
Lecture 6
Optimization for Deep Neural Networks

CMSC 35246: Deep Learning

Shubhendu Trivedi
&

Risi Kondor

University of Chicago

April 12, 2017

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Things we will look at today

• Stochastic Gradient Descent

• Momentum Method and the Nesterov Variant
• Adaptive Learning Methods (AdaGrad, RMSProp, Adam)
• Batch Normalization
• Intialization Heuristics
• Polyak Averaging
• On Slides but for self study: Newton and Quasi Newton

Methods (BFGS, L-BFGS, Conjugate Gradient)

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Things we will look at today

• Stochastic Gradient Descent
• Momentum Method and the Nesterov Variant

• Adaptive Learning Methods (AdaGrad, RMSProp, Adam)
• Batch Normalization
• Intialization Heuristics
• Polyak Averaging
• On Slides but for self study: Newton and Quasi Newton

Methods (BFGS, L-BFGS, Conjugate Gradient)

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Things we will look at today

• Stochastic Gradient Descent
• Momentum Method and the Nesterov Variant
• Adaptive Learning Methods (AdaGrad, RMSProp, Adam)

• Batch Normalization
• Intialization Heuristics
• Polyak Averaging
• On Slides but for self study: Newton and Quasi Newton

Methods (BFGS, L-BFGS, Conjugate Gradient)

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Things we will look at today

• Stochastic Gradient Descent
• Momentum Method and the Nesterov Variant
• Adaptive Learning Methods (AdaGrad, RMSProp, Adam)
• Batch Normalization

• Intialization Heuristics
• Polyak Averaging
• On Slides but for self study: Newton and Quasi Newton

Methods (BFGS, L-BFGS, Conjugate Gradient)

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Things we will look at today

• Stochastic Gradient Descent
• Momentum Method and the Nesterov Variant
• Adaptive Learning Methods (AdaGrad, RMSProp, Adam)
• Batch Normalization
• Intialization Heuristics

• Polyak Averaging
• On Slides but for self study: Newton and Quasi Newton

Methods (BFGS, L-BFGS, Conjugate Gradient)

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Things we will look at today

• Stochastic Gradient Descent
• Momentum Method and the Nesterov Variant
• Adaptive Learning Methods (AdaGrad, RMSProp, Adam)
• Batch Normalization
• Intialization Heuristics
• Polyak Averaging

• On Slides but for self study: Newton and Quasi Newton
Methods (BFGS, L-BFGS, Conjugate Gradient)

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Things we will look at today

• Stochastic Gradient Descent
• Momentum Method and the Nesterov Variant
• Adaptive Learning Methods (AdaGrad, RMSProp, Adam)
• Batch Normalization
• Intialization Heuristics
• Polyak Averaging
• On Slides but for self study: Newton and Quasi Newton

Methods (BFGS, L-BFGS, Conjugate Gradient)

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Optimization

We’ve seen backpropagation as a method for computing
gradients

Assignment: Was about implementation of SGD in
conjunction with backprop

Let’s see a family of first order methods

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Optimization

We’ve seen backpropagation as a method for computing
gradients

Assignment: Was about implementation of SGD in
conjunction with backprop

Let’s see a family of first order methods

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Optimization

We’ve seen backpropagation as a method for computing
gradients

Assignment: Was about implementation of SGD in
conjunction with backprop

Let’s see a family of first order methods

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Batch Gradient Descent

Algorithm 1 Batch Gradient Descent at Iteration k

Require: Learning rate εk
Require: Initial Parameter θ
1: while stopping criteria not met do
2: Compute gradient estimate over N examples:
3: ĝ← + 1

N∇θ
∑

i L(f(x(i); θ),y(i))
4: Apply Update: θ ← θ − εĝ
5: end while

Positive: Gradient estimates are stable

Negative: Need to compute gradients over the entire training
for one update

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Stochastic Gradient Descent

Algorithm 2 Stochastic Gradient Descent at Iteration k

Require: Learning rate εk
Require: Initial Parameter θ
1: while stopping criteria not met do
2: Sample example (x(i),y(i)) from training set
3: Compute gradient estimate:
4: ĝ← +∇θL(f(x(i); θ),y(i))
5: Apply Update: θ ← θ − εĝ
6: end while

