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Administrivia

Lectures in Ryerson 277: Monday and Wednesday 1500-1620

Website: http://ttic.uchicago.edu/ shub-
hendu/Pages/CMSC35246.html; Also will use
Chalk

Additional Lab sessions if needed will be announced

6 short 15 minute quizzes (no surprises, only to ensure that
material is revisited)

3-4 short assignments to train networks covered in class

In-class midterm

Class project in groups of 2 or alone (could be an application
of Neural Networks to your own research, or on a subject
suggested)

Experimental course - plan subject to revision!
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Books and Resources

We will mostly follow Deep Learning by Ian Goodfellow,
Yoshua Bengio and Aaron Courville (MIT Press, 2016)

Learning Deep Architectures for AI by Yoshua Bengio
(Foundations and Trends in Machine Learning, 2009)

Additional resources:

• Stanford CS 231n: by Li, Karpathy & Johnson
• Neural Networks and Deep Learning by Michael

Nielsen
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Recommended Background

Intro level Machine Learning:

• STAT 37710/CMSC 35400 or TTIC 31020 or equivalent
• CMSC 25400/STAT 27725 should be fine too!
• Intermediate level familiarity with Maximum Likelihood

Estimation, formulating cost functions, optimization with
gradient descent etc. from above courses

Good grasp of basic probability theory

Basic Linear Algebra and Calculus

Programming proficiency in Python (experience in some other
high level language should be fine)
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Contact Information

Please fill out the questionaire linked to from the website (also
on chalk)

Office hours:

• Shubhendu Trivedi: Mon/Wed 1630-1730, Fri
1700-1900; e-mail shubhendu@cs.uchicago.edu

• Risi Kondor: TBD; e-mail risi@cs.uchicago.edu

TA: No TA assigned (yet!)

Lecture 1 Introduction CMSC 35246



Goals of the Course

Get a solid understanding of the nuts and bolts of Supervised
Neural Networks (Feedforward, Recurrent)

Understand selected Neural Generative Models and survey
current research efforts

A general understanding of optimization strategies to guide
training Deep Architectures

The ability to design from scratch, and train novel deep
architectures

Pick up the basics of a general purpose Neural Networks
toolbox
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A Brief History of Neural Networks
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Neural Networks

Connectionism has a long and illustrious history (could be a
separate course!)

Neurons are simple. But their arrangement in multi-layered
networks is very powerful

They self organize. Learning effectively is change in
organization (or connection strengths).

Humans are very good at recognizing patterns. How does the
brain do it?
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Neural Networks

[Slide credit: Thomas Serre]
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First Generation Neural Networks: McCullogh
Pitts (1943)
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A Model Adaptive Neuron

This is also called a Perceptron
Assumes data are linearly separable. Simple stochastic
algorithm for learning the linear classifier
Theorem (Novikoff, 1962): Let w, w0 be a linear separator
with ‖w‖ = 1, and margin γ. Then Perceptron will converge
after

O
((maxi ‖xi‖)2

γ2

)
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Algorithm

Problem: Given a sequence of labeled examples
(x1, y1), (x2, y2), . . . , where each xi ∈ Rd and yi ∈ {+1,−1},
find a weight vector w and intercept b such that
sign(wxi + b) = yi for all i

Perceptron Algorithm

• initialize w = 0
• if sign(wx) 6= y (mistake), then wnew = wold + ηyx (η

is learning rate)
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Perceptron as a model of the brain?

Perceptron developed in the 1950s

Key publication: The perceptron: a probabilistic model for
information storage and organization in the brain, Frank
Rosenblatt, Psychological Review, 1958

Goal: Pattern classification

From Mechanization of Thought Process (1959): “The Navy
revealed the embryo of an electronic computer today that it
expects will be able to walk, talk, see, write, reproduce itself
and be conscious of its existence. Later perceptrons will be
able to recognize people and call out their names and
instantly translate speech in one language to speech and
writing in another language, it was predicted.”

Another ancient milestone: Hebbian learning rule (Donald
Hebb, 1949)
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Perceptron as a model of the brain?

The Mark I perceptron machine was the first implementation
of the perceptron algorithm.
The machine was connected to a camera that used 2020
cadmium sulfide photocells to produce a 400-pixel image. The
main visible feature is a patchboard that allowed
experimentation with different combinations of input features.
To the right of that are arrays of potentiometers that
implemented the adaptive weights
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Adaptive Neuron: Perceptron

A perceptron represents a decision surface in a d dimensional
space as a hyperplane

Works only for those sets of examples that are linearly
separable

Many boolean functions can be represented by a perceptron:
AND, OR, NAND,NOR
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Problems?

If features are complex enough, anything can be classified

Thus features are really hand coded. But it comes with a
clever algorithm for weight updates

If features are restricted, then some interesting tasks cannot
be learned and thus perceptrons are fundamentally limited in
what they can do. Famous examples: XOR, Group Invariance
Theorems (Minsky, Papert, 1969)
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Coda

Single neurons are not able to solve complex tasks (linear
decision boundaries).

More layers of linear units are not enough (still linear).

We could have multiple layers of adaptive, non-linear hidden
units. These are called Multi-layer perceptrons

Many local minima: Perceptron convergence theorem does
not apply.

