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e Stochastic Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



@ Things we will look at today

e Stochastic Gradient Descent
e Momentum Method and the Nesterov Variant

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



@ Things we will look at today

e Stochastic Gradient Descent
e Momentum Method and the Nesterov Variant
o Adaptive Learning Methods (AdaGrad, RMSProp, Adam)

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



@ Things we will look at today

Stochastic Gradient Descent

Momentum Method and the Nesterov Variant

Adaptive Learning Methods (AdaGrad, RMSProp, Adam)
Batch Normalization

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



@ Things we will look at today

Stochastic Gradient Descent

Momentum Method and the Nesterov Variant

Adaptive Learning Methods (AdaGrad, RMSProp, Adam)
Batch Normalization

Intialization Heuristics

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



@ Things we will look at today

Stochastic Gradient Descent

Momentum Method and the Nesterov Variant

Adaptive Learning Methods (AdaGrad, RMSProp, Adam)
Batch Normalization

Intialization Heuristics
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@ Things we will look at today

e Stochastic Gradient Descent

e Momentum Method and the Nesterov Variant

o Adaptive Learning Methods (AdaGrad, RMSProp, Adam)

e Batch Normalization

e Intialization Heuristics

e Polyak Averaging

e On Slides but for self study: Newton and Quasi Newton
Methods (BFGS, L-BFGS, Conjugate Gradient)
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Optimization

@ We've seen backpropagation as a method for computing
gradients
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gradients

@ Assignment: Was about implementation of SGD in
conjunction with backprop
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-
Optimization

@ We've seen backpropagation as a method for computing
gradients

@ Assignment: Was about implementation of SGD in
conjunction with backprop

@ Let's see a family of first order methods
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e
Batch Gradient Descent

Algorithm 1 Batch Gradient Descent at lteration k
Require: Learning rate ¢
Require: Initial Parameter 6
1: while stopping criteria not met do
2: Compute gradient estimate over N examples:
3 g Ve Y L(F(xD:0),y )
4: Apply Update: 0 < 0 — eg
5. end while

@ Positive: Gradient estimates are stable

@ Negative: Need to compute gradients over the entire training
for one update
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Gradient Descent
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Gradient Descent
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Stochastic Gradient Descent

Algorithm 2 Stochastic Gradient Descent at Iteration k
Require: Learning rate ¢
Require: Initial Parameter 6

1: while stopping criteria not met do

2: Sample example (x(i),y(i)) from training set

3 Compute gradient estimate:
4. g +VeL(f(x®;0),y®)
5
6

Apply Update: 0 < 0 — eg
. end while
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Require: Learning rate ¢
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1: while stopping criteria not met do

2: Sample example (x(i),y(i)) from training set

3 Compute gradient estimate:
4. g +VeL(f(x®;0),y®)
5
6

Apply Update: 0 < 0 — eg
. end while

@ ¢ is learning rate at step k
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Stochastic Gradient Descent

Algorithm 2 Stochastic Gradient Descent at Iteration k
Require: Learning rate ¢
Require: Initial Parameter 6

1: while stopping criteria not met do

2: Sample example (x(i),y(i)) from training set

3 Compute gradient estimate:
4. g +VeL(f(x®;0),y®)
5
6

Apply Update: 0 < 0 — eg
. end while

@ ¢ is learning rate at step k
e Sufficient condition to guarantee convergence:

o0 o0
g €, = 00 and g € < oo
k=1 k=1
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Learning Rate Schedule

@ In practice the learning rate is decayed linearly till iteration 7
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Learning Rate Schedule

@ In practice the learning rate is decayed linearly till iteration 7

er = (1 — a)eg + aer with a = -
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Learning Rate Schedule

@ In practice the learning rate is decayed linearly till iteration 7

er = (1 — a)eg + aer with a = -

@ 7 is usually set to the number of iterations needed for a large
number of passes through the data

@ ¢, should roughly be set to 1% of ¢

@ How to set €37
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-
Minibatching

@ Potential Problem: Gradient estimates can be very noisy
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° Use larger mini-batches
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-
Minibatching

@ Potential Problem: Gradient estimates can be very noisy
° Use larger mini-batches