εk is learning rate at step k
Sufficient condition to guarantee convergence:

∞∑
k=1

εk =∞ and
∞∑
k=1

ε2k <∞

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Stochastic Gradient Descent

Algorithm 2 Stochastic Gradient Descent at Iteration k

Require: Learning rate εk
Require: Initial Parameter θ
1: while stopping criteria not met do
2: Sample example (x(i),y(i)) from training set
3: Compute gradient estimate:
4: ĝ← +∇θL(f(x(i); θ),y(i))
5: Apply Update: θ ← θ − εĝ
6: end while

εk is learning rate at step k

Sufficient condition to guarantee convergence:
∞∑
k=1

εk =∞ and
∞∑
k=1

ε2k <∞

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Stochastic Gradient Descent

Algorithm 2 Stochastic Gradient Descent at Iteration k

Require: Learning rate εk
Require: Initial Parameter θ
1: while stopping criteria not met do
2: Sample example (x(i),y(i)) from training set
3: Compute gradient estimate:
4: ĝ← +∇θL(f(x(i); θ),y(i))
5: Apply Update: θ ← θ − εĝ
6: end while

εk is learning rate at step k
Sufficient condition to guarantee convergence:

∞∑
k=1

εk =∞ and
∞∑
k=1

ε2k <∞

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Learning Rate Schedule

In practice the learning rate is decayed linearly till iteration τ

εk = (1− α)ε0 + αετ with α =
k

τ

τ is usually set to the number of iterations needed for a large
number of passes through the data

ετ should roughly be set to 1% of ε0

How to set ε0?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Learning Rate Schedule

In practice the learning rate is decayed linearly till iteration τ

εk = (1− α)ε0 + αετ with α =
k

τ

τ is usually set to the number of iterations needed for a large
number of passes through the data

ετ should roughly be set to 1% of ε0

How to set ε0?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Learning Rate Schedule

In practice the learning rate is decayed linearly till iteration τ

εk = (1− α)ε0 + αετ with α =
k

τ

τ is usually set to the number of iterations needed for a large
number of passes through the data

ετ should roughly be set to 1% of ε0

How to set ε0?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Minibatching

Potential Problem: Gradient estimates can be very noisy

Obvious Solution: Use larger mini-batches

Advantage: Computation time per update does not depend on
number of training examples N

This allows convergence on extremely large datasets

See: Large Scale Learning with Stochastic Gradient Descent
by Leon Bottou

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Minibatching

Potential Problem: Gradient estimates can be very noisy

Obvious Solution: Use larger mini-batches

Advantage: Computation time per update does not depend on
number of training examples N

This allows convergence on extremely large datasets

See: Large Scale Learning with Stochastic Gradient Descent
by Leon Bottou

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Minibatching

Potential Problem: Gradient estimates can be very noisy

Obvious Solution: Use larger mini-batches

Advantage: Computation time per update does not depend on
number of training examples N

This allows convergence on extremely large datasets

See: Large Scale Learning with Stochastic Gradient Descent
by Leon Bottou

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Minibatching

Potential Problem: Gradient estimates can be very noisy

Obvious Solution: Use larger mini-batches

Advantage: Computation time per update does not depend on
number of training examples N

This allows convergence on extremely large datasets

See: Large Scale Learning with Stochastic Gradient Descent
by Leon Bottou

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Minibatching

Potential Problem: Gradient estimates can be very noisy

Obvious Solution: Use larger mini-batches

Advantage: Computation time per update does not depend on
number of training examples N

This allows convergence on extremely large datasets

See: Large Scale Learning with Stochastic Gradient Descent
by Leon Bottou

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Stochastic Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Stochastic Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Stochastic Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Stochastic Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Stochastic Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Stochastic Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Stochastic Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Stochastic Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Stochastic Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



So far..

Batch Gradient Descent:

ĝ← +
1

N
∇θ
∑
i

L(f(x(i); θ),y(i))

θ ← θ − εĝ

SGD:

ĝ← +∇θL(f(x(i); θ),y(i))

θ ← θ − εĝ

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



So far..

