Lecture 3
Feedforward Networks and Backpropagation
CMSC 35246: Deep Learning

Shubhendu Trivedi
&
Risi Kondor

University of Chicago

April 3, 2017

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

@ Things we will look at today

e Recap of Logistic Regression

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

@ Things we will look at today

e Recap of Logistic Regression
e Going from one neuron to Feedforward Networks

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

@ Things we will look at today

e Recap of Logistic Regression
e Going from one neuron to Feedforward Networks
e Example: Learning XOR

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

@ Things we will look at today

Recap of Logistic Regression

Going from one neuron to Feedforward Networks
Example: Learning XOR

Cost Functions, Hidden unit types, output types

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

@ Things we will look at today

Recap of Logistic Regression

Going from one neuron to Feedforward Networks
Example: Learning XOR

Cost Functions, Hidden unit types, output types

e Universality Results and Architectural Considerations

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

@ Things we will look at today

Recap of Logistic Regression

Going from one neuron to Feedforward Networks
Example: Learning XOR

Cost Functions, Hidden unit types, output types

e Universality Results and Architectural Considerations
Backpropagation

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Recap: The Logistic Function (Single Neuron)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Likelihood under the Logistic Model

o0+ 07x;) ify; =1

Z‘X;HI
plyib) {1—0(00+9Txi)ify¢20

@ We can rewrite this as:

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Likelihood under the Logistic Model

o0+ 07x;) ify; =1

Z‘X;HI
plyib) {1—0(00+9Txi)ify¢20

@ We can rewrite this as:

p(yi|xi;0) = o(6p + QTXi)yi(l —o(0 + 9Txi))1_yi

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Likelihood under the Logistic Model

oo+ 0Tx;) if yi =1
plylxi0) = { 7%)
1—0(90+9 Xi)lfyi:()

@ We can rewrite this as:

p(yilxi;0) = (6o + 607 x;)Y1 (1 — o (6 + 6T x;))L ¥
@ The log-likelihood of 6 (cross-entropy!):

log p(Y'| X5 0) Zlogp yilx; 0)

N

= Z yilog o (0o + 07x;) + (1 — y;) log(1 — o (6 + 67 x;))
i=1

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

The Maximum Likelihood Solution

N
logp(Y|X;0) = > yilog o(0p+6"x;)+(1—y;) log(1—o(6p+6"x;))
=1

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

The Maximum Likelihood Solution

N
logp(Y|X;0) = > yilog o(0p+6"x;)+(1—y;) log(1—o(6p+6"x;))
=1

@ Setting derivatives to zero:

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

The Maximum Likelihood Solution

N
logp(Y|X;0) = > yilog o(0p+6"x;)+(1—y;) log(1—o(6p+6"x;))
=1

@ Setting derivatives to zero:

Dlogp(Y|X;0) <

_ E L Ty \) —
800 - — (yl 0-(00 + 0 XZ)) 0
dlogp(Y|X;0) <
S8R N (- Ty Vyo - —
80]' P (yz 0(00 +6 Xz))Xz,j 0

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

The Maximum Likelihood Solution

N
logp(Y|X;0) = > yilog o(0p+6"x;)+(1—y;) log(1—o(6p+6"x;))
=1

@ Setting derivatives to zero:

dlogp(Y|X;0) ZN , To\y
800 - g (yl - 0-(00 + 0 XZ)) - 0
Ologp(Y|X;6) al
Ologp(Y|X;0) _ o Ty Ve
o0, ;:1 (yi —o(0o+0"x;))%x;5 =0

o Can treat y; — p(yi|x;) = y; — 0 (6y + 07x;) as the prediction
error

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Finding Maxima

@ No closed form solution for the Maximum Likelihood for this
model!

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Finding Maxima

@ No closed form solution for the Maximum Likelihood for this
model!

e But log p(Y'|X;x) is jointly concave in all components of ¢

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Finding Maxima

@ No closed form solution for the Maximum Likelihood for this
model!

e But log p(Y'|X;x) is jointly concave in all components of ¢

@ Or, equivalently, the error is convex

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Finding Maxima

@ No closed form solution for the Maximum Likelihood for this

model!
e But log p(Y'|X;x) is jointly concave in all components of ¢
@ Or, equivalently, the error is convex
@ Gradient Descent/ascent (descent on — log p(y|x;0), log loss)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Gradient Descent Solution

@ Objective is the average log-loss

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Gradient Descent Solution

@ Objective is the average log-loss

1 N
— 2 logn(yilxi:)
=1

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Gradient Descent Solution

@ Objective is the average log-loss
1
— 2 logn(yilxi:)
i=1

@ Gradient update:

(t+1) t, Y
0D =0 +Naezlogpy@rxz,)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Gradient Descent Solution

@ Objective is the average log-loss
1
— 2 logn(yilxi:)
i=1

@ Gradient update:
e(t-‘rl) _975 N i |1x;
+N89 E log p(yi|xi; 6")

@ Gradient on one example:

9 T
20 log p(yilxi;0) = (yi — (07 x;))%;

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Gradient Descent Solution

@ Objective is the average log-loss
1
— 2 logn(yilxi:)
i=1

@ Gradient update:

(t+1) t Y
@ Gradient on one example:

9 T
20 log p(yilxi;0) = (yi — (07 x;))%;

@ Above is batch gradient descent

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Feedforward Networks

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

@ Goal: Approximate some unknown ideal function f*: X — Y

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

@ Goal: Approximate some unknown ideal function f*: X — Y

e ldeal classifier: y = f*(x) with x and category y

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

.
Introduction

@ Goal: Approximate some unknown ideal function f*: X — Y
e ldeal classifier: y = f*(x) with x and category y

o Feedforward Network: Define parametric mapping

y:f(x,Q)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

@ Goal: Approximate some unknown ideal function f*: X — Y

e ldeal classifier: y = f*(x) with x and category y

o Feedforward Network: Define parametric mapping
y=f(x0)

@ Learn parameters 6 to get a good approximation to f* from
available sample

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

.
Introduction

@ Goal: Approximate some unknown ideal function f*: X — Y

e ldeal classifier: y = f*(x) with x and category y

o Feedforward Network: Define parametric mapping
y=f(x0)

@ Learn parameters 6 to get a good approximation to f* from
available sample

@ Naming: Information flow in function evaluation begins at
input, flows through intermediate computations (that define
the function), to produce the category

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

.
Introduction

@ Goal: Approximate some unknown ideal function f*: X — Y

e ldeal classifier: y = f*(x) with x and category y

o Feedforward Network: Define parametric mapping
y=f(x0)

@ Learn parameters 6 to get a good approximation to f* from
available sample

@ Naming: Information flow in function evaluation begins at
input, flows through intermediate computations (that define
the function), to produce the category

o No feedback connections (Recurrent Networks!)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

@ Function f is a composition of many different functions

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

@ Function f is a composition of many different functions

0 eg f(x) =IOV (x)))

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

@ Function f is a composition of many different functions

0 eg f(x) =IOV (x)))

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

()
A

@ Function composition can be described by a directed acyclic
graph (hence feedforward networks)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

()
A

@ Function composition can be described by a directed acyclic
graph (hence feedforward networks)

o (M) is the first layer, f2 the second layer and so on.

