
Lecture 18
GANs and AlphaGo

CMSC 35246: Deep Learning

Shubhendu Trivedi
&

Risi Kondor

University of Chicago

May 31, 2017

Lecture 18 GANs and AlphaGo CMSC 35246

Recap: Generative Adversarial Networks

Slide adapted from Ian Goodfellow

Lecture 18 GANs and AlphaGo CMSC 35246

Recap: Generative Adversarial Networks

Slide adapted from Ian Goodfellow

Lecture 18 GANs and AlphaGo CMSC 35246

Recap: Generative Adversarial Networks

The value function:

V (D,G) = EX∼Pdata
[log(D(X))]+EZ∼Pnoise

[log(1−D(G(X)))]

For training we want to:

• Fix G, find D which maximizes V (D,G)
• Fix D, find G which minimizes V (D,G)

Alternate till convergence

This is good since we can use the machinery for neural
networks

Lecture 18 GANs and AlphaGo CMSC 35246

Recap: Generative Adversarial Networks

The value function:

V (D,G) = EX∼Pdata
[log(D(X))]+EZ∼Pnoise

[log(1−D(G(X)))]

For training we want to:

• Fix G, find D which maximizes V (D,G)
• Fix D, find G which minimizes V (D,G)

Alternate till convergence

This is good since we can use the machinery for neural
networks

Lecture 18 GANs and AlphaGo CMSC 35246

Recap: Generative Adversarial Networks

The value function:

V (D,G) = EX∼Pdata
[log(D(X))]+EZ∼Pnoise

[log(1−D(G(X)))]

For training we want to:

• Fix G, find D which maximizes V (D,G)

• Fix D, find G which minimizes V (D,G)

Alternate till convergence

This is good since we can use the machinery for neural
networks

Lecture 18 GANs and AlphaGo CMSC 35246

Recap: Generative Adversarial Networks

The value function:

V (D,G) = EX∼Pdata
[log(D(X))]+EZ∼Pnoise

[log(1−D(G(X)))]

For training we want to:

• Fix G, find D which maximizes V (D,G)
• Fix D, find G which minimizes V (D,G)

Alternate till convergence

This is good since we can use the machinery for neural
networks

Lecture 18 GANs and AlphaGo CMSC 35246

Recap: Generative Adversarial Networks

The value function:

V (D,G) = EX∼Pdata
[log(D(X))]+EZ∼Pnoise

[log(1−D(G(X)))]

For training we want to:

• Fix G, find D which maximizes V (D,G)
• Fix D, find G which minimizes V (D,G)

Alternate till convergence

This is good since we can use the machinery for neural
networks

Lecture 18 GANs and AlphaGo CMSC 35246

Recap: Generative Adversarial Networks

The value function:

V (D,G) = EX∼Pdata
[log(D(X))]+EZ∼Pnoise

[log(1−D(G(X)))]

For training we want to:

• Fix G, find D which maximizes V (D,G)
• Fix D, find G which minimizes V (D,G)

Alternate till convergence

This is good since we can use the machinery for neural
networks

Lecture 18 GANs and AlphaGo CMSC 35246

Divergences and Distances between
distributions

Lecture 18 GANs and AlphaGo CMSC 35246

Generative Adversarial Networks

Let the real data distribution be Pr and the generator’s
distribution be Pg with x = G(z), z ∼ P (z)

The optimization was:

min
G

max
D

V (D,G)

Discriminator:

−EPr [logD(x)]− Ex∼Pg [log(1−D(x))]

Generator:

Ex∼Pg [log(1−D(x))] Method 1

Ex∼Pg [−D(x))] Method 2

Lecture 18 GANs and AlphaGo CMSC 35246

Generative Adversarial Networks

Let the real data distribution be Pr and the generator’s
distribution be Pg with x = G(z), z ∼ P (z)
The optimization was:

min
G

max
D

V (D,G)

Discriminator:

−EPr [logD(x)]− Ex∼Pg [log(1−D(x))]

Generator:

Ex∼Pg [log(1−D(x))] Method 1

Ex∼Pg [−D(x))] Method 2

Lecture 18 GANs and AlphaGo CMSC 35246

Generative Adversarial Networks

Let the real data distribution be Pr and the generator’s
distribution be Pg with x = G(z), z ∼ P (z)
The optimization was:

min
G

max
D

V (D,G)

Discriminator:

−EPr [logD(x)]− Ex∼Pg [log(1−D(x))]

Generator:

Ex∼Pg [log(1−D(x))] Method 1

Ex∼Pg [−D(x))] Method 2

Lecture 18 GANs and AlphaGo CMSC 35246

Generative Adversarial Networks

Let the real data distribution be Pr and the generator’s
distribution be Pg with x = G(z), z ∼ P (z)
The optimization was:

min
G

max
D

V (D,G)

Discriminator:

−EPr [logD(x)]− Ex∼Pg [log(1−D(x))]

Generator:

Ex∼Pg [log(1−D(x))] Method 1

Ex∼Pg [−D(x))] Method 2

Lecture 18 GANs and AlphaGo CMSC 35246

Problems

In practice Ex∼Pg [log(1−D(x))] does not give sufficient
gradient to work with, so we use Ex∼Pg [−D(x))] instead

Sketch: For given x, the optimal discriminator is

D∗(x) =
Pr(x)

Pr(x) + Pg(x)

Plugging into the generator loss:

EPr [logD(x)] + Ex∼Pg [log(1−D(x))]

makes the loss 2JS(Pr||Pg)− 2 log 2

Lecture 18 GANs and AlphaGo CMSC 35246

Problems

In practice Ex∼Pg [log(1−D(x))] does not give sufficient
gradient to work with, so we use Ex∼Pg [−D(x))] instead

Sketch: For given x, the optimal discriminator is

D∗(x) =
Pr(x)

Pr(x) + Pg(x)

Plugging into the generator loss:

EPr [logD(x)] + Ex∼Pg [log(1−D(x))]

makes the loss 2JS(Pr||Pg)− 2 log 2

Lecture 18 GANs and AlphaGo CMSC 35246

Problems

In practice Ex∼Pg [log(1−D(x))] does not give sufficient
gradient to work with, so we use Ex∼Pg [−D(x))] instead

Sketch: For given x, the optimal discriminator is

D∗(x) =
Pr(x)

Pr(x) + Pg(x)

Plugging into the generator loss:

EPr [logD(x)] + Ex∼Pg [log(1−D(x))]

makes the loss 2JS(Pr||Pg)− 2 log 2

Lecture 18 GANs and AlphaGo CMSC 35246

Problems

If the supports of Pr and Pg have little overlap then
2JS(Pr||Pg) = log 2, and the gradient w.r.t Pg vanishes

The probability that the support of Pr and Pg have almost
zero overlap is 1 (Arjovsky, 2017)

Using Ex∼Pg [−D(x))] makes G collapse too many values of z
to the same value of x (mode collapse)

This objective equals to optimize KL(Pg||Pr)− 2JS(Pg||Pr)

KL(Pg||Pr) imposes a high cost to generating fake looking
samples, but a low cost on mode dropping

KL(Pr||Pg) imposes high cost to not covering parts of the
data, and a low cost on fake looking samples

Lecture 18 GANs and AlphaGo CMSC 35246

Problems

If the supports of Pr and Pg have little overlap then
2JS(Pr||Pg) = log 2, and the gradient w.r.t Pg vanishes

The probability that the support of Pr and Pg have almost
zero overlap is 1 (Arjovsky, 2017)

Using Ex∼Pg [−D(x))] makes G collapse too many values of z
to the same value of x (mode collapse)

This objective equals to optimize KL(Pg||Pr)− 2JS(Pg||Pr)

KL(Pg||Pr) imposes a high cost to generating fake looking
samples, but a low cost on mode dropping

KL(Pr||Pg) imposes high cost to not covering parts of the
data, and a low cost on fake looking samples

Lecture 18 GANs and AlphaGo CMSC 35246

Problems

If the supports of Pr and Pg have little overlap then
2JS(Pr||Pg) = log 2, and the gradient w.r.t Pg vanishes

The probability that the support of Pr and Pg have almost
zero overlap is 1 (Arjovsky, 2017)

Using Ex∼Pg [−D(x))] makes G collapse too many values of z
to the same value of x (mode collapse)

This objective equals to optimize KL(Pg||Pr)− 2JS(Pg||Pr)

KL(Pg||Pr) imposes a high cost to generating fake looking
samples, but a low cost on mode dropping

KL(Pr||Pg) imposes high cost to not covering parts of the
data, and a low cost on fake looking samples

Lecture 18 GANs and AlphaGo CMSC 35246

Problems

If the supports of Pr and Pg have little overlap then
2JS(Pr||Pg) = log 2, and the gradient w.r.t Pg vanishes

The probability that the support of Pr and Pg have almost
zero overlap is 1 (Arjovsky, 2017)

Using Ex∼Pg [−D(x))] makes G collapse too many values of z
to the same value of x (mode collapse)

This objective equals to optimize KL(Pg||Pr)− 2JS(Pg||Pr)

KL(Pg||Pr) imposes a high cost to generating fake looking
samples, but a low cost on mode dropping

KL(Pr||Pg) imposes high cost to not covering parts of the
data, and a low cost on fake looking samples

Lecture 18 GANs and AlphaGo CMSC 35246

Problems

If the supports of Pr and Pg have little overlap then
2JS(Pr||Pg) = log 2, and the gradient w.r.t Pg vanishes

The probability that the support of Pr and Pg have almost
zero overlap is 1 (Arjovsky, 2017)

Using Ex∼Pg [−D(x))] makes G collapse too many values of z
to the same value of x (mode collapse)

This objective equals to optimize KL(Pg||Pr)− 2JS(Pg||Pr)

KL(Pg||Pr) imposes a high cost to generating fake looking
samples, but a low cost on mode dropping

KL(Pr||Pg) imposes high cost to not covering parts of the
data, and a low cost on fake looking samples