Batch Gradient Descent:

ĝ← +
1

N
∇θ
∑
i

L(f(x(i); θ),y(i))

θ ← θ − εĝ

SGD:

ĝ← +∇θL(f(x(i); θ),y(i))

θ ← θ − εĝ

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

The Momentum method is a method to accelerate learning
using SGD

In particular SGD suffers in the following scenarios:

• Error surface has high curvature
• We get small but consistent gradients
• The gradients are very noisy

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

The Momentum method is a method to accelerate learning
using SGD

In particular SGD suffers in the following scenarios:

• Error surface has high curvature

• We get small but consistent gradients
• The gradients are very noisy

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

The Momentum method is a method to accelerate learning
using SGD

In particular SGD suffers in the following scenarios:

• Error surface has high curvature
• We get small but consistent gradients

• The gradients are very noisy

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

The Momentum method is a method to accelerate learning
using SGD

In particular SGD suffers in the following scenarios:

• Error surface has high curvature
• We get small but consistent gradients
• The gradients are very noisy

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

−4 −2 0
2

4 −5

0

5

0

500

1.000

Gradient Descent would move quickly down the walls, but
very slowly through the valley floor

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

How do we try and solve this problem?

Introduce a new variable v, the velocity

We think of v as the direction and speed by which the
parameters move as the learning dynamics progresses

The velocity is an exponentially decaying moving average of
the negative gradients

v← αv − ε∇θ

(
L(f(x(i); θ),y(i))

)

α ∈ [0, 1)Update rule: θ ← θ + v

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

How do we try and solve this problem?

Introduce a new variable v, the velocity

We think of v as the direction and speed by which the
parameters move as the learning dynamics progresses

The velocity is an exponentially decaying moving average of
the negative gradients

v← αv − ε∇θ

(
L(f(x(i); θ),y(i))

)

α ∈ [0, 1)Update rule: θ ← θ + v

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

How do we try and solve this problem?

Introduce a new variable v, the velocity

We think of v as the direction and speed by which the
parameters move as the learning dynamics progresses

The velocity is an exponentially decaying moving average of
the negative gradients

v← αv − ε∇θ

(
L(f(x(i); θ),y(i))

)

α ∈ [0, 1)Update rule: θ ← θ + v

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

How do we try and solve this problem?

Introduce a new variable v, the velocity

We think of v as the direction and speed by which the
parameters move as the learning dynamics progresses

The velocity is an exponentially decaying moving average of
the negative gradients

v← αv − ε∇θ

(
L(f(x(i); θ),y(i))

)

α ∈ [0, 1)Update rule: θ ← θ + v

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

Let’s look at the velocity term:

v← αv − ε∇θ

(
L(f(x(i); θ),y(i))

)

The velocity accumulates the previous gradients

What is the role of α?

• If α is larger than ε the current update is more affected
by the previous gradients

• Usually values for α are set high ≈ 0.8, 0.9

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

Let’s look at the velocity term:

v← αv − ε∇θ

(
L(f(x(i); θ),y(i))

)

The velocity accumulates the previous gradients

What is the role of α?

• If α is larger than ε the current update is more affected
by the previous gradients

• Usually values for α are set high ≈ 0.8, 0.9

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

Let’s look at the velocity term:

v← αv − ε∇θ

(
L(f(x(i); θ),y(i))

)

The velocity accumulates the previous gradients

What is the role of α?

• If α is larger than ε the current update is more affected
by the previous gradients

• Usually values for α are set high ≈ 0.8, 0.9

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

Let’s look at the velocity term:

v← αv − ε∇θ

(
L(f(x(i); θ),y(i))

)

The velocity accumulates the previous gradients

What is the role of α?

• If α is larger than ε the current update is more affected
by the previous gradients

• Usually values for α are set high ≈ 0.8, 0.9

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

Gradient Step

Momentum Step Actual Step

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

Gradient Step

Momentum Step

Actual Step

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

Gradient Step

Momentum Step Actual Step

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum: Step Sizes

In SGD, the step size was the norm of the gradient scaled by
the learning rate ε‖g‖. Why?