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

()
A

@ Function composition can be described by a directed acyclic
graph (hence feedforward networks)

o (M) is the first layer, f2 the second layer and so on.

@ Depth is the maximum ¢ in the function composition chain

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

()
A

@ Function composition can be described by a directed acyclic
graph (hence feedforward networks)

o (M) is the first layer, f2 the second layer and so on.
@ Depth is the maximum ¢ in the function composition chain

o Final layer is called the output layer

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

e Training: Optimize 0 to drive f(x;60) closer to f*(x)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

e Training: Optimize 0 to drive f(x;60) closer to f*(x)
e Training Data: f* evaluated at different x instances (i.e.
expected outputs)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Introduction

e Training: Optimize 0 to drive f(x;60) closer to f*(x)
e Training Data: f* evaluated at different x instances (i.e.
expected outputs)

@ Only specifies the output of the output layers

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

.
Introduction

Training: Optimize 6 to drive f(x;60) closer to f*(x)

Training Data: f* evaluated at different x instances (i.e.
expected outputs)

Only specifies the output of the output layers

Output of intermediate layers is not specified by D, hence the
nomenclature hidden layers

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

.
Introduction

e Training: Optimize 0 to drive f(x;60) closer to f*(x)

e Training Data: f* evaluated at different x instances (i.e.
expected outputs)

@ Only specifies the output of the output layers

@ Output of intermediate layers is not specified by D, hence the
nomenclature hidden layers

o Neural: Choices of f()’s and layered organization, loosely
inspired by neuroscience (first lecture)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Back to Linear Models

@ +ve: Optimization is convex or closed form!

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Back to Linear Models

@ +ve: Optimization is convex or closed form!

@ -ve: Model can't understand interaction between input
variables!

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Back to Linear Models

@ +ve: Optimization is convex or closed form!

@ -ve: Model can't understand interaction between input
variables!

e Extension: Do nonlinear transformation x — ¢(x); apply
linear model to ¢(x)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Back to Linear Models

@ +ve: Optimization is convex or closed form!

@ -ve: Model can't understand interaction between input
variables!

e Extension: Do nonlinear transformation x — ¢(x); apply
linear model to ¢(x)

@ ¢ gives features or a for x

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Back to Linear Models

@ +ve: Optimization is convex or closed form!

@ -ve: Model can't understand interaction between input
variables!

e Extension: Do nonlinear transformation x — ¢(x); apply
linear model to ¢(x)

@ ¢ gives features or a for x
@ How do we choose ¢?

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Choosing ¢

@ Option 1: Use a generic ¢

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Choosing ¢

@ Option 1: Use a generic ¢

o Example: Infinite dimensional ¢ implicitly used by kernel
machines with RBF kernel

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Choosing ¢

@ Option 1: Use a generic ¢

o Example: Infinite dimensional ¢ implicitly used by kernel
machines with RBF kernel

o Positive: Enough capacity to fit training data

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Choosing ¢

Option 1: Use a generic ¢

Example: Infinite dimensional ¢ implicitly used by kernel
machines with RBF kernel

Positive: Enough capacity to fit training data

Negative: Poor generalization for highly varying f*

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Choosing ¢

Option 1: Use a generic ¢

Example: Infinite dimensional ¢ implicitly used by kernel
machines with RBF kernel

Positive: Enough capacity to fit training data

Negative: Poor generalization for highly varying f*

Prior used: Function is locally smooth.

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Choosing ¢

e Option 2: Engineer ¢ for problem

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Choosing ¢

e Option 2: Engineer ¢ for problem

@ Still convex!

SIFT K-means . .
R —1 Pooling Classifier —
HoG Sparse Coding
fixed unsupervised supervised
Low-level Mid-level
Features Features

lllustration: Yann LeCun

Lecture 3 Feedforward Networks and Backpropagation

Choosing ¢

@ Option 3: Learn ¢ from data
@ Gives up on convexity

@ Combines good points of first two approaches: ¢ can be highly
generic and the engineering effort can go into architecture

High-level
Layer 3 linguistic representations

Layer 2

IS NUNSSNW =SpRes I

Figure: Honglak Lee

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Design Decisions

@ Need to choose optimizer, cost function and form of output

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Design Decisions

@ Need to choose optimizer, cost function and form of output

@ Choosing activation functions

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Design Decisions

@ Need to choose optimizer, cost function and form of output
@ Choosing activation functions

@ Architecture design (number of layers etc)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Back to XOR

Lecture 3 Feedforward Networks and Backpropagation

- __
XOR

Exclusive-OR gate

Input,,)D Output
Inputy

A|B| Output

0|0 0

01 1
10 1
11 0

o Let XOR be the target function f*(x) that we want to learn

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

- __
XOR

Exclusive-OR gate

Input,,)D Output
Inputy

A|B| Output

0|0 0

01 1
10 1
11 0

o Let XOR be the target function f*(x) that we want to learn
e We will adapt parameters 6 for f(x;60) to try and represent f*

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

- __
XOR

Exclusive-OR gate

Input,,)D Output
Inputy

A|B| Output

0|0 0

01 1
10 1
11 0

o Let XOR be the target function f*(x) that we want to learn
e We will adapt parameters 6 for f(x;60) to try and represent f*

@ Our Data:
(X,Y) = {([0,0]",0), ([0,1]7, 1), ([1,07, 1), ([1,1]7,0)}

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

XOR

@ Our Data:
(X,Y) = {([0,0]",0), ([0,1]", 1), ([1,0]7, 1), ([1,1]7,0)}

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

XOR

@ Our Data:
(X,Y) = {([0,0]",0), ([0,1]", 1), ([1,0]7, 1), ([1,1]7,0)}

@ Not concerned with generalization, only want to fit this data

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

XOR

@ Our Data:
(X,Y) = {([0,0]",0), ([0,1]", 1), ([1,0]7, 1), ([1,1]7,0)}

@ Not concerned with generalization, only want to fit this data

@ For simplicity consider the squared loss function

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

XOR

@ Our Data:
(X,Y) = {([0,0]",0), ([0,1]", 1), ([1,0]7, 1), ([1,1]7,0)}

@ Not concerned with generalization, only want to fit this data

@ For simplicity consider the squared loss function
]' *
JO) =7 D (")~ [(x:0))?