Lecture 18 GANs and AlphaGo CMSC 35246

Problems

If the supports of Pr and Pg have little overlap then
2JS(Pr||Pg) = log 2, and the gradient w.r.t Pg vanishes

The probability that the support of Pr and Pg have almost
zero overlap is 1 (Arjovsky, 2017)

Using Ex∼Pg [−D(x))] makes G collapse too many values of z
to the same value of x (mode collapse)

This objective equals to optimize KL(Pg||Pr)− 2JS(Pg||Pr)

KL(Pg||Pr) imposes a high cost to generating fake looking
samples, but a low cost on mode dropping

KL(Pr||Pg) imposes high cost to not covering parts of the
data, and a low cost on fake looking samples

Lecture 18 GANs and AlphaGo CMSC 35246

Wasserstein GAN

When the supports of Pr and Pg have little overlap, then KL
and JS give no meaningful gradient

The Wasserstein distance is always continuous and
differentiable a.e. hence always sensible

Problem: The inf is intractable

But, the Wasserstein distance has the duality form:

W (Pr, Pg) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

W (Pr, Pg) =
1

K
sup
‖f‖L≤K

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

Optimize over a parameterized family w of functions that are
all K-Lipschitz

Lecture 18 GANs and AlphaGo CMSC 35246

Wasserstein GAN

When the supports of Pr and Pg have little overlap, then KL
and JS give no meaningful gradient

The Wasserstein distance is always continuous and
differentiable a.e. hence always sensible

Problem: The inf is intractable

But, the Wasserstein distance has the duality form:

W (Pr, Pg) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

W (Pr, Pg) =
1

K
sup
‖f‖L≤K

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

Optimize over a parameterized family w of functions that are
all K-Lipschitz

Lecture 18 GANs and AlphaGo CMSC 35246

Wasserstein GAN

When the supports of Pr and Pg have little overlap, then KL
and JS give no meaningful gradient

The Wasserstein distance is always continuous and
differentiable a.e. hence always sensible

Problem: The inf is intractable

But, the Wasserstein distance has the duality form:

W (Pr, Pg) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

W (Pr, Pg) =
1

K
sup
‖f‖L≤K

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

Optimize over a parameterized family w of functions that are
all K-Lipschitz

Lecture 18 GANs and AlphaGo CMSC 35246

Wasserstein GAN

When the supports of Pr and Pg have little overlap, then KL
and JS give no meaningful gradient

The Wasserstein distance is always continuous and
differentiable a.e. hence always sensible

Problem: The inf is intractable

But, the Wasserstein distance has the duality form:

W (Pr, Pg) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

W (Pr, Pg) =
1

K
sup
‖f‖L≤K

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

Optimize over a parameterized family w of functions that are
all K-Lipschitz

Lecture 18 GANs and AlphaGo CMSC 35246

Wasserstein GAN

When the supports of Pr and Pg have little overlap, then KL
and JS give no meaningful gradient

The Wasserstein distance is always continuous and
differentiable a.e. hence always sensible

Problem: The inf is intractable

But, the Wasserstein distance has the duality form:

W (Pr, Pg) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

W (Pr, Pg) =
1

K
sup
‖f‖L≤K

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

Optimize over a parameterized family w of functions that are
all K-Lipschitz

Lecture 18 GANs and AlphaGo CMSC 35246

Wasserstein GAN

When the supports of Pr and Pg have little overlap, then KL
and JS give no meaningful gradient

The Wasserstein distance is always continuous and
differentiable a.e. hence always sensible

Problem: The inf is intractable

But, the Wasserstein distance has the duality form:

W (Pr, Pg) = sup
‖f‖L≤1

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

W (Pr, Pg) =
1

K
sup
‖f‖L≤K

Ex∼Pr [f(x)]− Ex∼Pg [f(x)]

Optimize over a parameterized family w of functions that are
all K-Lipschitz

Lecture 18 GANs and AlphaGo CMSC 35246

Vanilla GAN

Lecture 18 GANs and AlphaGo CMSC 35246

Wasserstein GAN

Lecture 18 GANs and AlphaGo CMSC 35246

Wasserstein GAN

Main differences with vanilla GAN

• The sigmoid in the last layer in D is removed
• The log in the loss for D and G is removed
• Clip the parameters of D in an interval centered at 0
• Don’t use momentum based optimization

Lecture 18 GANs and AlphaGo CMSC 35246

Wasserstein GAN

Main differences with vanilla GAN

• The sigmoid in the last layer in D is removed

• The log in the loss for D and G is removed
• Clip the parameters of D in an interval centered at 0
• Don’t use momentum based optimization

Lecture 18 GANs and AlphaGo CMSC 35246

Wasserstein GAN

Main differences with vanilla GAN

• The sigmoid in the last layer in D is removed
• The log in the loss for D and G is removed

• Clip the parameters of D in an interval centered at 0
• Don’t use momentum based optimization

Lecture 18 GANs and AlphaGo CMSC 35246

Wasserstein GAN

Main differences with vanilla GAN

• The sigmoid in the last layer in D is removed
• The log in the loss for D and G is removed
• Clip the parameters of D in an interval centered at 0