While using momentum, the step size will also depend on the
norm and alignment of a sequence of gradients

For example, if at each step we observed g, the step size
would be (exercise!):

ε
‖g‖

1− α

If α = 0.9 =⇒ multiply the maximum speed by 10 relative to
the current gradient direction

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum: Step Sizes

In SGD, the step size was the norm of the gradient scaled by
the learning rate ε‖g‖. Why?

While using momentum, the step size will also depend on the
norm and alignment of a sequence of gradients

For example, if at each step we observed g, the step size
would be (exercise!):

ε
‖g‖

1− α

If α = 0.9 =⇒ multiply the maximum speed by 10 relative to
the current gradient direction

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum: Step Sizes

In SGD, the step size was the norm of the gradient scaled by
the learning rate ε‖g‖. Why?

While using momentum, the step size will also depend on the
norm and alignment of a sequence of gradients

For example, if at each step we observed g, the step size
would be (exercise!):

ε
‖g‖

1− α

If α = 0.9 =⇒ multiply the maximum speed by 10 relative to
the current gradient direction

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum: Step Sizes

In SGD, the step size was the norm of the gradient scaled by
the learning rate ε‖g‖. Why?

While using momentum, the step size will also depend on the
norm and alignment of a sequence of gradients

For example, if at each step we observed g, the step size
would be (exercise!):

ε
‖g‖

1− α

If α = 0.9 =⇒ multiply the maximum speed by 10 relative to
the current gradient direction

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Momentum

Illustration of how momentum traverses such an error surface
better compared to Gradient Descent

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



SGD with Momentum

Algorithm 2 Stochastic Gradient Descent with Momentum

Require: Learning rate εk
Require: Momentum Parameter α
Require: Initial Parameter θ
Require: Initial Velocity v
1: while stopping criteria not met do
2: Sample example (x(i),y(i)) from training set
3: Compute gradient estimate:
4: ĝ← +∇θL(f(x(i); θ),y(i))
5: Compute the velocity update:
6: v← αv − εĝ
7: Apply Update: θ ← θ + v
8: end while

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Nesterov Momentum

Another approach: First take a step in the direction of the
accumulated gradient

Then calculate the gradient and make a correction

Accumulated Gradient

Correction

New Accumulated Gradient

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Nesterov Momentum

Another approach: First take a step in the direction of the
accumulated gradient

Then calculate the gradient and make a correction

Accumulated Gradient
Correction

New Accumulated Gradient

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Nesterov Momentum

Another approach: First take a step in the direction of the
accumulated gradient

Then calculate the gradient and make a correction

Accumulated Gradient
Correction

New Accumulated Gradient

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Nesterov Momentum

Next Step

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Nesterov Momentum

Next Step

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Nesterov Momentum

Next Step

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Nesterov Momentum

Next Step

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Let’s Write it out..

Recall the velocity term in the Momentum method:

v← αv − ε∇θ

(
L(f(x(i); θ),y(i))

)

Nesterov Momentum:

v← αv − ε∇θ

(
L(f(x(i); θ + αv),y(i))

)

Update: θ ← θ + v

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Let’s Write it out..

Recall the velocity term in the Momentum method:

v← αv − ε∇θ

(
L(f(x(i); θ),y(i))

)

Nesterov Momentum:

v← αv − ε∇θ

(
L(f(x(i); θ + αv),y(i))

)

Update: θ ← θ + v

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Let’s Write it out..

Recall the velocity term in the Momentum method:

v← αv − ε∇θ

(
L(f(x(i); θ),y(i))

)

Nesterov Momentum:

v← αv − ε∇θ

(
L(f(x(i); θ + αv),y(i))

)

Update: θ ← θ + v

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



SGD with Nesterov Momentum

Algorithm 3 SGD with Nesterov Momentum

Require: Learning rate ε
Require: Momentum Parameter α
Require: Initial Parameter θ
Require: Initial Velocity v
1: while stopping criteria not met do
2: Sample example (x(i),y(i)) from training set
3: Update parameters: θ̃ ← θ + αv
4: Compute gradient estimate:
5: ĝ← +∇θ̃L(f(x(i); θ̃),y(i))
6: Compute the velocity update: v← αv − εĝ
7: Apply Update: θ ← θ + v
8: end while

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Adaptive Learning Rate Methods

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Motivation

Till now we assign the same learning rate to all features

If the features vary in importance and frequency, why is this a
good idea?