@ Advantage: Computation time per update does not depend on
number of training examples IV
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-
Minibatching

Potential Problem: Gradient estimates can be very noisy

° Use larger mini-batches

Advantage: Computation time per update does not depend on
number of training examples IV

@ This allows convergence on extremely large datasets
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-
Minibatching

Potential Problem: Gradient estimates can be very noisy

° Use larger mini-batches

Advantage: Computation time per update does not depend on
number of training examples IV

This allows convergence on extremely large datasets

(]

See: Large Scale Learning with Stochastic Gradient Descent
by Leon Bottou
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent

o
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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Stochastic Gradient Descent
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So far..

@ Batch Gradient Descent:

~ 1 7). )

00— cg

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



So far..
@ Batch Gradient Descent:

~ 1 7). )

00— cg

e SGD:

&« +VL(F(x";0),y")
0+ 0—cg

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

@ The Momentum method is a method to accelerate learning
using SGD
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Momentum

@ The Momentum method is a method to accelerate learning
using SGD

@ In particular SGD suffers in the following scenarios:
e Error surface has high curvature
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Momentum

@ The Momentum method is a method to accelerate learning
using SGD
@ In particular SGD suffers in the following scenarios:

e Error surface has high curvature
e We get small but consistent gradients

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

@ The Momentum method is a method to accelerate learning
using SGD
@ In particular SGD suffers in the following scenarios:

e Error surface has high curvature
e We get small but consistent gradients
e The gradients are very noisy
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Momentum

1.000

500 |

@ Gradient Descent would move quickly down the walls, but
very slowly through the valley floor
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Momentum

@ How do we try and solve this problem?
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Momentum

@ How do we try and solve this problem?
@ Introduce a new variable v, the velocity

@ We think of v as the direction and speed by which the
parameters move as the learning dynamics progresses
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Momentum

How do we try and solve this problem?

Introduce a new variable v, the velocity

We think of v as the direction and speed by which the
parameters move as the learning dynamics progresses

@ The velocity is an exponentially decaying moving average of
the negative gradients

v & av —eVy (L(f(x(i); 9), y(i))>

e a € [0,1)Update rule: < 60 +v
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Momentum

@ Let's look at the velocity term:

v+ av—eVy (L(f(X(i); 0), y(i))>
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Momentum

@ Let's look at the velocity term:

v+ av—eVy (L(f(X(i); 0), y(i))>

@ The velocity accumulates the previous gradients

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

@ Let's look at the velocity term:

v+ av—eVy (L(f(X(i); 0), y(i))>

@ The velocity accumulates the previous gradients
@ What is the role of a7

e If «v is larger than € the current update is more affected
by the previous gradients
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Momentum

@ Let's look at the velocity term:

v+ av—eVy (L(f(X(i); 0), y(i))>

@ The velocity accumulates the previous gradients
@ What is the role of a7

e If «v is larger than € the current update is more affected
by the previous gradients
e Usually values for « are set high ~ 0.8,0.9
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Momentum

o >

Gradient Step
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Momentum

Momentum Step

>

Gradient Step
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Momentum

Momentum Step

>

Gradient Step
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Momentum: Step Sizes

@ In SGD, the step size was the norm of the gradient scaled by
the learning rate €||g||. Why?
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Momentum: Step Sizes

@ In SGD, the step size was the norm of the gradient scaled by
the learning rate €||g||. Why?

@ While using momentum, the step size will also depend on the
norm and alignment of a sequence of gradients
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Momentum: Step Sizes

@ In SGD, the step size was the norm of the gradient scaled by
the learning rate €||g||. Why?

@ While using momentum, the step size will also depend on the
norm and alignment of a sequence of gradients

@ For example, if at each step we observed g, the step size
would be (exercise!):

el
1—a

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum: Step Sizes

@ In SGD, the step size was the norm of the gradient scaled by
the learning rate €||g||. Why?

