
Lecture 5
Regularization in Deep Neural Networks

CMSC 35246: Deep Learning

Shubhendu Trivedi
&

Risi Kondor

University of Chicago

April 10, 2017

Lecture 5 Regularization in Deep Neural Networks CMSC 35246



Things we will look at today

• Norm Penalties (weight decay)

• Early Stopping as a form of Regularization
• Dropout
• Other Approaches that have a regularizing effect
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Housekeeping

Quiz scores will be uploaded after class

Projects:

• One page proposal due 19 April 23:59
• Summarize the task of interest and why is it of interest

to you
• Describe the dataset intended for use
• Roughly: What model do you want to use?
• What framework do you plan to use?

Mid Term dates will be announced on Wednesday
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Regularization

Introduce additional information to solve an ill posed inverse
problem

A practical way to impose Occam’s Razor on the solution

We already looked at (Regularized Risk Minimization):

J(θ) =
N∑
i=1

L(f(xi; θ), yi) + Ω(θ)

More generally: Any modification to a learning algorithm
intended to reduce its generalization error but not its training
error
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Training Regimes

Regime 1 in training: Model family excludes the true
generation process (underfitting, high bias)
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Training Regimes

Regime 2 in training: Model family matches the true
generative process

Lecture 5 Regularization in Deep Neural Networks CMSC 35246



Training Regimes

Regime 3 in training: The generative process is included but
many other generating processes as well (overfitting!)
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Regularization

Goal of Regularization: Take a model from the third regime to
second regime
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In Deep Learning

A trend: Use extremely large models (high capacity) and then
regularize strongly (try to limit capacity)

“If you are not in the small-data regime, you should just use a
bigger model so that you are in the small-data regime. You should
always be in the small-data regime.” – David Belanger
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Yet another quote

Geoffrey Hinton: “The brain has
about 1014 synapses and we live
for about 109 seconds. So we have
a lot more parameters than data.”

Note: # synapses ≡ # parameters is problematic, so is the
use of seconds as a unit. But the point remains: Large
looking model, small data
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Open area of research: How do deep learning models
generalize with such large models that can “memorize” the
data

Personal “Conjecture” (feel free to ignore!): A reasonable
upper bound on the Kolmogorov Complexity of models with
good generalization performance will turn out to be small i.e.
they are essentially simple models, not as complex as they
seem. Generalization in this case is a result of parsimony.
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Parameter Norm Penalties
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Parameter Norm Penalties

Recall the regularized objective function:

J̃(θ;X, y) = J(θ;X, y) + αΩ(θ)

Note: J can be the loss or the likelihood function, so we will
call it cost interchangeably

α is the tradeoff parameter

• α = 0 implies no regularization
• High value of α implies strong regularization
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Penalizing the L2 norm

Let’s fold in all parameters θ i.e weight matrices, biases etc.
into w (although biases are usually not regularized)

J̃(w;X, y) = J(w;X, y) +
α

2
‖w‖22

The corresponding gradient then is:

∇wJ̃(w;X, y) = αw +∇wJ(w;X, y)
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Penalizing the L2 norm

Familiar gradient update:

w := w − ε(αw +∇wJ(w;X, y))

Let’s re-write it:

w := (1− εα)w − ε∇wJ(w;X, y)
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Update Rule

Old update rule (without the penalty; seen before!):

w := w − ε∇wJ(w;X, y)

New update rule:

w := (1− εα)w − ε∇wJ(w;X, y)

Interpretation: Multiplicatively shrink weight vector by a
constant factor before performing the usual gradient update

This is the origin of the terminology weight decay
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Update Rule for One Weight Matrix


w11 w12 w13 . . . w1n

w21 w22 w23 . . . w2n
...

...
...

. . .
...

wn1 wn2 wn3 . . . wnn



= (1− εα)


w11 w12 w13 . . . w1n

w21 w22 w23 . . . w2n
...

...
...