zeX

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

XOR

@ Our Data:
(X,Y) = {([0,0]",0), ([0,1]", 1), ([1,0]", 1), ([1,1]",0)}
@ Not concerned with generalization, only want to fit this data

@ For simplicity consider the squared loss function

T0) = 3 () - Fx:0))?

zeX

@ Need to choose a form for f(x;6): Consider a linear model
with 6 being w and b

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

XOR

@ Our Data:
(X,Y) = {([0,0]",0), ([0,1]", 1), ([1,0]7, 1), ([1,1]7,0)}

@ Not concerned with generalization, only want to fit this data

@ For simplicity consider the squared loss function

T0) = 3 () - Fx:0))?

zeX
@ Need to choose a form for f(x;6): Consider a linear model

with 6 being w and b

e Our model f(x;w,b) =xTw +b

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Linear Model

@ Recall previous lecture: Normal equations give w = 0 and
-1
b=3

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Linear Model

@ Recall previous lecture: Normal equations give w = 0 and
b=1

@ A linear model is not able to represent XOR, outputs 0.5
everywhere

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Linear Model

@ Recall previous lecture: Normal equations give w = 0 and

-1
b=3
@ A linear model is not able to represent XOR, outputs 0.5
everywhere
Original @ space
1 1 0o -
ol o 1 4
0 I

o1
Figure: Goodfellow et al.

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Solving XOR

@ How can we solve the XOR problem?

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Solving XOR

@ How can we solve the XOR problem?

@ |dea: Learn a different feature space in which a linear model
will work

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Solving XOR

v

Nol)e

@ Define a feedforward network with a vector of hidden units h
computed by f(V(x; W, ¢)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Solving XOR

v O

Nol)e

@ Define a feedforward network with a vector of hidden units h
computed by f(V(x; W, ¢)

@ Use hidden unit values as input for a second layer i.e. to
compute output y =) (h; w,b)

CMSC 35246

Lecture 3 Feedforward Networks and Backpropagation

Solving XOR

v

Nol)e

@ Define a feedforward network with a vector of hidden units h
computed by f(V(x; W, ¢)

@ Use hidden unit values as input for a second layer i.e. to
compute output y =) (h; w,b)

o Complete model: f(x; W,c,w,b) = fA(fV(x))

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Solving XOR

v

Nol)e

@ Define a feedforward network with a vector of hidden units h
computed by f(V(x; W, ¢)

@ Use hidden unit values as input for a second layer i.e. to
compute output y =) (h; w,b)

o Complete model: f(x; W,c,w,b) = f@(f1(x))

e What should be fM)? Can it be linear?

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Solving XOR

@ Let us consider a non-linear activation ¢g(z) = max{0, z}

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Solving XOR

@ Let us consider a non-linear activation ¢g(z) = max{0, z}

@ Our complete network model:

f(x; W, c,w,b) = wl max{0, Wix +c} +b

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Solving XOR

@ Let us consider a non-linear activation ¢g(z) = max{0, z}

@ Our complete network model:

f(x; W, c,w,b) = wl max{0, Wix +c} +b

@ Note: The activation above is applied element-wise

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
A Solution

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
A Solution

o Let
11 0 1
e I e RO

@ Our design matrix is:

—= =0 O
— O = O

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
A Solution

@ Compute the first layer output, by first calculating XW

00
11
XW = 11
2 2

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
A Solution

@ Compute the first layer output, by first calculating XW

0
XW =

N =
N = = O

o Find XW +c¢

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
A Solution

@ Compute the first layer output, by first calculating XW

00

11

XW = 11

2 2

e Find XW + ¢

0 -1
1 0
XW+c= 10
2 1

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
A Solution

@ Compute the first layer output, by first calculating XW

0 0

1 1

XW = 1 1

2 2

o Find XW +c¢

0 -1
1 0
XW+c= 1 0
2 1

@ Note: Ignore the type mismatch

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
A Solution

@ Next step: Rectify output

max{0, XW +c} =

N = = O
— o o o

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
A Solution

@ Next step: Rectify output

max{0, XW +c} =

N = = O
— o o o

e Finally compute w! max{0, XW +c} +b

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
A Solution

@ Next step: Rectify output

max{0, XW +c} =

N = = O
— o o o

e Finally compute w! max{0, XW +c} +b

O = = O

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

@ Able to correctly classify every example in the set

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

@ Able to correctly classify every example in the set

@ This is a hand coded; demonstrative example, hence clean

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

@ Able to correctly classify every example in the set

@ This is a hand coded; demonstrative example, hence clean

@ For more complicated functions, we will proceed by using
gradient based learning

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
An Aside:

1 layer of (/
trainable AT
weights P

separating hyperplane

Lecture 3 Feedforward Networks and Backpropagation

e
An Aside:

—
[
N/
~__
OO0
A o N N
o

convex polygon region

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Lecture 3 Feedforward Networks and Backpropagation

An Aside:

composition of polygons:
convex regions

CMSC 35246

@ Designing and Training a Neural Network is not much
different from training any other Machine Learning model
with gradient descent

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

@ Designing and Training a Neural Network is not much
different from training any other Machine Learning model
with gradient descent

@ Largest difference: Most interesting loss functions become
non-convex

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

@ Designing and Training a Neural Network is not much
different from training any other Machine Learning model
with gradient descent

@ Largest difference: Most interesting loss functions become
non-convex

@ Unlike in convex optimization, no convergence guarantees

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

@ Designing and Training a Neural Network is not much
different from training any other Machine Learning model
with gradient descent

@ Largest difference: Most interesting loss functions become
non-convex

@ Unlike in convex optimization, no convergence guarantees

@ To apply gradient descent: Need to specify cost function, and
output representation

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Cost Functions

Lecture 3 Feedforward Networks and Backpropagation

Cost Functions

@ Choice similar to parameteric models from earlier: Define a
distribution p(y|x; @) and use principle of maximum likelihood

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Cost Functions

@ Choice similar to parameteric models from earlier: Define a
distribution p(y|x; @) and use principle of maximum likelihood

@ We can just use cross entropy between training data and the
model’s predictions as the cost function:

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Cost Functions

@ Choice similar to parameteric models from earlier: Define a
distribution p(y|x; @) and use principle of maximum likelihood

@ We can just use cross entropy between training data and the
model’s predictions as the cost function:

J(e) = EX,yNﬁdam 10g Pmodel (Y|X)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Cost Functions