@ While using momentum, the step size will also depend on the
norm and alignment of a sequence of gradients

@ For example, if at each step we observed g, the step size
would be (exercise!):
el
1—«

o If a =0.9 = multiply the maximum speed by 10 relative to
the current gradient direction
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.
Momentum

—10

—20

-30
=30 =20 —10 O 10 20

Illustration of how momentum traverses such an error surface
better compared to Gradient Descent
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e
SGD with Momentum

Algorithm 2 Stochastic Gradient Descent with Momentum
Require: Learning rate ¢,
Require: Momentum Parameter «
Require: Initial Parameter 0
Require: Initial Velocity v
1: while stopping criteria not met do
2: Sample example (x(), y(®)) from training set
3 Compute gradient estimate:
4 g+ +VL(f(x¥;0),yD)
5: Compute the velocity update:
6
7
8

Vi av — €g
: Apply Update: 0 < 0+ v
. end while
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Nesterov Momentum

@ Another approach: First take a step in the direction of the
accumulated gradient

@ Then calculate the gradient and make a correction

Accumulated Gradien
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Nesterov Momentum

@ Another approach: First take a step in the direction of the
accumulated gradient

@ Then calculate the gradient and make a correction

Accumulated Gradien Correction
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Nesterov Momentum

@ Another approach: First take a step in the direction of the
accumulated gradient

@ Then calculate the gradient and make a correction

Accumulated Gradien Correction

New Accumulated Gradient
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Nesterov Momentum

Next Step
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Nesterov Momentum

Next Step
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.
Let’s Write it out..

@ Recall the velocity term in the Momentum method:

v+ av — eV (L(f(X(i); 9), y(i))>
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.
Let’s Write it out..

@ Recall the velocity term in the Momentum method:

v+ av — eV (L(f(X(i); 9), y(i))>

@ Nesterov Momentum:

vV av —€eVy <L(f(x(i); 0+ av), y(i))>

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



.
Let’s Write it out..

@ Recall the velocity term in the Momentum method:

v+ av — eV (L(f(X(i); 9), y(i))>

@ Nesterov Momentum:

vV av —€eVy <L(f(x(i); 0+ av), y(i))>

o Update: 0« 0+ v
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e
SGD with Nesterov Momentum

Algorithm 3 SGD with Nesterov Momentum
Require: Learning rate €
Require: Momentum Parameter «
Require: Initial Parameter 0
Require: Initial Velocity v
1: while stopping criteria not met do
2: Sample example (x(), y(®)) from training set
3 Update parameters: 0 0+av
4: Compute gradient estimate:
5. 8 +VL(f(x;0),yD)
6-
.
8

Compute the velocity update: v «+ av — €g
: Apply Update: 0 < 0+ v
. end while
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Adaptive Learning Rate Methods
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Motivation

@ Till now we assign the same learning rate to all features
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Motivation

@ Till now we assign the same learning rate to all features

@ If the features vary in importance and frequency, why is this a
good idea?
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.
Motivation

@ Till now we assign the same learning rate to all features

@ If the features vary in importance and frequency, why is this a
good idea?

@ It's probably not!
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Motivation

Nice (all features are equally important)
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Motivation

Harder!
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e
AdaGrad

@ |dea: Downscale a model parameter by square-root of sum of
squares of all its historical values
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e
AdaGrad

@ |dea: Downscale a model parameter by square-root of sum of
squares of all its historical values

@ Parameters that have large partial derivative of the loss —
learning rates for them are rapidly declined
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e
AdaGrad

@ |dea: Downscale a model parameter by square-root of sum of
squares of all its historical values

@ Parameters that have large partial derivative of the loss —
learning rates for them are rapidly declined

@ Some interesting theoretical properties
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e
AdaGrad

Algorithm 4 AdaGrad

Require: Global Learning rate ¢, Initial Parameter 6, §
Initialize r =0

1: while stopping criteria not met do

2 Sample example (x(¥, y(®)) from training set

3 Compute gradient estimate: g « +VyL(f(x;8),y®)
4: Accumulate: r<r+g0oO g
5

6
7

Compute update: Af « —5+€ﬁ ©g

Apply Update: 8 < 6 + Af
end while
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-
RMSProp

@ AdaGrad is good when the objective is convex.
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RMSProp

@ AdaGrad is good when the objective is convex.