• Don’t use momentum based optimization

Lecture 18 GANs and AlphaGo CMSC 35246

Wasserstein GAN

Main differences with vanilla GAN

• The sigmoid in the last layer in D is removed
• The log in the loss for D and G is removed
• Clip the parameters of D in an interval centered at 0
• Don’t use momentum based optimization

Lecture 18 GANs and AlphaGo CMSC 35246

AlphaGo

Lecture 18 GANs and AlphaGo CMSC 35246

Motivation

Most of the problem domains that we have seen so far are
natural application areas for deep learning (vision, speech,
language)

Predictions are inherently ambiguous, need to find statistical
structure

Board games are a classic AI domain which relied heavily on
sophisticated search techniques with a little bit of machine
learning

Full observations, deterministic environment - why would we
need uncertainty?

Lecture 18 GANs and AlphaGo CMSC 35246

Motivation

Most of the problem domains that we have seen so far are
natural application areas for deep learning (vision, speech,
language)

Predictions are inherently ambiguous, need to find statistical
structure

Board games are a classic AI domain which relied heavily on
sophisticated search techniques with a little bit of machine
learning

Full observations, deterministic environment - why would we
need uncertainty?

Lecture 18 GANs and AlphaGo CMSC 35246

Motivation

Most of the problem domains that we have seen so far are
natural application areas for deep learning (vision, speech,
language)

Predictions are inherently ambiguous, need to find statistical
structure

Board games are a classic AI domain which relied heavily on
sophisticated search techniques with a little bit of machine
learning

Full observations, deterministic environment - why would we
need uncertainty?

Lecture 18 GANs and AlphaGo CMSC 35246

Motivation

Most of the problem domains that we have seen so far are
natural application areas for deep learning (vision, speech,
language)

Predictions are inherently ambiguous, need to find statistical
structure

Board games are a classic AI domain which relied heavily on
sophisticated search techniques with a little bit of machine
learning

Full observations, deterministic environment - why would we
need uncertainty?

Lecture 18 GANs and AlphaGo CMSC 35246

Overview

Some miltstones in computer game playing

1949: Claude Shannon proposes the idea of game tree search,
explaining how games could be solved algorithmically, in
principle

1951: Alan Turing writes a chess program that he executes by
hand

1956: Arthur Samuel writes a program that plays checker
better than he does

1968: An algorithn defeats human novices at Go

1992: TD-Gammon plays backgammon competitively with
best human players

1996: Chinook wins the US national checkers championship

1997: DeepBlue defeats Garry Kasparov

Lecture 18 GANs and AlphaGo CMSC 35246

Overview

Some miltstones in computer game playing

1949: Claude Shannon proposes the idea of game tree search,
explaining how games could be solved algorithmically, in
principle

1951: Alan Turing writes a chess program that he executes by
hand

1956: Arthur Samuel writes a program that plays checker
better than he does

1968: An algorithn defeats human novices at Go

1992: TD-Gammon plays backgammon competitively with
best human players

1996: Chinook wins the US national checkers championship

1997: DeepBlue defeats Garry Kasparov

Lecture 18 GANs and AlphaGo CMSC 35246

Overview

Some miltstones in computer game playing

1949: Claude Shannon proposes the idea of game tree search,
explaining how games could be solved algorithmically, in
principle

1951: Alan Turing writes a chess program that he executes by
hand

1956: Arthur Samuel writes a program that plays checker
better than he does

1968: An algorithn defeats human novices at Go

1992: TD-Gammon plays backgammon competitively with
best human players

1996: Chinook wins the US national checkers championship

1997: DeepBlue defeats Garry Kasparov

Lecture 18 GANs and AlphaGo CMSC 35246

Overview

Some miltstones in computer game playing

1949: Claude Shannon proposes the idea of game tree search,
explaining how games could be solved algorithmically, in
principle

1951: Alan Turing writes a chess program that he executes by
hand

1956: Arthur Samuel writes a program that plays checker
better than he does

1968: An algorithn defeats human novices at Go

1992: TD-Gammon plays backgammon competitively with
best human players

1996: Chinook wins the US national checkers championship

1997: DeepBlue defeats Garry Kasparov

Lecture 18 GANs and AlphaGo CMSC 35246

Overview

Some miltstones in computer game playing

1949: Claude Shannon proposes the idea of game tree search,
explaining how games could be solved algorithmically, in
principle

1951: Alan Turing writes a chess program that he executes by
hand

1956: Arthur Samuel writes a program that plays checker
better than he does

1968: An algorithn defeats human novices at Go

1992: TD-Gammon plays backgammon competitively with
best human players

1996: Chinook wins the US national checkers championship

1997: DeepBlue defeats Garry Kasparov

Lecture 18 GANs and AlphaGo CMSC 35246

Overview

Some miltstones in computer game playing

1949: Claude Shannon proposes the idea of game tree search,
explaining how games could be solved algorithmically, in
principle