@ Choice similar to parameteric models from earlier: Define a
distribution p(y|x; @) and use principle of maximum likelihood

@ We can just use cross entropy between training data and the
model’s predictions as the cost function:

J(e) = EX,yNﬁdam 10g Pmodel (Y|X)

@ Specific form changes depending on form of 1og pimode

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Cost Functions

@ Choice similar to parameteric models from earlier: Define a
distribution p(y|x; @) and use principle of maximum likelihood

@ We can just use cross entropy between training data and the
model’s predictions as the cost function:

J(e) = EX,yNﬁdam 10g Pmodel (Y|X)

@ Specific form changes depending on form of 1og pimode

o Example: If proder(y]x) = N(y; f(x;0),1), then we recover:

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Cost Functions

@ Choice similar to parameteric models from earlier: Define a
distribution p(y|x; @) and use principle of maximum likelihood

@ We can just use cross entropy between training data and the
model’s predictions as the cost function:

J(e) = EX,yNﬁdam 10g Pmodel (Y|X)

@ Specific form changes depending on form of 1og pimode

o Example: If proder(y]x) = N(y; f(x;0),1), then we recover:

1
T(0) = 5B ympausally = £ 0)||* + Constant

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Cost Functions

@ Advantage: Need to specify p(y|x), and automatically get a
cost function log p(y|x)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Cost Functions

@ Advantage: Need to specify p(y|x), and automatically get a
cost function log p(y|x)

@ Choice of output units is very important for choice of cost
function

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Output Units

Lecture 3 Feedforward Networks and Backpropagation

Linear Units

@ Given features h, a layer of linear output units gives:

g=WTh+b

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Linear Units

@ Given features h, a layer of linear output units gives:

g=WTh+b

@ Often used to produce the mean of a conditional Gaussian
distribution:

p(y[x) =N(y;¥,1)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Linear Units

@ Given features h, a layer of linear output units gives:

g=WTh+b

@ Often used to produce the mean of a conditional Gaussian
distribution:

p(y[x) =N(y;¥,1)

e Maximizing log-likelihood == minimizing squared error

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Sigmoid Units

@ Task: Predict a binary variable y

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Sigmoid Units

@ Task: Predict a binary variable y

@ Use a sigmoid unit:

§=oc(wh+b)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Sigmoid Units

@ Task: Predict a binary variable y

@ Use a sigmoid unit:

§=oc(wh+b)

@ Cost:

J(6) = —logp(y|x) = —logo((2y — 1)(w'h + b))

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Sigmoid Units

Task: Predict a binary variable y

Use a sigmoid unit:

§=oc(wh+b)

@ Cost:

J(6) = —logp(y|x) = —logo((2y — 1)(w'h + b))

Positive: Only saturates when model already has right answer
i.e. when y =1 and (wTh +b) is very positive and vice versa

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Sigmoid Units

Task: Predict a binary variable y

Use a sigmoid unit:

§=oc(wh+b)

@ Cost:

J(6) = —logp(y|x) = —logo((2y — 1)(w'h + b))

Positive: Only saturates when model already has right answer
i.e. when y =1 and (wTh +b) is very positive and vice versa

e When (wh + b) has wrong sign, a good gradient is returned

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Softmax Units

@ Need to produce a vector y with §; = p(y = i|x)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Softmax Units

@ Need to produce a vector y with §; = p(y = i|x)

@ Linear layer first produces unnormalized log probabilities:
z=WTh+b

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Softmax Units

@ Need to produce a vector y with §; = p(y = i|x)
@ Linear layer first produces unnormalized log probabilities:
z=WTh+b

@ Softmax:
exp(z;)

Ej exp(z;)

softmax(z); =

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Softmax Units

@ Need to produce a vector y with §; = p(y = i|x)
@ Linear layer first produces unnormalized log probabilities:
z=WTh+b
o Softmax: ()
exp(z;
softmax(z); = =———~—
' Ej exp(2;)
@ Log of the softmax (since we wish to maximize p(y = i;2)):

log softmax(z); = z; — logz exp(z;)
J

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Benefits

log softmax(z); = z; — log Z exp(z;)
J

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Benefits

log softmax(z); = z; — log Z exp(z;)
J

@ z; term never saturates, making learning easier

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Benefits

log softmax(z); = z; — log Z exp(z;)
J

@ z; term never saturates, making learning easier

@ Maximizing log-likelihood encourages z; to be pushed up,
while encouraging all z to be pushed down (Softmax
encourages competition)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Benefits

log softmax(z); = z; — log Z exp(z;)
J

@ z; term never saturates, making learning easier

@ Maximizing log-likelihood encourages z; to be pushed up,
while encouraging all z to be pushed down (Softmax
encourages competition)

® More intuition: Think of log), exp(z;) ~ max; z; (why?)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Benefits

log softmax(z); = z; — log Z exp(z;)
J

@ z; term never saturates, making learning easier

@ Maximizing log-likelihood encourages z; to be pushed up,
while encouraging all z to be pushed down (Softmax
encourages competition)

® More intuition: Think of log), exp(z;) ~ max; z; (why?)
o log-likelihood cost function (~ z; — max; z;) strongly
penalizes the most active incorrect prediction

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Benefits

log softmax(z); = z; — log Z exp(z;)
J

@ z; term never saturates, making learning easier

@ Maximizing log-likelihood encourages z; to be pushed up,
while encouraging all z to be pushed down (Softmax
encourages competition)

® More intuition: Think of log), exp(z;) ~ max; z; (why?)
o log-likelihood cost function (~ z; — max; z;) strongly
penalizes the most active incorrect prediction

@ If model already has correct answer then
log >~ ; exp(z;) ~ max; z; and z; will roughly cancel out

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Benefits

log softmax(z); = z; — log Z exp(z;)
J

@ z; term never saturates, making learning easier

@ Maximizing log-likelihood encourages z; to be pushed up,
while encouraging all z to be pushed down (Softmax
encourages competition)

® More intuition: Think of log), exp(z;) ~ max; z; (why?)
o log-likelihood cost function (~ z; — max; z;) strongly
penalizes the most active incorrect prediction

@ If model already has correct answer then
log >~ ; exp(z;) ~ max; z; and z; will roughly cancel out
@ Progress of learning is dominated by incorrectly classified
examples

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Hidden Units

Lecture 3 Feedforward Networks and Backpropagation

e
Hidden Units

@ Accept input x

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Hidden Units

@ Accept input x — compute affine transformation
z=W'x+b

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Hidden Units

@ Accept input x — compute affine transformation
z =WTx +b — apply elementwise non-linear function g(z)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Hidden Units

@ Accept input x — compute affine transformation
z =WTx +b — apply elementwise non-linear function g(z)
— obtain output g(z)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Hidden Units

@ Accept input x — compute affine transformation
z =WTx +b — apply elementwise non-linear function g(z)
— obtain output g(z)

@ Choices for g?