@ AdaGrad might shrink the learning rate too aggressively, we
want to keep the history in mind
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@ AdaGrad might shrink the learning rate too aggressively, we
want to keep the history in mind

@ We can adapt it to perform better in non-convex settings by
accumulating an exponentially decaying average of the
gradient
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RMSProp

@ AdaGrad is good when the objective is convex.

@ AdaGrad might shrink the learning rate too aggressively, we
want to keep the history in mind

@ We can adapt it to perform better in non-convex settings by
accumulating an exponentially decaying average of the
gradient

@ This is an idea that we use again and again in Neural
Networks
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-
RMSProp

AdaGrad is good when the objective is convex.

@ AdaGrad might shrink the learning rate too aggressively, we
want to keep the history in mind

@ We can adapt it to perform better in non-convex settings by
accumulating an exponentially decaying average of the
gradient

@ This is an idea that we use again and again in Neural
Networks

@ Currently has about 500 citations on scholar, but was
proposed in a slide in Geoffrey Hinton's coursera course
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-
RMSProp

Algorithm 5 RMSProp
Require: Global Learning rate €, decay parameter p, §
Initialize r =0

1: while stopping criteria not met do
2 Sample example (x(¥, y(®)) from training set
3 Compute gradient estimate: g « +VyL(f(x;8),y®)
4: Accumulate: r <+ pr+ (1 —p)g© g
5
6
7

Compute update: Af « —5+€ﬁ ©g

Apply Update: 6 «+ 6 + Af
end while
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-
RMSProp with Nesterov

Algorithm 6 RMSProp with Nesterov
Require: Global Learning rate €, decay parameter p, §, o, v
Initialize r =0
while stopping criteria not met do
Sample example (x(?,y®) from training set

1:
2
3 Compute Update: 0 <+ 0 + av

4: Compute gradient estimate: & < +V;L(f(x");0),y®)
5: Accumulate: r <+ pr+ (1 —p)g© g

6 Compute Velocity: v «+ av — % OF3
7 Apply Update: 0 < 0 + v

8: end while
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Adam

@ We could have used RMSProp with momentum
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Adam

@ We could have used RMSProp with momentum

@ Use of Momentum with rescaling is not well motivated
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Adam

@ We could have used RMSProp with momentum
@ Use of Momentum with rescaling is not well motivated

@ Adam is like RMSProp with Momentum but with bias
correction terms for the first and second moments

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Adam: ADAptive Moments

Algorithm 7 RMSProp with Nesterov

Require: ¢ (set to 0.0001), decay rates p; (set to 0.9), p2 (set to
0.9), 6,96
Initialize moments variables s =0 and r =0, time stept =0

1: while stopping criteria not met do

2:

No g s e

8:
9:

Sample example (x(?,y®) from training set

Compute gradient estimate: g « +VyL(f(x;0),y®)
t—t+1

Update: s < p1s+ (1 — p1)g

Update: r < por + (1 —p2)g® g

Correct Biases: § < 7 T T4 g

s
Compute Update: A9 = —€rrs

Apply Update: 6 < 6 + A6

pz

10: end while
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-
All your GRADs are belong to us!

SGD: 0 + 0 —eg
Momentum: v < av — eg then < 0 + v

Nesterov: v «<— av — €V (L(f(x(i); 0+ av), y(i))> then 0 «+ 0+ v

AdaGrad: r < r+ g ® g then Af— « ® g then 6 + 6+ A6

6+\f
RMSProp: r + pr+ (1 — p)g ® & then AG%—WQchenﬂeﬁ—i—AG
S r S
Adam: § + ——,F «+ —— then A = —c——— then 0 < 0 + Ad
1—pf 1—p} VE+4
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Batch Normalization
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A Difficulty in Training Deep Neural Networks

A deep model involves composition of several functions
§ = W[ (tanh(W{ (tanh(WJ (tanh(W{'x + b1) + bs) + b3))))

Y

S
R

T i) I3 T4
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-
A Difficulty in Training Deep Neural Networks

@ We have a recipe to compute gradients (Backpropagation),
and update every parameter (we saw half a dozen methods)
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A Difficulty in Training Deep Neural Networks