. . .
...

wn1 wn2 wn3 . . . wnn


− ε∇WJ(w;X, y)

ε∇WJ(w;X, y) is also a n× n matrix
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A Simple Analysis
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L2 Penalty: Analysis

Let w∗ = arg minw J(w) (i.e. weights that attain optimal
training cost on the unregularized objective)

Consider a quadratic approximation to J evaluated at w∗

J(w) = J(w∗)+∇wJ(w∗)(w−w∗)+
1

2
(w−w∗)TH(w−w∗)

Since w∗ is a minimum, ∇wJ(w∗) = 0, then

J(w) = J(w∗) +
1

2
(w −w∗)TH(w −w∗)

Note that ∇wJ(w) = H(w −w∗) (just differentiate the
quadratic approximation)
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L2 Penalty: Analysis

J(w) = J(w∗) +
1

2
(w −w∗)TH(w −w∗)

Since w∗ is a minimum: ∇wJ(w) = H(w −w∗) = 0

To understand what weight decay does, modify above by
adding weight decay gradient:

αw̃ +H(w̃ −w∗) = 0

Rearranging, we have:

w̃ = (H + αI)−1Hw∗
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L2 Penalty: Analysis

w̃ = (H + αI)−1Hw∗

As α→ 0, w̃→ w∗ i.e. regularized solution approaches the
unregularized solution

Now H is real and symmetric =⇒ H = QΛQT

Q are the eigenvectors and Λ is a diagonal matrix of
eigenvalues

Plug decomposition in above equation and rearrange:

w̃ = Q(Λ + αI)−1ΛQTw∗
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L2 Penalty: Analysis

w̃ = Q(Λ + αI)−1ΛQTw∗

What is the interpretation of this?

Effect of weight decay: Rescale w∗ (the optimal solution for
the unregularized objective) along axes defined by the H

Coordinate of w∗ that is aligned with the ith eigenvector of
H is rescaled by λi

λi+α
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L2 Penalty: Analysis

w̃ = Q(Λ + αI)−1ΛQTw∗

Along eigenvectors of H that have large eigenvalues λi � α,
effect of regularization is small

Directions for which λi � α the w∗i coordinate will shrink to
nearly zero

In English:

• Directions which contribute significantly to reducing the
objective function value are kept relatively intact

• Directions that make little contribution to reducing the
objective function value are killed off
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L2 Penalty: Analysis

w∗

w̃

w1

w2
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L1 Weight Decay
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L1 Regularization

Recall the regularized objective function:

J̃(θ;X, y) = J(θ;X, y) + αΩ(θ)

Again, fold in all the parameters θ (weight matrices, biases
etc) into w and penalize L1 norm

J̃(w;X, y) = J(θ;X, y) + α‖w‖1

J̃(w;X, y) = J(θ;X, y) + α
∑
i

|wi|

We penalize the absolute value of parameters
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L1 Regularization

J̃(w;X, y) = J(θ;X, y) + α‖w‖1

Corresponding gradient (sign applied element-wise)

∇wJ̃(w;X, y) = ∇wJ(w;X, y) + αsign(w)

Recall the gradient for the L2 penalty:

∇wJ̃(w;X, y) = ∇wJ(w;X, y) + αw
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Update Rule

For L2 penalty

w := w − ε(∇wJ(w;X, y) + αw)

For L1 penalty:

w := w − ε(∇wJ(w;X, y) + αsign(w))

Easy to implement, but effect of penalty is very different

Regularization contribution is only a constant α with sign
equal to sign(wi)
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Simple Analysis

Write the Taylor series expansion as before

Gradient is again: ∇wJ̃(w) = H(w −w∗)

H is the Hessian of the unregularized objective J w.r.t w
evaluated at w∗

For simplicity of analysis assume that Hessian is diagonal

H = diag([H1,1, . . . ,Hn,n]) with Hi,i > 0

Skipping some steps, minimizing the approximate cost
function has an analytical solution:

wi = sign(w∗i ) max
{
|w∗i | −

α

Hi,i
, 0
}

Lecture 5 Regularization in Deep Neural Networks CMSC 35246



Simple Analysis

Write the Taylor series expansion as before

Gradient is again: ∇wJ̃(w) = H(w −w∗)

