: The Contrastive Divergence
Algorithm

@ Start with a training example on the visible units

@ Update all the hidden units in parallel

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Training a RBM: The Contrastive Divergence
Algorithm

@ Start with a training example on the visible units
@ Update all the hidden units in parallel

@ Update all the visible units in parallel to obtain a
reconstruction

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Training a RBM: The Contrastive Divergence
Algorithm

@ Start with a training example on the visible units
@ Update all the hidden units in parallel

@ Update all the visible units in parallel to obtain a
reconstruction

@ Update all the hidden units again

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Training a RBM: The Contrastive Divergence
Algorithm

Start with a training example on the visible units

Update all the hidden units in parallel

Update all the visible units in parallel to obtain a
reconstruction

Update all the hidden units again

Update model parameters

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Training a RBM: The Contrastive Divergence
Algorithm

@ Start with a training example on the visible units

@ Update all the hidden units in parallel

@ Update all the visible units in parallel to obtain a
reconstruction

@ Update all the hidden units again

o Update model parameters

@ Aside: Easy to extend RBM (and contrastive divergence) to

the continuous case

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Boltzmann Machines

@ A model in which the energy has the form:

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Boltzmann Machines

@ A model in which the energy has the form:

Energy(x,h) = —b’x — ¢’h — h"Wx — xTUx — hTVh

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Boltzmann Machines

@ A model in which the energy has the form:

Energy(x,h) = —b’x — ¢’h — h"Wx — xTUx — hTVh

@ Originally proposed by Hinton and Sejnowski (1983)
e Important historically. But very difficult to train (why?)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Gradient of Log-Likelihood Revisited

dlog P(x) 0Olog) exp~ Eneray(x.h)
ol B ol
0log Zi,h exp Enerey(}.h)
- 00

After basic manipulations and substitution:

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Gradient of Log-Likelihood Revisited

dlog P(x) 0Olog) exp~ Eneray(x.h)
ol B ol
0log Zi,h exp Enerey(}.h)
- 00

After basic manipulations and substitution:

BlogP ZP hix) 8Energy(x h)

_ . .OEnergy(x,h
+) P(%, h)ae()

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Gradient of Log-Likelihood Revisited

810gP ZP (h[x) 8Energy(x h)

- . OEnergy(X,h
+ ZP(X, h)ae()

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Gradient of Log-Likelihood Revisited

810gP ZP (h[x) 8Energy(x h)

- . OEnergy(X,h
+ ZP(X, h)ae()

OEnergy(x,h)

@ Note that 5 is easy to compute

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Gradient of Log-Likelihood Revisited

810gP ZP (h[x) 8Energy(x h)

(9Energy(5&7 h)

+) P(%h) =
%,h

@ Note that m#g(x’h) is easy to compute

e If we have a procedure to sample from P(h|x) and from
P(x%,h) we get an unbiased stochastic estimator of the
gradient

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Gradient of Log-Likelihood Revisited

810gP ZP (h[x) 8Energy(x h)

(9Energy(5&7 h)

+) P(%h) =
%,h

@ Note that m#g(x’h) is easy to compute

e If we have a procedure to sample from P(h|x) and from
P(x%,h) we get an unbiased stochastic estimator of the
gradient

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Back to Deep Belief Networks

CMSC 35246

R
[}
<
[}
v
=
5
e
@

Lecture 17 Deep Neural Gen

Back to Deep Belief Networks

CMSC 35246

R
[}
<
[}
v
=
5
e
@

Lecture 17 Deep Neural Gen

-
Greedy Layer-wise Training of DBNs

@ Reference: G. E. Hinton, S. Osindero and Y-W Teh: A Fast
Learning Algorithm for Deep Belief Networks, In Neural
Computation, 2006.

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Greedy Layer-wise Training of DBNs

@ Reference: G. E. Hinton, S. Osindero and Y-W Teh: A Fast
Learning Algorithm for Deep Belief Networks, In Neural
Computation, 2006.

@ First Step: Construct a RBM with input x and a hidden layer
h, train the RBM

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Greedy Layer-wise Training of DBNs

@ Reference: G. E. Hinton, S. Osindero and Y-W Teh: A Fast
Learning Algorithm for Deep Belief Networks, In Neural
Computation, 2006.

@ First Step: Construct a RBM with input x and a hidden layer
h, train the RBM

@ Stack another layer on top of the RBM to form a new RBM.
Fix W1, sample from P(h'|x), train W? as RBM

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Greedy Layer-wise Training of DBNs

Reference: G. E. Hinton, S. Osindero and Y-W Teh: A Fast
Learning Algorithm for Deep Belief Networks, In Neural
Computation, 2006.

First Step: Construct a RBM with input x and a hidden layer
h, train the RBM

@ Stack another layer on top of the RBM to form a new RBM.
Fix W1, sample from P(h'|x), train W? as RBM

@ Continue till k£ layers

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Greedy Layer-wise Training of DBNs

@ Reference: G. E. Hinton, S. Osindero and Y-W Teh: A Fast
Learning Algorithm for Deep Belief Networks, In Neural
Computation, 2006.