Intuitive conjecture in the 60s: There is no learning algorithm
for multilayer perceptrons
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Second Wave: Multi-layer Perceptrons

We have looked at how each neuron will look like

But did not mention activation functions. Some common
choices:

How can we learn the weights?

PS: There were many kinds of Neural Models explored in the
second wave (will see later in the course)
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Learning multiple layers of features

[Slide: G. E. Hinton]
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Multilayer Perceptrons

Theoretical result [Cybenko, 1989]: 2-layer net with linear
output can approximate any continuous function over compact
domain to arbitrary accuracy (given enough hidden units!)

The more number of hidden layers, the better...

.. in theory.

In practice deeper neural networks would need a lot of labeled
data and could be not trained easily

Neural Networks and Backpropagation (with the exception of
use in Convolutional Networks) went out of fashion between
1990-2006

Digression: Kernel Methods
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Return

In 2006 Hinton and colleagues found a way to pre-train
feedforward networks using a Deep Belief Network trained
greedily

This allowed larger networks to be trained by simply using
backpropagation for fine tuning the pre-trained network
(easier!)

Since 2010 pre-training of large feedforward networks in this
sense also out

Availability of large datasets and fast GPU implementations
have made backpropagation from scratch almost unbeatable
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Why use Deep Multi Layered Models?

Argument 1: Visual scenes are hierarchially organized (so is
language!)

Figure: Richard E. Turner
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Why use Deep Multi Layered Models?

Argument 2: Biological vision is hierarchically organized, and we
want to glean some ideas from there

Figure: Richard E. Turner

Lecture 1 Introduction CMSC 35246



In the perceptual system, neurons represent features of the
sensory input

The brain learns to extract many layers of features. Features
in one layer represent more complex combinations of features
in the layer below. (e.g. Hubel Weisel (Vision), 1959, 1962)

How can we imitate such a process on a computer?
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Why use Deep Multi Layered Models?

Argument 3: Shallow representations are inefficient at representing
highly varying functions

when a function can be compactly represented by a deep
architecture, it might need a very large architecture to be
represented by an insufficiently deep one

Is there a theoretical justification? No

Suggestive results:
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Why use Deep Multi Layered Models?

Argument 3: Shallow representations are inefficient at representing
highly varying functions

A two layer circuit of logic gates can represent any Boolean
function (Mendelson, 1997)

First result: With depth-two logical circuits, most Boolean
functions need an exponential number of logic gates

Another result (Hastad, 1986): There exist functions with
poly-size logic gate circuit of depth k that require exponential
size when restricted to depth k − 1

Why do we care about boolean circuits?

Similar results are known when the computational units are
linear threshold units (Hastad, Razborov)

In practice depth helps in complicated tasks
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Why use Deep Multi Layered Models?

Attempt to learn features and the entire pipeline end-to-end
rather than engineering it (the engineering focus shifts to
architecture design)

[Figure: Honglak Lee]
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Convolutional Neural Networks

Figure: Yann LeCun
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Convolutional Neural Networks

Figure: Andrej Karpathy
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ImageNet Challenge 2012

14 million labeled images with 20,000 classes

Images gathered from the internet and labeled by humans via
Amazon Turk

Challenge: 1.2 million training images, 1000 classes.
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ImageNet Challenge 2012

Winning model (”AlexNet”) was a convolutional network
similar to Yann LeCun, 1998

More data: 1.2 million versus a few thousand images

Fast two GPU implementation trained for a week

Better regularization
[A. Krizhevsky, I. Sutskever, G. E. Hinton: ImageNet Classification with Deep Convolutional Neural Networks,
NIPS 2012]
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Going Deeper

A lot of current research has focussed on architecture
(efficient, deeper, faster to train)

Examples: VGGNet, Inception, Highway Networks, Residual
Networks, Fractal Networks
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Going Deeper

Figure: Kaiming He, MSR
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Google LeNet

C. Szegedy et al, Going Deeper With Convolutions, CVPR 2015
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Revolution of Depth

K. He et al, Deep Residual Learning for Image Recognition, CVPR 2016. Slide: K. He
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Residual Networks

Number 1 in Image classification

ImageNet Detection: 16 % better than the second best

ImageNet Localization: 27 % better than the second best

COCO Detection: 11 % better than the second best

COCO Segmentation: 12 % better than the second best
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Sequence Tasks

Figure credit: Andrej Karpathy
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Recent Deep Learning Successes and Research Areas
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2016: Year of Deep Learning

Lecture 1 Introduction CMSC 35246



Even Star Power! :)
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Maybe Hyped?
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Machine Translation

Your Google Translate usage will now be powered by an 8
layer Long Short Term Memory Network with residual
connections and attention

Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation; Wu et
al.
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Artistic Style

A Learned Representation for Artistic Style; Dumoulin, Shlens, Kudlur; ICLR 2017

Lecture 1 Introduction CMSC 35246



Speech Synthesis

Char2Wav: End-to-End Speech Synthesis; Sotelo et al., ICLR 2017; http://josesotelo.com/speechsynthesis/
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Game Playing

Mastering the game of Go with deep neural networks and tree search; Silver et al., Nature; 2016
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Neuroevolution of Architectures

Figure: @hardmaru

Recent large scale studies by Google show that evolutionary
methods are catching with intelligently designed architectures
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As well as in:

Protein Folding

Drug discovery

Particle Physics

Energy Management

...
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Next time

Feedforward Networks

Backpropagation
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