@ We have a recipe to compute gradients (Backpropagation),
and update every parameter (we saw half a dozen methods)

@ Implicit Assumption: Other layers don't change i.e. other
functions are fixed
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A Difficulty in Training Deep Neural Networks

@ We have a recipe to compute gradients (Backpropagation),
and update every parameter (we saw half a dozen methods)

@ Implicit Assumption: Other layers don't change i.e. other
functions are fixed

@ In Practice: We update all layers simultaneously
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-
A Difficulty in Training Deep Neural Networks

@ We have a recipe to compute gradients (Backpropagation),
and update every parameter (we saw half a dozen methods)

@ Implicit Assumption: Other layers don't change i.e. other
functions are fixed

@ In Practice: We update all layers simultaneously

@ This can give rise to unexpected difficulties
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-
A Difficulty in Training Deep Neural Networks

@ We have a recipe to compute gradients (Backpropagation),
and update every parameter (we saw half a dozen methods)

Implicit Assumption: Other layers don't change i.e. other
functions are fixed

In Practice: We update all layers simultaneously

This can give rise to unexpected difficulties

Let's look at two illustrations
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Intuition

@ Consider a second order approximation of our cost function
(which is a function composition) around current point 6():

J(0) = J(0©) + (6 — 6 T'g + %(e —0NTH(@H —6O)
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Intuition

@ Consider a second order approximation of our cost function
(which is a function composition) around current point 6():

J(0) = J(0©) + (6 — 6 T'g + %(e —0NTH(@H —6O)

e g is gradient and H the Hessian at 6(©)
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Intuition

@ Consider a second order approximation of our cost function
(which is a function composition) around current point 6():

J(0) = J(0©) + (6 — 6 T'g + %(e —0NTH(@H —6O)

e g is gradient and H the Hessian at 6(©)

o If € is the learning rate, the new point

=00 —cg
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Intuition

e Plugging our new point, § = 6(°) — g into the approximation:

1
J(O© —eg) = J(0") — eg’g + ;8" Heg

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

e Plugging our new point, § = 6(°) — g into the approximation:

1
J(O© —eg) = J(0") — eg’g + ;8" Heg

@ There are three terms here:
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Intuition

e Plugging our new point, § = 6(°) — g into the approximation:

1
J(O© —eg) = J(0") — eg’g + ;8" Heg

@ There are three terms here:

e Value of function before update
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Intuition
e Plugging our new point, § = 6(°) — g into the approximation:
1
J(O© —eg) = J(0") — eg’g + ;8" Heg

@ There are three terms here:

e Value of function before update
e Improvement using gradient (i.e. first order information)
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Intuition

e Plugging our new point, § = 6(°) — g into the approximation:

1
J(O© —eg) = J(0") — eg’g + ;8" Heg

@ There are three terms here:
e Value of function before update
e Improvement using gradient (i.e. first order information)
o Correction factor that accounts for the curvature of the
function
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Intuition
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Intuition

@ Observations:
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Intuition

@ Observations:
e gl Hg too large: Gradient will start moving upwards
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Intuition

@ Observations:

e gl Hg too large: Gradient will start moving upwards
e g Hg = 0: J will decrease for even large €

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

@ Observations:

e gl Hg too large: Gradient will start moving upwards
e g Hg = 0: J will decrease for even large €
o Optimal step size ¢* = g’'g for zero curvature,
T
* g's

€ == to take into account curvature
g' Hg
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.
Intuition

@ Observations:

e gl Hg too large: Gradient will start moving upwards
e g Hg = 0: J will decrease for even large €

o Optimal step size ¢* = g’'g for zero curvature,

o — g8

g’ Hg

@ Conclusion: Just neglecting second order effects can cause
problems (remedy: second order methods). What about

higher order effects?

to take into account curvature
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Higher Order Effects: Toy Model

y

O

wq
hy
ha

h1

OO0 O
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Higher Order Effects: Toy Model
]

O

wq
hy
ha

h1

OO0 O

x

@ Just one node per layer, no non-linearity
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-
Higher Order Effects: Toy Model

y

O

wq
hy
ha

h1

OO0 O

x

@ Just one node per layer, no non-linearity
@ ¢ is linear in x but non-linear in w;
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-
Higher Order Effects: Toy Model