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Hidden Units

@ Accept input x — compute affine transformation
z =WTx +b — apply elementwise non-linear function g(z)
— obtain output g(z)

@ Choices for g?

@ Design of Hidden units is an active area of research

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Rectified Linear Units

The Rectified Linear Activation Function
T

9(2) = max{0, 2}

w o}

@ Activation function: g(z) = max{0,z} with z € R

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Rectified Linear Units

The Rectified Linear Activation Function
T

9(2) = max{0, 2}

w o}

@ Activation function: g(z) = max{0,z} with z € R
@ On top of a affine transformation max{0, Wx + b}

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Rectified Linear Units

The Rectified Linear Activation Function
T

9(2) = max{0, 2}

@ Activation function: g(z) = max{0,z} with z € R
@ On top of a affine transformation max{0, Wx + b}
o Two layer network: First layer max{0, W{x + by}

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Rectified Linear Units

The Rectified Linear Activation Function
T

max{0, 2}

9(2)

@ Activation function: g(z) = max{0,z} with z € R

@ On top of a affine transformation max{0, Wx + b}
o Two layer network: First layer max{0, W{x + by}

e Second layer: W max{0, W{'x + b1} + by

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Rectified Linear Units

The Rectified Linear Activation Function /

T

@ Similar to linear units. Easy to optimize!

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Rectified Linear Units

Gradient = 1
Gradient = 0

The Rectified Linear Activation Function /

T

9(2) = max{0, z}

o

0

@ Similar to linear units. Easy to optimize!

o Give large and consistent gradients when active

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Rectified Linear Units

Gradient = 1

The Rectified Linear Activation Function /

T

0

@ Similar to linear units. Easy to optimize!
o Give large and consistent gradients when active
e Good practice: Initialize b to a small positive value (e.g. 0.1)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Rectified Linear Units

Gradient = 1

The Rectified Linear Activation Function /

T

0

Similar to linear units. Easy to optimize!
Give large and consistent gradients when active
Good practice: Initialize b to a small positive value (e.g. 0.1)

Ensures units are initially active for most inputs and
derivatives can pass through

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Rectified Linear Units

The Rectified Linear Activation Function
T

max{0, z}

9(2)

@ Not everywhere differentiable. Is this a problem?

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Rectified Linear Units

The Rectified Linear Activation Function
T

max{0, z}

9(2)

@ Not everywhere differentiable. Is this a problem?

e In practice not a problem. Return one sided derivatives at
z=0

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Rectified Linear Units

The Rectified Linear Activation Function
T

max{0, z}

9(2)

@ Not everywhere differentiable. Is this a problem?

e In practice not a problem. Return one sided derivatives at
z=0

e Gradient based optimization is subject to numerical error
anyway

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Rectified Linear Units

The Rectified Linear Activation Function
T

9(2) = max{0,z}

@ Positives:

Lecture 3 Feedforward Networks and Backpropagation

e
Rectified Linear Units

The Rectified Linear Activation Function
T

9(2) = max{0,z}

@ Positives:

e Gives large and consistent gradients (does not saturate)
when active

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Rectified Linear Units

The Rectified Linear Activation Function
T

9(2) = max{0,z}

o
!

@ Positives:
e Gives large and consistent gradients (does not saturate)
when active
o Efficient to optimize, converges much faster than sigmoid
or tanh

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Rectified Linear Units

The Rectified Linear Activation Function
T

9(2) = max{0,z}

o
!

@ Positives:
e Gives large and consistent gradients (does not saturate)
when active
o Efficient to optimize, converges much faster than sigmoid
or tanh
o Negatives:

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Rectified Linear Units

The Rectified Linear Activation Function
T

9(2) = max{0,z}

o
!

@ Positives:
e Gives large and consistent gradients (does not saturate)
when active
o Efficient to optimize, converges much faster than sigmoid
or tanh
o Negatives:
e Non zero centered output

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Rectified Linear Units

The Rectified Linear Activation Function
T

9(2) = max{0,z}

o
!

@ Positives:
e Gives large and consistent gradients (does not saturate)
when active
o Efficient to optimize, converges much faster than sigmoid
or tanh
o Negatives:
e Non zero centered output
e Units "die" i.e. when inactive they will never update

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Generalized Rectified Linear Units

o Get a non-zero slope when z; < 0

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Generalized Rectified Linear Units

o Get a non-zero slope when z; < 0

e g(z,a); = max{0, z;} + a; min{0, z; }

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Generalized Rectified Linear Units

o Get a non-zero slope when z; < 0
e g(z,a); = max{0, z;} + a; min{0, z; }
o Absolute value rectification: (Jarret et al, 2009)
a; = 1 gives g(z) = ||

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Generalized Rectified Linear Units

o Get a non-zero slope when z; < 0
e g(z,a); = max{0, z;} + a; min{0, z; }

o Absolute value rectification: (Jarret et al, 2009)
a; = 1 gives g(z) = ||

o Leaky ReLU: (Maas et al., 2013) Fix a; to a small value
e.g. 0.01

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Generalized Rectified Linear Units

o Get a non-zero slope when z; < 0
e g(z,a); = max{0, z;} + a; min{0, z; }
o Absolute value rectification: (Jarret et al, 2009)
a; = 1 gives g(z) = ||
o Leaky ReLU: (Maas et al., 2013) Fix a; to a small value
e.g. 0.01

o Parametric ReLU: (He et al., 2015) Learn q;

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Generalized Rectified Linear Units

o Get a non-zero slope when z; < 0
e g(z,a); = max{0, z;} + a; min{0, z; }
o Absolute value rectification: (Jarret et al, 2009)
a; = 1 gives g(z) = ||
o Leaky ReLU: (Maas et al., 2013) Fix a; to a small value
e.g. 0.01
o Parametric ReLU: (He et al., 2015) Learn q;
» Randomized ReLU: (Xu et al., 2015) Sample a; from a
fixed range during training, fix during testing

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Generalized Rectified Linear Units

o Get a non-zero slope when z; < 0
e g(z,a); = max{0, z;} + a; min{0, z; }
o Absolute value rectification: (Jarret et al, 2009)
a; = 1 gives g(z) = ||
Leaky ReLU: (Maas et al., 2013) Fix a; to a small value
e.g. 0.01
Parametric ReLU: (He et al., 2015) Learn a;
» Randomized ReLU: (Xu et al., 2015) Sample a; from a
fixed range during training, fix during testing

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Generalized Rectified Linear Units