H is the Hessian of the unregularized objective J w.r.t w
evaluated at w∗

For simplicity of analysis assume that Hessian is diagonal

H = diag([H1,1, . . . ,Hn,n]) with Hi,i > 0

Skipping some steps, minimizing the approximate cost
function has an analytical solution:

wi = sign(w∗i ) max
{
|w∗i | −

α

Hi,i
, 0
}

Lecture 5 Regularization in Deep Neural Networks CMSC 35246



Simple Analysis

Write the Taylor series expansion as before

Gradient is again: ∇wJ̃(w) = H(w −w∗)

H is the Hessian of the unregularized objective J w.r.t w
evaluated at w∗

For simplicity of analysis assume that Hessian is diagonal

H = diag([H1,1, . . . ,Hn,n]) with Hi,i > 0

Skipping some steps, minimizing the approximate cost
function has an analytical solution:

wi = sign(w∗i ) max
{
|w∗i | −

α

Hi,i
, 0
}

Lecture 5 Regularization in Deep Neural Networks CMSC 35246



Simple Analysis

Write the Taylor series expansion as before

Gradient is again: ∇wJ̃(w) = H(w −w∗)

H is the Hessian of the unregularized objective J w.r.t w
evaluated at w∗

For simplicity of analysis assume that Hessian is diagonal

H = diag([H1,1, . . . ,Hn,n]) with Hi,i > 0

Skipping some steps, minimizing the approximate cost
function has an analytical solution:

wi = sign(w∗i ) max
{
|w∗i | −

α

Hi,i
, 0
}

Lecture 5 Regularization in Deep Neural Networks CMSC 35246



Simple Analysis

Write the Taylor series expansion as before

Gradient is again: ∇wJ̃(w) = H(w −w∗)

H is the Hessian of the unregularized objective J w.r.t w
evaluated at w∗

For simplicity of analysis assume that Hessian is diagonal

H = diag([H1,1, . . . ,Hn,n]) with Hi,i > 0

Skipping some steps, minimizing the approximate cost
function has an analytical solution:

wi = sign(w∗i ) max
{
|w∗i | −

α

Hi,i
, 0
}

Lecture 5 Regularization in Deep Neural Networks CMSC 35246



Simple Analysis

Write the Taylor series expansion as before

Gradient is again: ∇wJ̃(w) = H(w −w∗)

H is the Hessian of the unregularized objective J w.r.t w
evaluated at w∗

For simplicity of analysis assume that Hessian is diagonal

H = diag([H1,1, . . . ,Hn,n]) with Hi,i > 0

Skipping some steps, minimizing the approximate cost
function has an analytical solution:

wi = sign(w∗i ) max
{
|w∗i | −

α

Hi,i
, 0
}

Lecture 5 Regularization in Deep Neural Networks CMSC 35246



Simple Analysis

Write the Taylor series expansion as before

Gradient is again: ∇wJ̃(w) = H(w −w∗)

H is the Hessian of the unregularized objective J w.r.t w
evaluated at w∗

For simplicity of analysis assume that Hessian is diagonal

H = diag([H1,1, . . . ,Hn,n]) with Hi,i > 0

Skipping some steps, minimizing the approximate cost
function has an analytical solution:

wi = sign(w∗i ) max
{
|w∗i | −

α

Hi,i
, 0
}

Lecture 5 Regularization in Deep Neural Networks CMSC 35246



Simple Analysis

wi = sign(w∗i ) max
{
|w∗i | −

α

Hi,i
, 0
}

Consider the case when w∗i > 0∀i
• When w∗i <

α
Hi,i

, value of regularized objective wi = 0

• When w∗i >
α
Hi,i

, value of wi is shifted towards zero by
α
Hi,i

Similar behaviour when w∗i < 0 with wi either zero, or
becoming less negative by α

Hi,i

Conclusion: L1 results in a sparser solution (as compared to
L2)
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Early Stopping
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Bagging
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Model Averaging

Bootstrap AGGregatING: Train several diverse models
separately and average them

But you have only one training set (bootstrapping)
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Why does Bagging work?