@ Suppose 6 = 1, so we want to decrease our output ¢
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Higher Order Effects: Toy Model

@ Suppose 6 = 1, so we want to decrease our output ¢
@ Usual strategy:
e Using backprop find g = V(7 — 4)?
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Higher Order Effects: Toy Model

@ Suppose 6 = 1, so we want to decrease our output ¢
@ Usual strategy:

e Using backprop find g = V(7 — 4)?

e Update weights w := w — eg
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Higher Order Effects: Toy Model

@ Suppose 6 = 1, so we want to decrease our output ¢
@ Usual strategy:
e Using backprop find g = V(7 — 4)?
e Update weights w := w — eg
@ The first order Taylor approximation (in previous slide) says
the cost will reduce by eg’'g
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-
Higher Order Effects: Toy Model

@ Suppose 6 = 1, so we want to decrease our output ¢
@ Usual strategy:
e Using backprop find g = V(7 — 4)?
e Update weights w := w — eg
@ The first order Taylor approximation (in previous slide) says
the cost will reduce by eg’'g

@ If we need to reduce cost by 0.1, then learning rate should be
0.1
g’g
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Higher Order Effects: Toy Model

@ The new g will however be:

g =x(wy —€g1)(wa — €g2) ... (w; — €gp)
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Higher Order Effects: Toy Model

@ The new g will however be:

g =x(wy —€g1)(wa — €g2) ... (w; — €gp)

e Contains terms like €3g1gogswaws . .. w;
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Higher Order Effects: Toy Model

@ The new g will however be:

g =x(wy —€g1)(wa — €g2) ... (w; — €gp)

e Contains terms like €3g1gogswaws . .. w;

o If weights wy, ws, ..., w; are small, the term is negligible. But
if large, it would explode
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Higher Order Effects: Toy Model

The new g will however be:

g =x(wy —€g1)(wa — €g2) ... (w; — €gp)

Contains terms like €3g1 gagswaws . .. w;

If weights wy, ws, ..., w; are small, the term is negligible. But
if large, it would explode

Conclusion: Higher order terms make it very hard to choose
the right learning rate
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Higher Order Effects: Toy Model

@ The new g will however be:

g =x(wy —€g1)(wa — €g2) ... (w; — €gp)

e Contains terms like €3g1gogswaws . .. w;

o If weights wy, ws, ..., w; are small, the term is negligible. But
if large, it would explode

@ Conclusion: Higher order terms make it very hard to choose
the right learning rate

@ Second Order Methods are already expensive, nth order
methods are hopeless. Solution?
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Batch Normalization

@ Method to reparameterize a deep network to reduce
co-ordination of update across layers
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@ Method to reparameterize a deep network to reduce
co-ordination of update across layers

@ Can be applied to input layer, or any hidden layer
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Batch Normalization

@ Method to reparameterize a deep network to reduce
co-ordination of update across layers

@ Can be applied to input layer, or any hidden layer

@ Let H be a design matrix having activations in any layer for
m examples in the mini-batch
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Batch Normalization

@ Method to reparameterize a deep network to reduce
co-ordination of update across layers

@ Can be applied to input layer, or any hidden layer

@ Let H be a design matrix having activations in any layer for
m examples in the mini-batch

hit hi2 hiz ... hi
h21 h22 h23 cee h2k
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Batch Normalization

[hi1 hie his ... hag
hot  hos  hag ...  ho
H =
_hml P2 hm3 cee hmk’_

@ Each row represents all the activations in layer for one example
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Batch Normalization

hit  hia his ... hik
hoir  hos  hos ... o
H = . . . . .
_hml P2 hm3 cee hmk’_

@ Each row represents all the activations in layer for one example
@ |dea: Replace H by H' such that:

_H—p

o

Hl
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Batch Normalization

hit  hia his ... hik
hoir  hos  hos ... o
H = . . . . .
_hml P2 hm3 cee hmk’_

@ Each row represents all the activations in layer for one example
@ |dea: Replace H by H' such that:

_H—p

o

Hl

@ 4 is mean of each unit and o the standard deviation
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Batch Normalization

@ i is a vector with i the column mean
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Batch Normalization

@ i is a vector with i the column mean

@ o is a vector with o; the column standard deviation
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Batch Normalization

@ i is a vector with i the column mean
@ o is a vector with o; the column standard deviation

@ H; j is normalized by subtracting u; and dividing by o
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Batch Normalization

@ During training we have:
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Batch Normalization

@ During training we have:

o:\/(S—l—;Z(H—,u)?