Yi =1,

1
1
1
Yi = Qi |
1
1

i % ji

|
Leaky ReLU/PReLU Randomized Leaky ReLU

Figure: Xu et al. "Empirical Evaluation of Rectified Activations in Convolutional Network”

Lecture 3 Feedforward Networks and Backpropagation CMSC 3

-
Exponential Linear Units (ELUs)

g(z):{zifz>0

alexpz—1)if 2<0

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Exponential Linear Units (ELUs)

g(z):{zifz>0

alexpz—1)if 2<0

o All the benefits of ReLU + does not get killed

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Exponential Linear Units (ELUs)

g(z):{zifz>0

alexpz—1)if 2<0

o All the benefits of ReLU + does not get killed

@ Problem: Need to exponentiate

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Exponential Linear Units (ELUs)

zifz>0
9() = :
alexpz—1)if 2<0

o All the benefits of ReLU + does not get killed

@ Problem: Need to exponentiate

ELU /

—LReLU
—RelU /
/
/

. —5RelU
/

i(x)

X

Figure: Clevert et al. "Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)", 2016
Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

.
Maxout Units

@ Generalizes ReLUs further but does not fit into the (dot
product — nonlinearity) mold

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

.
Maxout Units

@ Generalizes ReLUs further but does not fit into the (dot
product — nonlinearity) mold

@ Instead of applying an element-wise function g(z), divide
vector z into k groups (more parameters!)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Maxout Units

@ Generalizes ReLUs further but does not fit into the (dot
product — nonlinearity) mold

@ Instead of applying an element-wise function g(z), divide
vector z into k groups (more parameters!)

@ Output maximum element of one of k groups
9(z); = MaX;cGe) 2

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

.
Maxout Units

@ Generalizes ReLUs further but does not fit into the (dot
product — nonlinearity) mold

Instead of applying an element-wise function g(z), divide
vector z into k groups (more parameters!)

Output maximum element of one of k groups
9(z); = MaX;cGe) 2

9(z); = max{w{ x + b1, ..., wlx + by}

A maxout unit makes a piecewise linear approximation (with k
pieces) to an arbitrary convex function

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

.
Maxout Units

@ Generalizes ReLUs further but does not fit into the (dot
product — nonlinearity) mold

@ Instead of applying an element-wise function g(z), divide
vector z into k groups (more parameters!)

@ Output maximum element of one of k groups
9(z)i = max;cga 2j

o g(z); = max{w!{x+by,...,wfx+ by}

@ A maxout unit makes a piecewise linear approximation (with k
pieces) to an arbitrary convex function

@ Can be thought of as learning the activation function itself

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

.
Maxout Units

@ Generalizes ReLUs further but does not fit into the (dot
product — nonlinearity) mold

@ Instead of applying an element-wise function g(z), divide
vector z into k groups (more parameters!)

@ Output maximum element of one of k groups
9(z); = MaX;cGe) 2
o g(z); = max{w!{x+by,...,wfx+ by}

@ A maxout unit makes a piecewise linear approximation (with k
pieces) to an arbitrary convex function

@ Can be thought of as learning the activation function itself

@ With £ = 2 we CAN recover absolute value rectification, or
RelLU or PRelLU

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

.
Maxout Units

@ Generalizes ReLUs further but does not fit into the (dot
product — nonlinearity) mold

@ Instead of applying an element-wise function g(z), divide
vector z into k groups (more parameters!)

@ Output maximum element of one of k groups
9(z); = MaX;cGe) 2
o g(z); = max{w!{x+by,...,wfx+ by}

@ A maxout unit makes a piecewise linear approximation (with k
pieces) to an arbitrary convex function

@ Can be thought of as learning the activation function itself

@ With £ = 2 we CAN recover absolute value rectification, or
RelLU or PRelLU

@ Each unit parameterized by k weight vectors instead of 1,
needs stronger regularization

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Sigmoid Units

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Sigmoid Units

1

"B =T

@ Squashing type non-linearity: pushes outputs to range [0, 1]

1

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Sigmoid Units

Gradients too weak

Y ____________________

Lecture 3 Feedforward Networks and Backpropagation CMSC 3

-
Sigmoid Units

Gradients too weak

v/

@ Problem: Saturate across most of their domain, strongly
sensitive only when z is closer to zero

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Sigmoid Units

Gradients too weak

v/

@ Problem: Saturate across most of their domain, strongly
sensitive only when z is closer to zero

@ Saturation makes gradient based learning difficult

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Tanh Units

@ Related to sigmoid: g(z) = tanh(z) = 20(22) — 1

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Tanh Units

@ Related to sigmoid: g(z) = tanh(z) = 20(22) — 1
e Positives: Squashes output to range [—1, 1], outputs are
zero-centered

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Tanh Units

@ Related to sigmoid: g(z) = tanh(z) = 20(22) — 1
e Positives: Squashes output to range [—1, 1], outputs are
zero-centered

@ Negative: Also saturates

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Tanh Units

@ Related to sigmoid: g(z) = tanh(z) = 20(22) — 1
e Positives: Squashes output to range [—1, 1], outputs are
zero-centered

@ Negative: Also saturates

o Still better than sigmoid as § = w tanh(U” tanh(V71x))
resembles § = wZ UTVTx when activations are small

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Other Units

e Radial Basis Functions: g(z); = exp (%HWlx\P)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Other Units

e Radial Basis Functions: g(z); = exp (%HWlx\P)

@ Function is more active as x approaches a template W. ;. Also
saturates and is hard to train

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Other Units

e Radial Basis Functions: g(z); = exp (%HWlx\P)
@ Function is more active as x approaches a template W. ;. Also
saturates and is hard to train

e Softplus: g(z) = log(1 + e€*). Smooth version of rectifier
(Dugas et al., 2001), although differentiable everywhere,
empirically performs worse than rectifiers

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

e
Other Units

e Radial Basis Functions: g(z); = exp (%HWlx\P)
@ Function is more active as x approaches a template W. ;. Also
saturates and is hard to train

e Softplus: g(z) = log(1 + e€*). Smooth version of rectifier
(Dugas et al., 2001), although differentiable everywhere,
empirically performs worse than rectifiers

e Hard Tanh: g(z) = max(—1, min(1, 2)), like the rectifier, but
bounded (Collobert, 2004)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Summary

@ In Feedforward Networks don't use Sigmoid

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Summary

@ In Feedforward Networks don't use Sigmoid

@ When a sigmoidal function must be used, use tanh

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Summary

@ In Feedforward Networks don't use Sigmoid
@ When a sigmoidal function must be used, use tanh

@ Use RelLU by default, but be careful with learning rates

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Summary

@ In Feedforward Networks don't use Sigmoid
@ When a sigmoidal function must be used, use tanh
@ Use RelLU by default, but be careful with learning rates

@ Try other generalized ReLUs and Maxout for possible
improvement

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Universality and Depth

Lecture 3 Feedforward Networks and Backpropagation CMSC 3

Architecture Design

First layer: h(1) = ¢(1) (mex T b<1>)

Second layer: h(?) = ¢(2) <W(2)Th(1) + b(2)>
How do we decide depth, width?