Suppose you have k regression models

Suppose each model makes an error εi on each example, with
errors drawn from a multivariate gaussian

Let the variances be E[ε2i ] = v and covariances E[εiεj ] = c

The average prediction of the k predictors:

1

k

∑
i

εi
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Why does Bagging work?

The expected squared error of the ensemble:

E

[(
1

k

∑
i

εi

)2]
=

1

k2

[∑
i

(
ε2i +

∑
j 6=i

εiεj

)]

=
1

k
v +

k − 1

k
c

When errors are perfectly correlated i.e. c = v error reduces to
v (averaging does not help)

When perfectly uncorrelated i.e. c = 0 error is 1
kv

Error decreases linearly with ensemble size

On average the ensemble performs atleast as well as any of its
members
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Reference

“Bagging Regularizes”, Tomaso Poggio, Ryan Rifkin, Sayan
Mukherjee, Alex Rakhlin, 2002
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Dropout
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Dropout

A more exotic regularization technique introduced in 2012

x1 x2 x3 x4

ŷ
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Dropout

During training, each sample is processed by a decimated
network
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Dropout

The decimated network is generated by killing off units with a
certain probability

Consider a hidden node in a network

+1

y
(l)
1 y

(l)
2

. . .

y
(l)
d

z
(l+1)
i

y
(l+1)
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(l+1)
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Without Dropout
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With Dropout
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At Test Time

Use a single neural network with weights scaled down

What is the point of doing this?

Lecture 5 Regularization in Deep Neural Networks CMSC 35246



At Test Time

Use a single neural network with weights scaled down

What is the point of doing this?

Lecture 5 Regularization in Deep Neural Networks CMSC 35246



Dropout

During presentation of each input, the thinned network might
be completely different

We are effectively sampling from 2n possible networks

Each network may get trained on only one example!

We minimize the loss function stochastically under a noise
distribution: Minimizing an expected loss function

During test time, we only want the expected output of each
neuron, so weights are scaled down by p
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Extreme Form of Bagging

In Bagging:

• Train many independent models to convergence and
average them

• Usually prohibitively expensive to store them
• Later in class we will see a way around this (Dark

Knowledge, Distillation)

In Dropout:

• Exponential number of models, but they share parameters
• Not feasible to explicitly average an exponential number

of models
• Scale down weights by p to get an approximate average
• Can be thought of as an extreme form of bagging
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Why Else does Dropout work?

Noise injection at input, hidden layers

Can also cause shrinkage: Let’s see a toy example
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Dropout for Linear Regression

Objective: ‖y −Xw‖22

Let R ∈ {0, 1}N×D be a random matrix with
Rij ∼ Bernoulli(p)

Input is then expressed as R�X
We now have a expected loss function:

min
w

ER∼Bernoulli(p)‖y − (R�X)w‖22
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Dropout for Linear Regression

After some basic manipulation:

min
w

ER∼Bernoulli(p)‖y − (R�X)w‖22
= min

w
‖y − pXw‖22 + p(1− p)‖Γw‖22

Where Γ = (diag(XTX))1/2

In expectation, dropout with linear regression is equivalent to
ridge regression with a particular form for Γ

Γ scales down weight cost for each wi by the standard
deviation of ith dimension of data
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Dropout for Linear Regression

min
w
‖y − pXw‖22 + p(1− p)‖Γw‖22

This can be equivalently viewed as:

min
w
‖y −Xw̃‖22 +

(1− p)
p
‖Γw̃‖22 with w̃ = pw

Another interpretation: When p is close to one all inputs are
retained and regularization constant is small
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Dropout: Performance

These architectures have 2 to 4 hidden layers with 1024 to 2048
hidden units
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Dropout: Performance

Dropout: A simple way to prevent neural networks from overfitting, N Srivastava, G Hinton, A Krizhevsky, I

Sutskever, R Salakhutdinov, JMLR 2014
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Dropout: Effect on Sparsity

Dropout: A simple way to prevent neural networks from overfitting, N Srivastava, G Hinton, A Krizhevsky, I

Sutskever, R Salakhutdinov, JMLR 2014

Lecture 5 Regularization in Deep Neural Networks CMSC 35246



Why does this make sense?