1951: Alan Turing writes a chess program that he executes by
hand

1956: Arthur Samuel writes a program that plays checker
better than he does

1968: An algorithn defeats human novices at Go

1992: TD-Gammon plays backgammon competitively with
best human players

1996: Chinook wins the US national checkers championship

1997: DeepBlue defeats Garry Kasparov

Lecture 18 GANs and AlphaGo CMSC 35246

Overview

Some miltstones in computer game playing

1949: Claude Shannon proposes the idea of game tree search,
explaining how games could be solved algorithmically, in
principle

1951: Alan Turing writes a chess program that he executes by
hand

1956: Arthur Samuel writes a program that plays checker
better than he does

1968: An algorithn defeats human novices at Go

1992: TD-Gammon plays backgammon competitively with
best human players

1996: Chinook wins the US national checkers championship

1997: DeepBlue defeats Garry Kasparov

Lecture 18 GANs and AlphaGo CMSC 35246

Go

Lecture 18 GANs and AlphaGo CMSC 35246

Go

Goal is to surround as much territory as possible

Lecture 18 GANs and AlphaGo CMSC 35246

Go

What makes Go challenging:

Hundreds of legal moves from any position, many of which are
plausible

Games can last hundreds of moves

Unlike in chess, endgames are too complicated to solve exactly

Heavily dependent on pattern recognition

Lecture 18 GANs and AlphaGo CMSC 35246

Go

What makes Go challenging:

Hundreds of legal moves from any position, many of which are
plausible

Games can last hundreds of moves

Unlike in chess, endgames are too complicated to solve exactly

Heavily dependent on pattern recognition

Lecture 18 GANs and AlphaGo CMSC 35246

Go

What makes Go challenging:

Hundreds of legal moves from any position, many of which are
plausible

Games can last hundreds of moves

Unlike in chess, endgames are too complicated to solve exactly

Heavily dependent on pattern recognition

Lecture 18 GANs and AlphaGo CMSC 35246

Go

What makes Go challenging:

Hundreds of legal moves from any position, many of which are
plausible

Games can last hundreds of moves

Unlike in chess, endgames are too complicated to solve exactly

Heavily dependent on pattern recognition

Lecture 18 GANs and AlphaGo CMSC 35246

Game Trees

Each node corresponds to a legal state in the game

Children of a node correspond to possible actions taken by a
player

Leaf nodes are ones where we can compute the value since a
win/draw condition was met

Figure: Russel and Norvig

Lecture 18 GANs and AlphaGo CMSC 35246

Game Trees

Each node corresponds to a legal state in the game

Children of a node correspond to possible actions taken by a
player

Leaf nodes are ones where we can compute the value since a
win/draw condition was met

Figure: Russel and Norvig

Lecture 18 GANs and AlphaGo CMSC 35246

Game Trees

Each node corresponds to a legal state in the game

Children of a node correspond to possible actions taken by a
player

Leaf nodes are ones where we can compute the value since a
win/draw condition was met

Figure: Russel and Norvig

Lecture 18 GANs and AlphaGo CMSC 35246

Game Trees

To label the internal nodes, take the max over the children is
its player 1’s turn, min over the children if its player 2’s turn

Figure: Russel and Norvig

Lecture 18 GANs and AlphaGo CMSC 35246

Game Trees

As Shannon pointed out, for games with finite number of
states, in principle you can solve them by drawing out the
whole game tree.

Ways to deal with exponential blowup:

• Search to some fixed depth, then estimate the value
using an evaluation function

• Prioritize exploring the most promising actions for each
player (according to the evaluation function)

Having a good evaluation function is the key to good
performance

Traditionally this was the main application of Machine
Learning to game playing (in DeepBlue it was a learned linear
function of hand desgined features)

Lecture 18 GANs and AlphaGo CMSC 35246

Game Trees

As Shannon pointed out, for games with finite number of
states, in principle you can solve them by drawing out the
whole game tree.

Ways to deal with exponential blowup:

• Search to some fixed depth, then estimate the value
using an evaluation function

• Prioritize exploring the most promising actions for each
player (according to the evaluation function)

Having a good evaluation function is the key to good
performance

Traditionally this was the main application of Machine
Learning to game playing (in DeepBlue it was a learned linear
function of hand desgined features)

Lecture 18 GANs and AlphaGo CMSC 35246

Game Trees

As Shannon pointed out, for games with finite number of
states, in principle you can solve them by drawing out the
whole game tree.

Ways to deal with exponential blowup:

• Search to some fixed depth, then estimate the value
using an evaluation function

• Prioritize exploring the most promising actions for each
player (according to the evaluation function)

Having a good evaluation function is the key to good
performance

Traditionally this was the main application of Machine
Learning to game playing (in DeepBlue it was a learned linear
function of hand desgined features)

Lecture 18 GANs and AlphaGo CMSC 35246

Game Trees

As Shannon pointed out, for games with finite number of
states, in principle you can solve them by drawing out the
whole game tree.

