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Things we will look at today

• Formal Setup for Supervised Learning

• Empirical Risk, Risk, Generalization
• Define and derive a linear model for Regression
• Revise Regularization
• Define and derive a linear model for Classification
• (Time permitting) Start with Feedforward Networks
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Note: Most slides in this presentation are adapted from, or taken
(with permission) from slides by Professor Gregory Shakhnarovich

for his TTIC 31020 course
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What is Machine Learning?

Right question: What is learning?

Tom Mitchell (”Machine Learning”, 1997): ”A Computer
program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its
performance at tasks in T , as measured by P , improves with
experience E”

Gregory Shakhnarovich: Make predictions and pay the price if
the predictions are incorrect. Goal of learning is to reduce the
price.

How can you specify T , P and E?
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Formal Setup (Supervised)

Input data space X

Output (label) space Y
Unknown function f : X → Y
We have a dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)} with
xi ∈ X , yi ∈ Y
Finite Y =⇒ Classification

Continuous Y =⇒ Regression
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Regression

We are given a set of N observations (xi, yi) with
i = 1, . . . , N with yi ∈ R

Example: Measurements (possibly noisy) of barometric
pressure x versus liquid boiling point y

Does it make sense to use learning here?
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Fitting Function to Data

We will approach this in two steps:

• Choose a model class of functions
• Design a criteria to guide the selection of one function

from the selected class

Let us begin with considering one of the simpled model
classes: linear functions

Lecture 2 Machine Learning Review CMSC 35246



Fitting Function to Data

We will approach this in two steps:

• Choose a model class of functions

• Design a criteria to guide the selection of one function
from the selected class

Let us begin with considering one of the simpled model
classes: linear functions

Lecture 2 Machine Learning Review CMSC 35246



Fitting Function to Data

We will approach this in two steps:

• Choose a model class of functions
• Design a criteria to guide the selection of one function

from the selected class

Let us begin with considering one of the simpled model
classes: linear functions

Lecture 2 Machine Learning Review CMSC 35246



Fitting Function to Data

We will approach this in two steps:

• Choose a model class of functions
• Design a criteria to guide the selection of one function

from the selected class

Let us begin with considering one of the simpled model
classes: linear functions

Lecture 2 Machine Learning Review CMSC 35246



Linear Fitting to Data

We want to fit a linear function to
(X,Y ) = {(x1, y1) . . . (xN , yN )}

Fitting criteria: Least squares. Find the function that
minimizes the sum of squared distances between actual ys in
the training set

We then use the fitted line as a predictor
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Linear Functions

General form: f(x; θ) = θ0 + θ1x1 + . . . θdxd

1-D case: A line

X ∈ R2: a plane

Hyperplane in general d-D case
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Loss Functions

Targets are in Y
• Binary Classification: Y = {−1,+1}
• Univariate Regression: Y ≡ R

A Loss Function L : Y × Y → R
L maps decisions to costs. L(ŷ, y) is the penalty for
predicting ŷ when the correct answer is y

Standard choice for classification: 0/1 loss

Standard choice for regression: L(ŷ, y) = (ŷ − y)2

Lecture 2 Machine Learning Review CMSC 35246



Loss Functions

Targets are in Y
• Binary Classification: Y = {−1,+1}
• Univariate Regression: Y ≡ R

A Loss Function L : Y × Y → R

L maps decisions to costs. L(ŷ, y) is the penalty for
predicting ŷ when the correct answer is y

Standard choice for classification: 0/1 loss

Standard choice for regression: L(ŷ, y) = (ŷ − y)2
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predicting ŷ when the correct answer is y

Standard choice for classification: 0/1 loss

Standard choice for regression: L(ŷ, y) = (ŷ − y)2
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Empirical Loss

Consider a parametric function f(x; θ)

Example: Linear function - f(x; θ) = θ0 +
∑d

j=1 θjxij = θTx

Note: xi0 ≡ 1

The empirical loss of function y = f(x; θ) on a set X:

L(θ,X,y) =
1

N

N∑
i=1

L(f(xi; θ), yi)

Least squares minimizes empirical loss for squared loss L

We care about: predicting labels for new examples

When does empirical loss minimization help us in doing that?
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Loss: Empirical and Expected

Basic Assumption: Example and label pairs (x, y) are drawn
from an unknown distribution p(x, y)

Data are i.i.d: Same (abeit unknown) distribution for all (x, y)
in both training and test data

The empirical loss is measured on the training set:

L(θ,X,y) =
1

N

N∑
i=1

L(f(xi; θ), yi)

The goal is to minimize the expected loss, also known as risk:

R(θ) = E(x0,y0)∼p(x,y)[L(f(x0; θ), y0)]
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Empirical Risk Minimization

Empirical Loss:

L(θ,X,y) =
1

N

N∑
i=1

L(f(xi; θ), yi)

Risk:
R(θ) = E(x0,y0)∼p(x,y)[L(f(x0; θ), y0)]

Empirical Risk Minimization: If the training set is a
representative of the underlying (unknown) distribution
p(x, y), the empirical loss is a proxy for the risk

In essence: Estimate p(x, y) by the empirical distribution of
the data
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Learning via Empirical Loss Minimization

Learning is done in two steps:

• Select a restricted class H of hypotheses f : X → Y
Example: linear functions parameterized by θ:
f(x, y) = θTx

• Select a hypothesis f∗ ∈ H based on the training set
D = (X,Y )
Example: minimize empirical squared loss. That is, select
f(x, θ∗) such that:

θ∗ = arg min
θ

N∑
i=1

(yi − θTxi)2

How do we find θ∗ = [θ0, θ1, . . . , θd]?
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Least Squares: Estimation

Necessary condition to minimize L:
∂L(θ)
∂θ0

, ∂L(θ)∂θ1
, . . . , ∂L(θ)∂θd

must be set to zero

Gives us d+ 1 linear equations in d+ 1 unknowns θ0, θ1, . . . , θd

Let us switch to vector notation for convenience
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Learning via Empirical Loss Minimization

First let us write down least squares in matrix form:

Predictions: ŷ = Xθ; errors: y −Xθ; empirical loss:

L(θ,X) =
1

N
(y −Xθ)T (y −Xθ)

= (yT − θTXT )(y −Xθ)

What next? Take derivative of L(θ) and set it to zero
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Derivative of Loss

L(θ) = 1
N (yT − θTXT )(y −Xθ)

Use identities ∂aTb
∂a = ∂bT a

∂a = b and ∂aTBa
∂a = 2Ba

∂L(θ)

∂θ
=

1

N

∂

∂θ
[yTy − θTXTy − yTXθ + θTXTXθ]

=
1

N
[0−XTy − (yTX)T + 2XTXθ]

= − 2

N
(XTy −XTXθ)
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Least Squares Solution

∂L(θ)

∂θ
= − 2

N
(XTy −XTXθ) = 0

XTy = XTXθ =⇒ θ∗ = (XTX)−1XTy

X† = (XTX)−1XT is the Moore-Penrose pseudoinverse of X

Linear regression infact has a closed form solution!

Prediction: ŷ = θ∗
T

[
1
x0

]
= yTX†

T

[
1
x0

]
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Polynomial Regression

Transform x→ φ(x)

For example consider 1D for simplicity:

f(x; θ) = θ0 + θ1x+ θ2x
2 + · · ·+ θmx

m

Above φ(x) = [1, x, x2, . . . , xm]

No longer linear in x, but still linear in θ!

Back to familiar linear regression!