@ First Step: Construct a RBM with input x and a hidden layer
h, train the RBM

@ Stack another layer on top of the RBM to form a new RBM.
Fix W1, sample from P(h'|x), train W? as RBM

@ Continue till k£ layers

e Implicitly defines P(x) and P(h) (variational bound justifies
layerwise training)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Greedy Layer-wise Training of DBNs

@ Reference: G. E. Hinton, S. Osindero and Y-W Teh: A Fast
Learning Algorithm for Deep Belief Networks, In Neural
Computation, 2006.

@ First Step: Construct a RBM with input x and a hidden layer
h, train the RBM

@ Stack another layer on top of the RBM to form a new RBM.
Fix W1, sample from P(h'|x), train W? as RBM

@ Continue till k£ layers

e Implicitly defines P(x) and P(h) (variational bound justifies
layerwise training)

@ Can then be discriminatively fine-tuned using backpropagation

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 2006

From last time: Was hard to train deep networks from scratch

Deep Autoencoders (2006)

S Decoder

B

k.

Wiies

[2000]

2000 |

Wa

30] Code layer

W,
[500 |
Wy
[0 1]

Wy

2000]

2000

Pretraining

RBM

Wy

[J
Encoder

Unrolling

.

y

Fine-tuning

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each
having only one layer of feature detectors. The learned feature activations of one RBM are used
as the “data” for training the next RBM in the stack. After the pretraining, the RBMs are
“unrolled” to create a deep autoencoder, which is then fine-tuned using backpropagation of

error derivatives.

Lecture 17 Deep Neural Generative Models |l

Semantic Hashing

Learned latent code Reuters dataset: 804,414
newswire stories: unsupervised

Ei C it
QIO) \ Interbank Markets Usgpest (ommunily
4 ™ ;

- .

Monetary/Economic

h . Disasters and
Accidents
000000 -,
+3 -

e

Leading Legal/Judicial
Economic
Indicators R
‘ o
Bag of words " ot Govemment
Eamings Borrowings

G. Hinton and R. Salakhutdinov, " Semantic Hashing”, 2006

Lecture 17 Deep Neural Generative Models |l

Why does Unsupervised Pre-training work?

@ Regularization. Feature representations that are good for
P(x) are good for P(y|z)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Why does Unsupervised Pre-training work?

@ Regularization. Feature representations that are good for
P(x) are good for P(y|z)

@ Optimization: Unsupervised pre-training leads to better
regions of the space i.e. better than random initialization

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Effect of Unsupervised Pre-training

AISTATS 2009
=1 layer with pretraining 5 fﬁA layers without pretraining
Els =4 layers with pretraining |4

count

test error

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Effect of Unsupervised Pre-training

w/o pre-fraining with pre-training
s - s
. i 1w
- + =
st i 1 1T
H | H
<. % i <. 1
H 1 ! 5 +
52 i 5
8T -+ i | 1R
g i ! = ! H i !
P == . -G -
E i 7 i g i
Sulo H T sfe
H o L H i 4 i : Jl—
1 == : T o ==
” il £ 1 $ =3 H
' ¥ b BN T
B i 2 v
number of layers number of layers

Lecture 17 Deep Neural Generative Models |l

e Important topics we didn't talk about in detail /at all:

e Joint unsupervised training of all layers (Wake-Sleep
algorithm)

e Deep Boltzmann Machines

e Variational bounds justifying greedy layerwise training

e Conditional RBMs, Multimodal RBMs, Temporal RBMs
etc

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Generative Adversarial Networks

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

-
Representations

Unsupervised Learning
Non-probabilistic Models) Probabilistic (Generative)
» Sparse Coding Models

» Autoencoders
» Others (e.g. k-means)

e e ra "
i) & H
| Tractable Models Non Tractable Mode}s i| > Generative Adversarial |
i » Fully observed > Boltzmann Machines i Networks
i Belief Nets > Variational i| > Moment Matching
|| » NADE Autoencoders : Networks
il > PixelRNN » Helmholtz Machines i
| " |_ > Manyothers... /i
Explicit Density p(x) Implicit Density

Figure: Ruslan Salakhutdinov

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Motivation

e We don’t want to write down the formula for P(X)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Motivation

e We don’t want to write down the formula for P(X)

@ Thus want to avoid variational learning, ML estimation,
MCMC etc

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Motivation

e We don’t want to write down the formula for P(X)

@ Thus want to avoid variational learning, ML estimation,
MCMC etc

@ By playing an adversarial game!