We saw three clear reasons:

• Noise injection and robustification
• Bagging
• Shrinkage

Some motivations:
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Motivation

Motivation 1: Ten conspiracies each involving five people is
probably a better way to wreak havoc than a conspiracy
involving 50 people. If conditions don’t change (stationary)
and plenty of time for rehearsal, a big conspiracy can work
well, but otherwise will ”overfit”

Motivation 2: Comes from a theory for the superiority of
sexual reproduction in evolution (Livnat, Papadimitriou,
PNAS, 2010).

Criterion for natural selection may not be individual fitness
but mixability. Thus role of sexual reproduction is not just to
allow useful new genes to propagate but also to ensure that
complex coadaptations between genes are broken.
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Dataset Augmentation
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Dataset Augmentation

Sure-shot way to generalize better: Get more data!

What if your training data is limited?

In some cases (e.g. object recog.) easy to generate fake data

Image Credit: Søren Hauberg

Warning: Be careful in what transformations you apply to
your data
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Noise Injection
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Noise Injection

Adding noise to data/input and using them for training is a
form of dataset augmentation

Generally: Noise injection can be much more powerful than
penalizing the parameters

In what other ways can we add noise ?
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Injecting noise to weights

To understand how injecting noise to weights might help,
consider the least squares cost function

J = Ep(x,y)[(ŷ − y)2]

Assume that during training, with each example x, y, we also
randomly perturb the weights by εW ∼ N (ε; 0, ηI)

Let the perturbed model be denoted as: ŷεW
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Lecture 5 Regularization in Deep Neural Networks CMSC 35246



Injecting noise to weights

To understand how injecting noise to weights might help,
consider the least squares cost function

J = Ep(x,y)[(ŷ − y)2]
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Injecting noise to weights

We still care about minimizing the squared error

J̃W = Ep(x,y),εW [(ŷεW − y)2] = Ep(x,y),εW [ŷ2
εW
− 2yŷεW + y2]

Write out the gradient and update

Observation: For small η, minimization of J with added noise,
is equivalent to minimization of J with an extra regularization
term ηEp(x,y[‖∇W ŷ‖]
This automatically pushes the model into regions where it is
relatively insensitive to perturbations in the weights
(Hochreiter and Schmidhuber, 1995)
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εW
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Injecting noise into outputs

What if your dataset has wrongly labeled examples?

Maximizing likelihood log p(y|x) with mistakes in labels can
be problematic

How can this problem be solved?
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Solution: Smooth Labels

Recall cross entropy is done between a vector of predictions
and a one hot encoding of the right output

For example, in MNIST for digit 6:

y =
[
0 0 0 0 0 0 1 0 0 0

]
ŷ =

[
0.05 0 0 0.02 0.08 0.05 0.8 0 0 0

]
If you knew your data was mislabeled, and you knew that the
training set label y was correct with probability 1− ε
Instead of a one hot encoding for y, you would replace 0 with
ε

k−1 and 1 with 1− ε
Use cross entropy on this instead

This is an old idea in Machine Learning going to the early 80s

Lecture 5 Regularization in Deep Neural Networks CMSC 35246



Solution: Smooth Labels

Recall cross entropy is done between a vector of predictions
and a one hot encoding of the right output

For example, in MNIST for digit 6:

y =
[
0 0 0 0 0 0 1 0 0 0

]
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Multi-Task Learning
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Multi-Task Learning

Improves generalization by pooling examples across tasks

Pooling examples =⇒ soft constraint on the parameters

x

hshared

h1 h2 h3

y1 y2 y3
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Parameter Sharing
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Parameter Sharing