In theory how many layers suffice?

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Universality

@ Theoretical result [Cybenko, 1989]: 2-layer net with linear
output with some squashing non-linearity in hidden units can
approximate any continuous function over compact domain to
arbitrary accuracy (given enough hidden units!)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Universality

@ Theoretical result [Cybenko, 1989]: 2-layer net with linear
output with some squashing non-linearity in hidden units can
approximate any continuous function over compact domain to
arbitrary accuracy (given enough hidden units!)

@ Implication: Regardless of function we are trying to learn, we
know a large MLP can represent this function

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Universality

@ Theoretical result [Cybenko, 1989]: 2-layer net with linear
output with some squashing non-linearity in hidden units can
approximate any continuous function over compact domain to
arbitrary accuracy (given enough hidden units!)

@ Implication: Regardless of function we are trying to learn, we
know a large MLP can represent this function

@ But not guaranteed that our training algorithm will be able to
learn that function

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Universality

@ Theoretical result [Cybenko, 1989]: 2-layer net with linear
output with some squashing non-linearity in hidden units can
approximate any continuous function over compact domain to
arbitrary accuracy (given enough hidden units!)

@ Implication: Regardless of function we are trying to learn, we
know a large MLP can represent this function

@ But not guaranteed that our training algorithm will be able to
learn that function

@ Gives no guidance on how large the network will be
(exponential size in worst case)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Universality

@ Theoretical result [Cybenko, 1989]: 2-layer net with linear
output with some squashing non-linearity in hidden units can
approximate any continuous function over compact domain to
arbitrary accuracy (given enough hidden units!)

@ Implication: Regardless of function we are trying to learn, we
know a large MLP can represent this function

@ But not guaranteed that our training algorithm will be able to
learn that function

@ Gives no guidance on how large the network will be
(exponential size in worst case)

@ Talked of some suggestive results earlier:

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

One more result:

o (Montufar et al., 2014) Number of linear regions carved out
by a deep rectifier network with d inputs, depth [and n units

per hidden layer is:
d(l—1)
n d
(@)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

One more result:

o (Montufar et al., 2014) Number of linear regions carved out
by a deep rectifier network with d inputs, depth [and n units

per hidden layer is:
d(l—1)
n d
(@)

@ Exponential in depth!

@ They showed functions representable with a deep rectifier
network can require an exponential number of hidden units
with a shallow network

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

—

1. Fold along the 2. Fold along the
vertical axis horizontal axis

Input Space

(b) ©
Figure 2: (a) Space folding of 2-D Euclidean space along the two axes. (b) An illustration of how the

top-level partitioning (on the right) is replicated to the original input space (left). (c) Identification
of regions across the layers of a deep model.

&>

Figure 3: Space folding of 2-D space in a non-trivial way. Note how the folding can potentially
identify symmetries in the boundary that it needs to learn.

Figure: Montufar et al., 2014

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Advantages of Depth

96.5 T T T T T T
96.0
95.5
95.0
94.5
94.0
93.5
93.0
92.5
92.0]] ! I ! I !
3

Test accuracy (percent)

Figure: Goodfellow et al., 2014

Lecture 3 Feedforward Networks and Backpropagation

Advantages of Depth

97 r
96 |-
95 |-

94 +

Test accuracy (percent)

91 -

ol — 4

T T T T

e—s 3 convolutional
+—+ 3, fully connected
V¥ 11, convolutional [

0.0 0.2

il
0.4 0.6 0.8 1.0
Number of parameters x108

@ Control experiments show that other increases to model size
don’t yield the same effect

Figure: Goodfellow et al., 2014

Lecture 3 Feedforward Networks and Backpropagation

CMSC 35246

Backpropagation: Introduction

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

How do we learn weights?

O

o First Idea: Randomly perturb one weight, see if it improves
performance, save the change

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

How do we learn weights?

O

o First Idea: Randomly perturb one weight, see if it improves
performance, save the change

@ Very inefficient: Need to do many passes over a sample set
for just one weight change

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

How do we learn weights?

o First Idea: Randomly perturb one weight, see if it improves
performance, save the change

@ Very inefficient: Need to do many passes over a sample set
for just one weight change

@ What does this remind you of?

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

How do we learn weights?

@ Another Idea: Perturb all the weights in parallel, and correlate
the performance gain with weight changes

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

How do we learn weights?

@ Another Idea: Perturb all the weights in parallel, and correlate
the performance gain with weight changes

@ Very hard to implement

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

How do we learn weights?

()
A

@ Another Idea: Perturb all the weights in parallel, and correlate
the performance gain with weight changes

@ Very hard to implement

@ Yet another idea: Only perturb activations (since they are
fewer). Still very inefficient.

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Backpropagation

Compare outputs with
correct answer to get
error signal

<«= outputs

™ hidden
;\) « layers
<= input vector

Lecture 3 Feedforward Networks and Backpropagation

-
Backpropagation

Compare outputs with
correct answer to get
error signal

<«= outputs

™ hidden
;\) « layers
<= input vector

o Feedforward Propagation: Accept input x, pass through
intermediate stages and obtain output 3

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Backpropagation

Compare outputs with
correct answer to get
error signal

<«= outputs

™ hidden
;\) « layers
<= input vector

o Feedforward Propagation: Accept input x, pass through
intermediate stages and obtain output 3
e During Training: Use § to compute a scalar cost J(#)

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation

Compare outputs with
correct answer to get
error signal

<«= outputs

™ hidden
;\) « layers
<= input vector

o Feedforward Propagation: Accept input x, pass through
intermediate stages and obtain output 3

e During Training: Use § to compute a scalar cost J(#)

@ Backpropagation allows information to flow backwards from

cost to compute the gradient

Figure: G. E. Hinton
CMSC 35246

Lecture 3 Feedforward Networks and Backpropagation

-
Backpropagation

@ From the training data we don't know what the hidden units
should do

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation

@ From the training data we don't know what the hidden units
should do

@ But, we can compute how fast the error changes as we change
a hidden activity

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Backpropagation

@ From the training data we don't know what the hidden units
should do

@ But, we can compute how fast the error changes as we change
a hidden activity

@ Use error derivatives w.r.t hidden activities

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Backpropagation

@ From the training data we don't know what the hidden units
should do

@ But, we can compute how fast the error changes as we change
a hidden activity

@ Use error derivatives w.r.t hidden activities

@ Each hidden unit can affect many output units and have
separate effects on error — combine these effects