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

e
Goal

@ Assume we have training samples
D ={X|X ~ Pyata, X € X}

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

e
Goal

@ Assume we have training samples
D ={X|X ~ Pyata, X € X}

@ We want a generative model Prodel from which we can draw
new samples X ~ Pyodel

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Goal

@ Assume we have training samples
D ={X|X ~ Pyata, X € X}

@ We want a generative model Prodel from which we can draw
new samples X ~ Pyodel

@ Such that Prodel & Pyata

=~ 5 N ~
i
X , n
e
— A
X ~ Pdata X ~ Pmodel

Figure by Gilles Louppe

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

- __
Generative Adversarial Networks (Goodfellow
et al. 2014)

@ Don't assume any form, instead use a neural network to
produce similar samples

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

- __
Generative Adversarial Networks (Goodfellow
et al. 2014)

@ Don't assume any form, instead use a neural network to
produce similar samples

@ Setup a two-player game between:

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

- __
Generative Adversarial Networks (Goodfellow
et al. 2014)

@ Don't assume any form, instead use a neural network to
produce similar samples

@ Setup a two-player game between:
e A Generator G

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

- __
Generative Adversarial Networks (Goodfellow
et al. 2014)

@ Don't assume any form, instead use a neural network to
produce similar samples

@ Setup a two-player game between:

e A Generator GG
e A Discriminator D

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

- __
Generative Adversarial Networks (Goodfellow
et al. 2014)

@ Don't assume any form, instead use a neural network to
produce similar samples

@ Setup a two-player game between:

e A Generator GG
e A Discriminator D

@ The discriminator D tries to distinguish between a sample
from Prodel and a sample from G

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Generative Adversarial Networks (Goodfellow
et al. 2014)

@ Don't assume any form, instead use a neural network to
produce similar samples

@ Setup a two-player game between:

e A Generator GG
e A Discriminator D

@ The discriminator D tries to distinguish between a sample
from Prodel and a sample from G

@ The generator G tries to fool D by producing samples that
are hard to discriminate from the real data

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Catch me if you can

Leois G Tom is D

Slide adapted from Gilles Louppe

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Generative Adversarial Networks

D tries to

Differentiable
function D

x sampled

from data

Slide adapted from lan Goodfellow

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Generative Adversarial Networks

D tries to

Differentiable
function D

x sampled x sampled
from data from model

Differentiable

function G

Slide adapted from lan Goodfellow

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Generative Adversarial Networks

D tries to
output 0

Differentiable Differentiable
function D function D

x sampled x sampled
from data from model

Differentiable
function G

Input noise
Z

Slide adapted from lan Goodfellow

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Generative Adversarial Networks

Generator: generate samples

* Minimax value function that D would classify as real

n}in max V(D,G) = Eprppu(a)log D(x)] + E, . (2)[log(1 — D(G(2)))]

I | I

Discriminator: Discriminator: Classify Discriminator: Classify
Pushes up data as being real generator samples as
being fake
Generator:

Pushes down
* Optimal strategy for Discriminator is:

I)data(i')
Pdata («E) =+ Pmodel (I)

Slide adapted from lan Goodfellow

Lecture 17 Deep Neural Generative Models |l

Generative Adversarial Networks

@ The value function:

V(D,G) = Ex~py, [log(D(X))+Ez~p

n

ose 108(1=D(G(X)))]

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Generative Adversarial Networks

@ The value function:

V(D,G) = Ex~py, [log(D(X))+Ez~p

n

ose 108(1=D(G(X)))]

@ For training we want to:

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Generative Adversarial Networks

@ The value function:

V(D,G) = Ex~py, [log(D(X))+Ez~p

n

ose 108(1=D(G(X)))]

@ For training we want to:
e Fix G, find D which maximizes V (D, G)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Generative Adversarial Networks

@ The value function:

V(D,G) = Ex~py, [log(D(X))+Ez~p

n

ose 108(1=D(G(X)))]

@ For training we want to:
e Fix G, find D which maximizes V (D, G)
e Fix D, find G which minimizes V (D, G)

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

.
Generative Adversarial Networks

@ The value function:

V(D,G) = Ex~py, [log(D(X))+Ez~p

noise [log(l_D(G<X)))]
@ For training we want to:

e Fix G, find D which maximizes V (D, G)
e Fix D, find G which minimizes V (D, G)

@ Alternate till convergence

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

Generative Adversarial Networks

@ The value function:

V(D,G) = Ex~py, [log(D(X))+Ez~p

n

ose 108(1=D(G(X)))]

For training we want to:
e Fix G, find D which maximizes V (D, G)
e Fix D, find G which minimizes V (D, G)

Alternate till convergence

This is good since we can use the machinery for neural
networks

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

g o g
LIEYZ

o aaane

|

TR

2

¥ .Mgz.ﬁ NV

&

Samples

CMSC 35246

Lecture 17 Deep Neural Generative Models |l

Samples

@ Open Question: How do you evaluate goodness of generated
samples?

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

e
Next Time

@ GANSs wrap-up

@ Quiz

Lecture 17 Deep Neural Generative Models |1 CMSC 35246