Sometimes we can use our prior knowledge to impose
constraints or dependencies amongst model parameters

Popular way to use constraints: Force sets of parameters to be
equal
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Representational Sparsity
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Recap

Recall parameter penalized objective from earlier:

J(θ) =

N∑
i=1

L(f(xi; θ), yi) + Ω(θ)

For the L1 penalty on the parameters:

J(θ) =

N∑
i=1

L(f(xi; θ), yi) + ‖θ‖1

We saw that the L1 penalty encouraged parameters to be
sparse
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Representational Sparsity

Force the representation instead of the parameters to be
sparse

In other words: Only allow a small number of hidden neurons
per layer to fire

Has a similar regularizing effect!

How can we do this?

Add a L1 penalty on the representation:

J(θ) =

N∑
i=1

L(f(xi; θ), yi) + ‖h‖1

h represents the hidden unit activations
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Illustration: Parameter Sparsity



7
−43

3
−74
29
−15


︸ ︷︷ ︸
Output, y

=



0 1 0 0 0 4
0 −9 0 0 0 −3
−1 0 0 0 −7 0
0 0 0 5 5 −1
0 0 0 −9 0 0
0 1 1 0 0 0


︸ ︷︷ ︸

Parameters, W



−1
5
−7
−4
6
3


︸ ︷︷ ︸

Input, x or h

Sparsity in parameters (possibly induced by a L1 penalty on
parameters)
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Illustration: Representational Sparsity



−13
−43

5
−61
11
−16


︸ ︷︷ ︸
Output, y

=



3 4 −5 6 8 −7
1 −3 1 6 −9 0
4 6 7 8 1 −1
2 6 −1 9 −1 3
1 −1 −2 2 4 5
−1 3 8 2 5 6


︸ ︷︷ ︸

Parameters, W



0
0
0
−7
1
0


︸ ︷︷ ︸
Input, h

Sparsity in representation (possibly induced by a L1 penalty
on activations)
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Representational Sparsity

Another approach: Put a hard constraint on the activations

Example: Orthogonal Matching Pursuit

arg min
h,‖h‖0≤k

‖x−Wh‖2

‖h‖0 is number of non-zero entries of h

Encodes the input x with a representation h when at most k
of its entries are allowed to be non-zero

Efficiently solvable when W is constrained to be orthogonal

People who have seen sparse coding will recognize this!
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Adversarial Training
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Motivation

Since 2014 or so, Deep Neural Networks have matched human
performance on some specific tasks:

• Face recognition (Taigman et al., CVPR 2014)

• Reading addresses
• Solving Captchas
• ...
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But do they really “understand”?

An interesting phenomenon: Adversarial Examples

Consider an image classification task with example x
correctly classified as y by a network f(x, θ)
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Adversarial Examples

Suppose we want to attack this network into predicting x to a
goal class yg Gibbon

We want to do this by adding to x a very small perturbation
∆x imperceptible to the human eye

Obvious optimization problem:

arg min
∆x
‖∆x‖ s.t. f(x + ∆x; θ) = yg
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Adversarial Examples

Such examples are called adversarial examples

Interesting properties: Such examples often generalize across
datasets and models (implications for computer security!)

Not specific to deep networks!

Designing networks resistant to adversarial attacks is a very
active (and important) area of research
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Adversarial Training

Recall the optimization problem

arg min
∆x
‖∆x‖ s.t. f(x + ∆x; θ) = yg

In general the optimization can be complicated, but
adversarial perturbations can also be generated in closed form
(Goodfellow et al., ICLR 2015)
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Adversarial Training

Adversarial Training:

• For correctly classified examples generate adversarial
perturbations by either solving an optimization problem
or a closed form method (e.g. fast gradient sign method)

• Add to the original training set these adversarial
examples and force the network to correctly classify them

Makes the network more robust. But what does this have to
do with regularization?

A form of regularization like dataset augmentation,
robustifying the network to perturbations
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Next time

Optimization Methods for Deep Neural Networks
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