Ways to deal with exponential blowup:

• Search to some fixed depth, then estimate the value
using an evaluation function

• Prioritize exploring the most promising actions for each
player (according to the evaluation function)

Having a good evaluation function is the key to good
performance

Traditionally this was the main application of Machine
Learning to game playing (in DeepBlue it was a learned linear
function of hand desgined features)

Lecture 18 GANs and AlphaGo CMSC 35246

Game Trees

As Shannon pointed out, for games with finite number of
states, in principle you can solve them by drawing out the
whole game tree.

Ways to deal with exponential blowup:

• Search to some fixed depth, then estimate the value
using an evaluation function

• Prioritize exploring the most promising actions for each
player (according to the evaluation function)

Having a good evaluation function is the key to good
performance

Traditionally this was the main application of Machine
Learning to game playing (in DeepBlue it was a learned linear
function of hand desgined features)

Lecture 18 GANs and AlphaGo CMSC 35246

Monte Carlo Tree Search

In 2006, Computer Go was revolutionized by MCTS

Estimate the value of a position by simulating lots of rollouts
(random game plays)

Keep track of wins and losses for each node in the tree

How to select which parts of the tree to evaluate?

Lecture 18 GANs and AlphaGo CMSC 35246

Monte Carlo Tree Search

In 2006, Computer Go was revolutionized by MCTS

Estimate the value of a position by simulating lots of rollouts
(random game plays)

Keep track of wins and losses for each node in the tree

How to select which parts of the tree to evaluate?

Lecture 18 GANs and AlphaGo CMSC 35246

Monte Carlo Tree Search

In 2006, Computer Go was revolutionized by MCTS

Estimate the value of a position by simulating lots of rollouts
(random game plays)

Keep track of wins and losses for each node in the tree

How to select which parts of the tree to evaluate?

Lecture 18 GANs and AlphaGo CMSC 35246

Monte Carlo Tree Search

In 2006, Computer Go was revolutionized by MCTS

Estimate the value of a position by simulating lots of rollouts
(random game plays)

Keep track of wins and losses for each node in the tree

How to select which parts of the tree to evaluate?

Lecture 18 GANs and AlphaGo CMSC 35246

Monte Carlo Tree Search

The selection step determines which part of the game tree to
spend computational resources on simulating

Exploration-Exploitation tradeoff: Want to focus on good
actions for the current player, but want to explore parts of the
tree we are still uncertain about

Common heuristic: Uniform confidence bound –

µi +

√
2 logN

Ni

µi is the fraction of wins for action i, Ni number of times
we’ve tried action i, N is the total number of times we have
visited this node

Lecture 18 GANs and AlphaGo CMSC 35246

Monte Carlo Tree Search

The selection step determines which part of the game tree to
spend computational resources on simulating

Exploration-Exploitation tradeoff: Want to focus on good
actions for the current player, but want to explore parts of the
tree we are still uncertain about

Common heuristic: Uniform confidence bound –

µi +

√
2 logN

Ni

µi is the fraction of wins for action i, Ni number of times
we’ve tried action i, N is the total number of times we have
visited this node

Lecture 18 GANs and AlphaGo CMSC 35246

Monte Carlo Tree Search

The selection step determines which part of the game tree to
spend computational resources on simulating

Exploration-Exploitation tradeoff: Want to focus on good
actions for the current player, but want to explore parts of the
tree we are still uncertain about

Common heuristic: Uniform confidence bound –

µi +

√
2 logN

Ni

µi is the fraction of wins for action i, Ni number of times
we’ve tried action i, N is the total number of times we have
visited this node

Lecture 18 GANs and AlphaGo CMSC 35246

Monte Carlo Tree Search

The selection step determines which part of the game tree to
spend computational resources on simulating

Exploration-Exploitation tradeoff: Want to focus on good
actions for the current player, but want to explore parts of the
tree we are still uncertain about

Common heuristic: Uniform confidence bound –

µi +

√
2 logN

Ni

µi is the fraction of wins for action i, Ni number of times
we’ve tried action i, N is the total number of times we have
visited this node

Lecture 18 GANs and AlphaGo CMSC 35246

Monte Carlo Tree Search

Lecture 18 GANs and AlphaGo CMSC 35246

AlphaGo: Predicting Expert Moves

Can a computer play Go without any computer search?

Argument: Should be possible to just use a ConvNet to
identify good moves

Input: a 19 by 19 ternary image

Prediction: A distribution over all legal next moves

Training data: KGS Go Server,consisting of 160,000 games
and 29 million board/next-move pairs

Architecture: 11 layer generic conv net

In real game play: Pick position with highest probability

Just a network that predicted expert moves could beat most of
the previous Go programs that used search 97 % of the times

Lecture 18 GANs and AlphaGo CMSC 35246

AlphaGo: Predicting Expert Moves

Can a computer play Go without any computer search?

Argument: Should be possible to just use a ConvNet to
identify good moves

Input: a 19 by 19 ternary image

Prediction: A distribution over all legal next moves

Training data: KGS Go Server,consisting of 160,000 games
and 29 million board/next-move pairs

Architecture: 11 layer generic conv net

In real game play: Pick position with highest probability

Just a network that predicted expert moves could beat most of
the previous Go programs that used search 97 % of the times

Lecture 18 GANs and AlphaGo CMSC 35246

AlphaGo: Predicting Expert Moves

Can a computer play Go without any computer search?