Generalized Linear models:
f(x; θ) = θ0 + θ1φ1(x) + θ2φ2(x) + · · ·+ θmφm(x)
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A Short Primer on Regularization
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Model Complexity and Overfitting

Consider data drawn from a 3rd order model:
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Avoiding Overfitting: Cross Validation

If model overfits i.e. it is too sensitive to data: It will be
unstable

Idea: hold out part of the data, fit model on rest and test on
held out set

k-fold cross validation. Extreme case: leave one out cross
validation

What is the source of overfitting?
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Cross Validation Example
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Model Complexity

Model complexity is the number of independent parameters to
be fit (”degrees of freedom”)

Complex model =⇒ more sensitive to data =⇒ more likely
to overfit

Simple model =⇒ more rigid =⇒ more likely to underfit

Find the model with the right ”bias-variance” balance
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Penalizing Model Complexity

Idea 1: Restrict model complexity based on amount of data

Idea 2: Directly penalize by the number of parameters (called
the Akaike Information criterion): minimize

N∑
i=1

L(f(xi; θ), yi) + #params

Since the parameters might not be independent, we would like
to penalize the complexity in a more sophisticated way
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Problems
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Description Length

Intuition: Should not penalize the parameters, but the number
of bits needed to encode the parameters

With a finite set of parameter values, these are equivalent.
With an infinite set, we can limit the effective number of
degrees of freedom by restricting the value of the parameters.

Then we can have Regularized Risk minimization:

N∑
i=1

L(f(xi; θ), yi) + Ω(θ)

We can measure ”size” in different ways: L1, L2 norms etc.
etc.

Regularization is basically a way to implement Occam’s Razor
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Shrinkage Regression

Shrinkage methods: We penalize the L2 norm

θ∗ridge = arg min
θ

N∑
i=1

L(f(xi; θ), yi) + λ

m∑
j=1

(θj)
2

If we use likelihood:

θ∗ridge = arg max
θ

N∑
i=1

log p(datai; θ)− λ
m∑
j=1

(θj)
2

This is called Ridge regression: Closed form solution for
squared loss θ̂ridge = (λI +XTX)−1XTy!
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LASSO Regression

LASSO: We penalize the L1 norm

θ∗lasso = arg min
θ

N∑
i=1

L(f(xi; θ), yi) + λ

m∑
j=1

|θj |

If we use likelihood:

θ∗ridge = arg max
θ

N∑
i=1

log p(datai; θ)− λ
m∑
j=1

|θj |

This is called LASSO regression: No closed form solution!

Still convex, but no longer smooth. Solve using Lagrange
multipliers!
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Effect of λ
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The Principle of Maximum Likelihood

Suppose we have N data points X = {x1, x2, . . . , xN} (or
{(x1, y1), (x2, y2), . . . , (xN , yN )})

Suppose we know the probability distribution function that
describes the data p(x; θ) (or p(y|x; θ))

Suppose we want to determine the parameter(s) θ

Pick θ so as to explain your data best

What does this mean?

Suppose we had two parameter values (or vectors) θ1 and θ2.

Now suppose you were to pretend that θ1 was really the true
value parameterizing p. What would be the probability that
you would get the dataset that you have? Call this P1

If P1 is very small, it means that such a dataset is very
unlikely to occur, thus perhaps θ1 was not a good guess
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The Principle of Maximum Likelihood

We want to pick θML i.e. the best value of θ that explains the
data you have

The plausibility of given data is measured by the ”likelihood
function” p(x; θ)

Maximum Likelihood principle thus suggests we pick θ that
maximizes the likelihood function

The procedure:

• Write the log likelihood function: log p(x; θ) (we’ll see
later why log)

• Want to maximize - So differentiate log p(x; θ) w.r.t θ
and set to zero

• Solve for θ that satisfies the equation. This is θML
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maximizes the likelihood function

The procedure:
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The Principle of Maximum Likelihood

As an aside: Sometimes we have an initial guess for θ
BEFORE seeing the data

We then use the data to refine our guess of θ using Bayes
Theorem

This is called MAP (Maximum a posteriori) estimation (we’ll
see an example)

Advantages of ML Estimation:

• Cookbook, ”turn the crank” method
• ”Optimal” for large data sizes

Disadvantages of ML Estimation

• Not optimal for small sample sizes
• Can be computationally challenging (numerical methods)
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Linear Classifiers

ŷ = h(x) = sign(θ0 + θTx)

We need to find the (direction) θ and (the location) θ0

Want to minimize the expected 0/1 loss for classifier
h : X → Y

L(h(x), y) =

{
0, if h(x) = y

1, if h(x) 6= y
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Risk of a Classifier

The risk (expected loss) of a C-way classifier h(x)

R(x) = Ex,y[L(h(x), y)]

=

∫
x

C∑
c=1

L(h(x), c)p(x, y = c)dx

=

∫
x

[
C∑
c=1

L(h(x), c)p(y = c|x)

]
p(x)dx

Clearly, it suffices to minimize the conditional risk:

R(h|x) =
C∑
c=1

L(h(x), c)p(y = c|x)
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Conditional Risk of a Classifier

R(h|x) =

C∑
c=1

L(h(x), c)p(y = c|x)

= 0× p(y = h(x)|x) + 1×
∑

c 6=h(x)

p(y = c|x)

=
∑

c 6=h(x)

p(y = c|x) = 1− p(y = h(x)|x)

To minimize the conditional risk given x, the classifier must
decide

h(x) = arg max
c
p(y = c|x)
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Log Odds Ratio

Optimal rule h(x) = arg maxc p(y = c|x) is equivalent to:

h(x) = c∗ ⇐⇒ p(y = c∗|x)

p(y = c|x)
≥ 1∀c

⇐⇒ log
p(y = c∗|x)

p(y = c|x)
≥ 0∀c

For the binary case:

h(x) = 1 ⇐⇒ p(y = 1|x)

p(y = 0|x)
≥ 0
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The Logistic Model

The unknown decision boundary can be modeled directly:

p(y = 1|x)

p(y = 0|x)
= θ0 + θTx = 0

Since p(y = 1|x) = 1− p(y = 0|x), exponentiating, we have:

p(y = 1|x)

1− p(y = 1|x)
= exp(θ0 + θTx) = 1

=⇒ 1

p(y = 1|x)
= 1 + exp(−θ0 − θTx) = 2

=⇒ p(y = 1|x) =
1

1 + exp(−θ0 − θTx)
=

1

2
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The Logistic Function

p(y = 1|x) =
1

1 + exp(−θ0 − θTx)

Properties?

With linear logistic model we get a linear decision boundary
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Likelihood under the Logistic Model

p(yi|x; θ) =

{
σ(θ0 + θTxi) if yi = 1

1− σ(θ0 + θTxi) if yi = 0

We can rewrite this as:

p(yi|x; θ) = σ(θ0 + θTxi)
yi(1− σ(θ0 + θTxi))

1−yi

The log-likelihood of θ:

log p(Y |X; θ) =
N∑
i=1

log p(yi|xi; θ)

=
N∑
i=1

yi log σ(θ0 + θTxi) + (1− yi) log(1− σ(θ0 + θTxi))
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The Maximum Likelihood Solution

log p(Y |X; θ) =

N∑
i=1

yi log σ(θ0+θ
Txi)+(1−yi) log(1−σ(θ0+θ

Txi))

Setting derivatives to zero:

∂ log p(Y |X; θ)

∂θ0
=

N∑
i=1

(yi − σ(θ0 + θTxi)) = 0

∂ log p(Y |X; θ)

∂θj
=

N∑
i=1

(yi − σ(θ0 + θTxi))xi,j = 0

Can treat yi − p(yi|xi) = yi − σ(θ0 + θTxi) as the prediction
error
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Finding Maxima

No closed form solution for the Maximum Likelihood for this
model!

But log p(Y |X;x) is jointly concave in all components of θ

Or, equivalently, the error is convex

Gradient Descent/ascent (descent on − log p(y|x; θ), log loss)
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Next time

Feedforward Networks

Backpropagation
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