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Backpropagation

@ From the training data we don't know what the hidden units
should do

@ But, we can compute how fast the error changes as we change
a hidden activity

@ Use error derivatives w.r.t hidden activities

@ Each hidden unit can affect many output units and have
separate effects on error — combine these effects

e Can compute error derivatives for hidden units efficiently (and
once we have error derivatives for hidden activities, easy to
get error derivatives for weights going in)

Slide: G. E. Hinton

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Review: neural networks

@ Feedforward operation, from input x to output y:

m d
J(x;w) = Z/u;](?)h (Z wg;):ﬁi + uré?) + w(()z)

j=1 i=1

Slide adapted from TTIC 31020, Gregory Shakhnarovich

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Training the network

@ Error of the network on a training set:

Zé §(xi; w))?
=1

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Training the network

@ Error of the network on a training set:
1 2
Z 5 Wi —9(xi;w))
=1

@ Generally, no closed-form solution;
resort to gradient descent

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Training the network

@ Error of the network on a training set:
1 2
Z 5 Wi —9(xi;w))
=1

@ Generally, no closed-form solution;
resort to gradient descent

@ Need to evaluate derivative of L on a single example

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Training the network

Error of the network on a training set:

Z% §(xi; w))?
i=1

Generally, no closed-form solution;
resort to gradient descent

Need to evaluate derivative of L on a single example

Let's start with a simple linear model § = > w;w;;:

o, = (Ui — yi) xij.

error

Slide adapted from TTIC 31020, Gregory Shakhnarovich

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Backpropagation

@ General unit activation in a multilayer network:

2 = h E Wt 2
J

2t
h
Wi A NWst
Z1 Z9 PR z

@ Forward propagation: calculate for each unit a; = Zj Wjt2j

s

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Backpropagation

@ General unit activation in a multilayer network:

2 = h E Wt 2
J

2t
h
Wi A NWst
Z1 Z9 PR z

@ Forward propagation: calculate for each unit a; = Zj Wjt2j

s

@ The loss L depends on wj; only through a;:

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

-
Backpropagation

@ General unit activation in a multilayer network:

2 = h E Wt 2
J

2t
h
Wi A NWst
Z1 Z9 PR z

@ Forward propagation: calculate for each unit a; = Zj Wjt2j

s

@ The loss L depends on wj; only through a;:

OL _ 0L D _ OL
awjt N 6at Owjt N 8&15 J

Slide adapted from TTIC 31020, Gregory Shakhnarovich

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation
oL _ oL L _ 0L
8wjt N 8atzj 3wjt B Oay “
—~—

0t

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation
oL _ oL L _ 0L
8wjt N 8atzj 3wjt B Oay “
el

@ Output unit with linear activation: &; = g —y

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation
oL _ oL L _ 0L
8wjt N 8atzj 3wjt B Oay “
—~—

0t

@ Output unit with linear activation: &; = g —y

e Hidden unit z; = h(a¢) which sends inputs to units S:

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation

oL _ oL 0L _ oL
8wjt N 8atzj 3wjt B Oay “
el

@ Output unit with linear activation: &; = g —y

e Hidden unit z; = h(a¢) which sends inputs to units S:

5 Z oL 8@3
t =
s€S 9as day O % as = Z wjsh(aj)
= h/(at)zwts5s Ws Ji—rs
sES e

Slide adapted from TTIC 31020, Gregory Shakhnarovich

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation: example
e Output: f(a) =a

o Hidden:
el — =0
h(a) = tanh(a) = m, h 1 L
3 1
“"E'll) \“«’21 Yqi
W(a) =1 — h(a)% o -

o Given example x, feed-forward inputs:
d
input to hidden: a; = Zur(})xi,

ij
=0

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation: example
e Output: f(a) =a

o Hidden:
h(a) = tanh(a) = &

€4 +ea’

input to hidden: a; Zurf})x,,
i=0
hidden output: z; = tanh(a;),

Lecture 3 Feedforward Networks and Backpropagation

CMSC 35246

Backpropagation: example

e Output: f(a) =a
e Hidden:

h(a) = tanh(a) = ——

input to hidden: a;
hidden output: z;

net output: ¢

Lecture 3 Feedforward Networks and Backpropagation

CMSC 35246

Backpropagation: example

d m
aj = > ul w2 = tanh(ag), §=a =Y uz
=0 =0

@ Error on example x: L = %(y —9)2.

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation: example

d m
aj = > ul w2 = tanh(ag), §=a =Y uz
i=0 =
e Error on example x: L = (y — §)°.
o Output unit: § = %= = y— 4.

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation: example

d m
1 " 2
a; = E ng):vi, z; = tanh(aj), § =a = E wé)
i=0

J=0

@ Error on example x: L = %(y —9)2.
@ Output unit: § = 8L y— 9.
@ Next, compute ds for the hidden units:

d; = (1— zj)ij(-Q)é

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation: example

d m
! N 2
aj = > ul w2 = tanh(ag), §=a =Y uz
=0 =0

@ Error on example x: L = %(y —9)2.

@ Output unit: § = ‘3—5 =y—4.

@ Next, compute Js for the hidden units:

d; = (1— zj)ij(-Q)é

@ Derivatives w.r.t. weights:
oL s oL
uwd o ow'?
ij J

= 52’]'.

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Backpropagation: example

d m
a; = ng;)xi, z; = tanh(aj), § =a = Zur;?)
i=0

J=0

@ Error on example x: L = (y —)%
@ Output unit: § = 8L =y—g.

@ Next, compute ds for the hidden units:
§; = (11— zj)Qu/'j(-Q)é

[\

@ Derivatives w.r.t. weights:
oL oL
= 5jxl7

8105;) 8w§2)

= 52’]'.

e Update weights: w; < w; —ndz; and w() w() —nd;;.

is called the weight deca
Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Multidimensional output

@ Loss on example (x,y): O @\ @
= 2

el
2) (\? U)()
K i\)5 "
9 Z Yk — yk -
— AR A S
h=1 Wi Way Ya1
rog X1 Td

@ Now, for each output unit 0 = yr — Ys;
e For hidden unit j,

K

o = (1= 22y wllo.

k=1

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Next time

@ More Backpropagation

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Next time

@ More Backpropagation

@ Start with Regularization in Neural Networks

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

Next time

@ More Backpropagation
@ Start with Regularization in Neural Networks

@ Quiz

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