Argument: Should be possible to just use a ConvNet to
identify good moves

Input: a 19 by 19 ternary image

Prediction: A distribution over all legal next moves

Training data: KGS Go Server,consisting of 160,000 games
and 29 million board/next-move pairs

Architecture: 11 layer generic conv net

In real game play: Pick position with highest probability

Just a network that predicted expert moves could beat most of
the previous Go programs that used search 97 % of the times

Lecture 18 GANs and AlphaGo CMSC 35246

AlphaGo: Predicting Expert Moves

Can a computer play Go without any computer search?

Argument: Should be possible to just use a ConvNet to
identify good moves

Input: a 19 by 19 ternary image

Prediction: A distribution over all legal next moves

Training data: KGS Go Server,consisting of 160,000 games
and 29 million board/next-move pairs

Architecture: 11 layer generic conv net

In real game play: Pick position with highest probability

Just a network that predicted expert moves could beat most of
the previous Go programs that used search 97 % of the times

Lecture 18 GANs and AlphaGo CMSC 35246

AlphaGo: Predicting Expert Moves

Can a computer play Go without any computer search?

Argument: Should be possible to just use a ConvNet to
identify good moves

Input: a 19 by 19 ternary image

Prediction: A distribution over all legal next moves

Training data: KGS Go Server,consisting of 160,000 games
and 29 million board/next-move pairs

Architecture: 11 layer generic conv net

In real game play: Pick position with highest probability

Just a network that predicted expert moves could beat most of
the previous Go programs that used search 97 % of the times

Lecture 18 GANs and AlphaGo CMSC 35246

AlphaGo: Predicting Expert Moves

Can a computer play Go without any computer search?

Argument: Should be possible to just use a ConvNet to
identify good moves

Input: a 19 by 19 ternary image

Prediction: A distribution over all legal next moves

Training data: KGS Go Server,consisting of 160,000 games
and 29 million board/next-move pairs

Architecture: 11 layer generic conv net

In real game play: Pick position with highest probability

Just a network that predicted expert moves could beat most of
the previous Go programs that used search 97 % of the times

Lecture 18 GANs and AlphaGo CMSC 35246

AlphaGo: Predicting Expert Moves

Can a computer play Go without any computer search?

Argument: Should be possible to just use a ConvNet to
identify good moves

Input: a 19 by 19 ternary image

Prediction: A distribution over all legal next moves

Training data: KGS Go Server,consisting of 160,000 games
and 29 million board/next-move pairs

Architecture: 11 layer generic conv net

In real game play: Pick position with highest probability

Just a network that predicted expert moves could beat most of
the previous Go programs that used search 97 % of the times

Lecture 18 GANs and AlphaGo CMSC 35246

AlphaGo: Predicting Expert Moves

Can a computer play Go without any computer search?

Argument: Should be possible to just use a ConvNet to
identify good moves

Input: a 19 by 19 ternary image

Prediction: A distribution over all legal next moves

Training data: KGS Go Server,consisting of 160,000 games
and 29 million board/next-move pairs

Architecture: 11 layer generic conv net

In real game play: Pick position with highest probability

Just a network that predicted expert moves could beat most of
the previous Go programs that used search 97 % of the times

Lecture 18 GANs and AlphaGo CMSC 35246

RL 101

The basic Reinforcement Learning model consists of:

• A set of environment and agent states S

• A set of actions A of the agent
• Policies of transitioning from states to actions
• Rules that determine the immediate scalar reward of a

transition
• Rules that determine what the agent observes

Lecture 18 GANs and AlphaGo CMSC 35246

RL 101

The basic Reinforcement Learning model consists of:

• A set of environment and agent states S
• A set of actions A of the agent

• Policies of transitioning from states to actions
• Rules that determine the immediate scalar reward of a

transition
• Rules that determine what the agent observes

Lecture 18 GANs and AlphaGo CMSC 35246

RL 101

The basic Reinforcement Learning model consists of:

• A set of environment and agent states S
• A set of actions A of the agent
• Policies of transitioning from states to actions

• Rules that determine the immediate scalar reward of a
transition

• Rules that determine what the agent observes

Lecture 18 GANs and AlphaGo CMSC 35246

RL 101

The basic Reinforcement Learning model consists of:

• A set of environment and agent states S
• A set of actions A of the agent
• Policies of transitioning from states to actions
• Rules that determine the immediate scalar reward of a

transition
• Rules that determine what the agent observes

Lecture 18 GANs and AlphaGo CMSC 35246

RL 101

RL

Lecture 18 GANs and AlphaGo CMSC 35246

Self-Play and REINFORCE

If θ denotes the parameters of the policy network, at is the
action at time t and st is the state of the board, and z the
rollout of the rest of the game using the current policy

R = Eat∼pθ(at|st)[E[r(z)|st, at]]

Gradient of expected reward:

Lecture 18 GANs and AlphaGo CMSC 35246

Self-Play and REINFORCE

If θ denotes the parameters of the policy network, at is the
action at time t and st is the state of the board, and z the
rollout of the rest of the game using the current policy

R = Eat∼pθ(at|st)[E[r(z)|st, at]]

Gradient of expected reward:

Lecture 18 GANs and AlphaGo CMSC 35246

Self-Play and REINFORCE

If θ denotes the parameters of the policy network, at is the
action at time t and st is the state of the board, and z the
rollout of the rest of the game using the current policy

R = Eat∼pθ(at|st)[E[r(z)|st, at]]

Gradient of expected reward:

Lecture 18 GANs and AlphaGo CMSC 35246

Self-Play and REINFORCE

If θ denotes the parameters of the policy network, at is the
action at time t and st is the state of the board, and z the
rollout of the rest of the game using the current policy

R = Eat∼pθ(at|st)[E[r(z)|st, at]]

Gradient of expected reward:

Lecture 18 GANs and AlphaGo CMSC 35246

Self-Play and REINFORCE

In English: Sample action from the policy, then sample the
rollout for the rest of the game. If you win, update the
parameters to make the action more likely. If you lose, update
them to make them less likely

Lecture 18 GANs and AlphaGo CMSC 35246

Policy and Value Network

We have seen the policy and expert move networks, but
AlphaGo has another network called the value network

This network tries to predict, for a given position, which
player has the advantage
This is again, a conv net with a generic architecture trained
with least squares regression
Data comes from board positions and outcomes from self-play

Lecture 18 GANs and AlphaGo CMSC 35246

Policy and Value Network

We have seen the policy and expert move networks, but
AlphaGo has another network called the value network
This network tries to predict, for a given position, which
player has the advantage

This is again, a conv net with a generic architecture trained
with least squares regression
Data comes from board positions and outcomes from self-play

Lecture 18 GANs and AlphaGo CMSC 35246

Policy and Value Network

We have seen the policy and expert move networks, but
AlphaGo has another network called the value network
This network tries to predict, for a given position, which
player has the advantage
This is again, a conv net with a generic architecture trained
with least squares regression

Data comes from board positions and outcomes from self-play

Lecture 18 GANs and AlphaGo CMSC 35246

Policy and Value Network

We have seen the policy and expert move networks, but
AlphaGo has another network called the value network
This network tries to predict, for a given position, which
player has the advantage
This is again, a conv net with a generic architecture trained
with least squares regression
Data comes from board positions and outcomes from self-play

Lecture 18 GANs and AlphaGo CMSC 35246

Policy and Value Network

AlphaGo combined the policy and value networks with Monte
Carlo Tree Search

Policy network used to simulate rollouts

Value networks to evaluate leaf positions

Lecture 18 GANs and AlphaGo CMSC 35246

Policy and Value Network

AlphaGo combined the policy and value networks with Monte
Carlo Tree Search

Policy network used to simulate rollouts

Value networks to evaluate leaf positions

Lecture 18 GANs and AlphaGo CMSC 35246

Policy and Value Network

AlphaGo combined the policy and value networks with Monte
Carlo Tree Search

Policy network used to simulate rollouts

Value networks to evaluate leaf positions

Lecture 18 GANs and AlphaGo CMSC 35246

AlphaGo

Most of the Go world expected AlphaGo to lose 5-0 to Lee
Sedol

It won 4-1, some of the moves seemed to be bizarre to
experts, but turned out to be really good

Its one loss occurred when Lee Sedol played a key move unlike
anything in the training data

Last week AlphaGo defeated Ke Jie, arguably the best human
Go player 3-0, and retired from competitive Go

Lecture 18 GANs and AlphaGo CMSC 35246

AlphaGo

Most of the Go world expected AlphaGo to lose 5-0 to Lee
Sedol

It won 4-1, some of the moves seemed to be bizarre to
experts, but turned out to be really good

Its one loss occurred when Lee Sedol played a key move unlike
anything in the training data

Last week AlphaGo defeated Ke Jie, arguably the best human
Go player 3-0, and retired from competitive Go

Lecture 18 GANs and AlphaGo CMSC 35246

AlphaGo

Most of the Go world expected AlphaGo to lose 5-0 to Lee
Sedol

It won 4-1, some of the moves seemed to be bizarre to
experts, but turned out to be really good

Its one loss occurred when Lee Sedol played a key move unlike
anything in the training data

Last week AlphaGo defeated Ke Jie, arguably the best human
Go player 3-0, and retired from competitive Go

Lecture 18 GANs and AlphaGo CMSC 35246

AlphaGo

Most of the Go world expected AlphaGo to lose 5-0 to Lee
Sedol

It won 4-1, some of the moves seemed to be bizarre to
experts, but turned out to be really good

Its one loss occurred when Lee Sedol played a key move unlike
anything in the training data

Last week AlphaGo defeated Ke Jie, arguably the best human
Go player 3-0, and retired from competitive Go

Lecture 18 GANs and AlphaGo CMSC 35246

End

Lecture 18 GANs and AlphaGo CMSC 35246