J

@ We then operate on H' as before = we backpropagate
through the normalized activations
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-
Why is this good?

@ The update will never act to only increase the mean and
standard deviation of any activation
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-
Why is this good?

@ The update will never act to only increase the mean and
standard deviation of any activation

@ Previous approaches added penalties to cost or per layer to
encourage units to have standardized outputs
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Why is this good?

@ The update will never act to only increase the mean and
standard deviation of any activation

@ Previous approaches added penalties to cost or per layer to
encourage units to have standardized outputs

@ Batch normalization makes the reparameterization easier
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-
Why is this good?

@ The update will never act to only increase the mean and
standard deviation of any activation

@ Previous approaches added penalties to cost or per layer to
encourage units to have standardized outputs

@ Batch normalization makes the reparameterization easier

@ At test time: Use running averages of u and o collected
during training, use these for evaluating new input x
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An Innovation

@ Standardizing the output of a unit can limit the expressive
power of the neural network
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An Innovation

@ Standardizing the output of a unit can limit the expressive
power of the neural network

@ Solution: Instead of replacing H by H', replace it will yH' 4+ 3
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An Innovation

@ Standardizing the output of a unit can limit the expressive
power of the neural network

@ Solution: Instead of replacing H by H', replace it will yH' 4+ 3

@ 7 and [ are also learned by backpropagation
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.
An Innovation

@ Standardizing the output of a unit can limit the expressive
power of the neural network

@ Solution: Instead of replacing H by H', replace it will yH' 4+ 3
@ 7 and [ are also learned by backpropagation

@ Normalizing for mean and standard deviation was the goal of
batch normalization, why add + and § again?
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Initialization Strategies
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@ In convex problems with good € no matter what the
initialization, convergence is guaranteed
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@ In convex problems with good € no matter what the
initialization, convergence is guaranteed

@ In the non-convex regime initialization is much more
important
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initialization, convergence is guaranteed

@ In the non-convex regime initialization is much more
important

@ Some parameter initialization can be unstable, not converge
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@ In convex problems with good € no matter what the
initialization, convergence is guaranteed

@ In the non-convex regime initialization is much more
important

@ Some parameter initialization can be unstable, not converge

@ Neural Networks are not well understood to have principled,
mathematically nice initialization strategies
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@ In convex problems with good € no matter what the
initialization, convergence is guaranteed

@ In the non-convex regime initialization is much more
important

@ Some parameter initialization can be unstable, not converge

@ Neural Networks are not well understood to have principled,
mathematically nice initialization strategies

@ What is known: Initialization should break symmetry (quiz!)
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@ In convex problems with good € no matter what the
initialization, convergence is guaranteed

@ In the non-convex regime initialization is much more
important

@ Some parameter initialization can be unstable, not converge

@ Neural Networks are not well understood to have principled,
mathematically nice initialization strategies

@ What is known: Initialization should break symmetry (quiz!)

@ What is known: Scale of weights is important
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@ In convex problems with good € no matter what the
initialization, convergence is guaranteed

@ In the non-convex regime initialization is much more
important

@ Some parameter initialization can be unstable, not converge

@ Neural Networks are not well understood to have principled,
mathematically nice initialization strategies

@ What is known: Initialization should break symmetry (quiz!)
@ What is known: Scale of weights is important

@ Most initialization strategies are based on intuitions and
heuristics
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Some Heuristics

@ For a fully connected layer with m inputs and n outputs,

sample:
1

Wi ~U(——=, —=)

3=
:
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Some Heuristics

@ For a fully connected layer with m inputs and n outputs,

sample:
1

Wi ~U(——=, —=)

3=
:

@ Xauvier Initialization: Sample

6 6 )
vm+n Vm+n

Wij ~ U(—
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Some Heuristics

@ For a fully connected layer with m inputs and n outputs,

sample:
1

Wi ~U(——=, —=)

3=
:

@ Xauvier Initialization: Sample

6 6

WZNU_ ;
J ( vm+n \/m—{—n)

e Xavier initialization is derived considering that the network
consists of matrix multiplications with no nonlinearites
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Some Heuristics

@ For a fully connected layer with m inputs and n outputs,

sample:
1

Wi ~U(——=, —=)

3=
:

@ Xauvier Initialization: Sample

6 6

WZNU_ ;
J ( vm+n \/m—{—n)

e Xavier initialization is derived considering that the network
consists of matrix multiplications with no nonlinearites

@ Works well in practice!
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More Heuristics

@ Saxe et al. 2013, recommend initialzing to random orthogonal
matrices, with a carefully chosen gain g that accounts for
non-linearities
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More Heuristics

@ Saxe et al. 2013, recommend initialzing to random orthogonal
matrices, with a carefully chosen gain g that accounts for
non-linearities

@ If g could be divined, it could solve the vanishing and
exploding gradients problem (more later)
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More Heuristics

@ Saxe et al. 2013, recommend initialzing to random orthogonal
matrices, with a carefully chosen gain g that accounts for
non-linearities

@ If g could be divined, it could solve the vanishing and
exploding gradients problem (more later)

@ The idea of choosing g and initializing weights accordingly is
that we want norm of activations to increase, and pass back
strong gradients
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More Heuristics

@ Saxe et al. 2013, recommend initialzing to random orthogonal
matrices, with a carefully chosen gain g that accounts for
non-linearities

@ If g could be divined, it could solve the vanishing and
exploding gradients problem (more later)

@ The idea of choosing g and initializing weights accordingly is
that we want norm of activations to increase, and pass back
strong gradients

@ Martens 2010, suggested an initialization that was sparse:
Each unit could only receive k& non-zero weights
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More Heuristics

Saxe et al. 2013, recommend initialzing to random orthogonal
matrices, with a carefully chosen gain g that accounts for
non-linearities

@ If g could be divined, it could solve the vanishing and
exploding gradients problem (more later)

@ The idea of choosing g and initializing weights accordingly is
that we want norm of activations to increase, and pass back
strong gradients

@ Martens 2010, suggested an initialization that was sparse:
Each unit could only receive k& non-zero weights

@ Motivation: Ir is a bad idea to have all initial weights to have

. - 1
the same standard deviation N
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Polyak Averaging: Motivation

Gradient points towards rig?}t

o Consider gradient descent above with high step size €
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Polyak Averaging: Motivation

Gradient points towards left
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Polyak Averaging: Motivation

Gradient points towards right
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-
A Solution: Polyak Averaging

@ Suppose in t iterations you have parameters 81,92 . 91
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-
A Solution: Polyak Averaging

@ Suppose in t iterations you have parameters 81,92 . 91

o Polyak Averaging suggests setting () = 15~ 909
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-
A Solution: Polyak Averaging

@ Suppose in t iterations you have parameters 81,92 . 91
o Polyak Averaging suggests setting () = 15~ 909
@ Has strong convergence guarantees in convex settings
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-
A Solution: Polyak Averaging

Suppose in ¢ iterations you have parameters 8,92 . 9

Polyak Averaging suggests setting §*) = 1 5~ 900
Has strong convergence guarantees in convex settings

Is this a good idea in non-convex problems?
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-
Simple Modification

@ In non-convex surfaces the parameter space can differ greatly
in different regions
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-
Simple Modification

@ In non-convex surfaces the parameter space can differ greatly
in different regions

@ Averaging is not useful
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Simple Modification

@ In non-convex surfaces the parameter space can differ greatly
in different regions

@ Averaging is not useful

@ Typical to consider the exponentially decaying average instead:

01 = a0 4+ (1 —a)0® with « € [0, 1]
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Next time

@ Convolutional Neural Networks
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