It’s probably not!

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Motivation

Till now we assign the same learning rate to all features

If the features vary in importance and frequency, why is this a
good idea?

It’s probably not!

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Motivation

Till now we assign the same learning rate to all features

If the features vary in importance and frequency, why is this a
good idea?

It’s probably not!

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Motivation

Nice (all features are equally important)

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Motivation

Harder!

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



AdaGrad

Idea: Downscale a model parameter by square-root of sum of
squares of all its historical values

Parameters that have large partial derivative of the loss –
learning rates for them are rapidly declined

Some interesting theoretical properties

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



AdaGrad

Idea: Downscale a model parameter by square-root of sum of
squares of all its historical values

Parameters that have large partial derivative of the loss –
learning rates for them are rapidly declined

Some interesting theoretical properties

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



AdaGrad

Idea: Downscale a model parameter by square-root of sum of
squares of all its historical values

Parameters that have large partial derivative of the loss –
learning rates for them are rapidly declined

Some interesting theoretical properties

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



AdaGrad

Algorithm 4 AdaGrad

Require: Global Learning rate ε, Initial Parameter θ, δ
Initialize r = 0
1: while stopping criteria not met do
2: Sample example (x(i),y(i)) from training set
3: Compute gradient estimate: ĝ← +∇θL(f(x(i); θ),y(i))
4: Accumulate: r← r + ĝ � ĝ
5: Compute update: ∆θ ← − ε

δ+
√
r
� ĝ

6: Apply Update: θ ← θ + ∆θ
7: end while

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



RMSProp

AdaGrad is good when the objective is convex.

AdaGrad might shrink the learning rate too aggressively, we
want to keep the history in mind

We can adapt it to perform better in non-convex settings by
accumulating an exponentially decaying average of the
gradient

This is an idea that we use again and again in Neural
Networks

Currently has about 500 citations on scholar, but was
proposed in a slide in Geoffrey Hinton’s coursera course

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



RMSProp

AdaGrad is good when the objective is convex.

AdaGrad might shrink the learning rate too aggressively, we
want to keep the history in mind

We can adapt it to perform better in non-convex settings by
accumulating an exponentially decaying average of the
gradient

This is an idea that we use again and again in Neural
Networks

Currently has about 500 citations on scholar, but was
proposed in a slide in Geoffrey Hinton’s coursera course

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



RMSProp

AdaGrad is good when the objective is convex.

AdaGrad might shrink the learning rate too aggressively, we
want to keep the history in mind

We can adapt it to perform better in non-convex settings by
accumulating an exponentially decaying average of the
gradient

This is an idea that we use again and again in Neural
Networks

Currently has about 500 citations on scholar, but was
proposed in a slide in Geoffrey Hinton’s coursera course

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



RMSProp

AdaGrad is good when the objective is convex.

AdaGrad might shrink the learning rate too aggressively, we
want to keep the history in mind

We can adapt it to perform better in non-convex settings by
accumulating an exponentially decaying average of the
gradient

This is an idea that we use again and again in Neural
Networks

Currently has about 500 citations on scholar, but was
proposed in a slide in Geoffrey Hinton’s coursera course

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



RMSProp

AdaGrad is good when the objective is convex.

AdaGrad might shrink the learning rate too aggressively, we
want to keep the history in mind

We can adapt it to perform better in non-convex settings by
accumulating an exponentially decaying average of the
gradient

This is an idea that we use again and again in Neural
Networks

Currently has about 500 citations on scholar, but was
proposed in a slide in Geoffrey Hinton’s coursera course

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



RMSProp

Algorithm 5 RMSProp

Require: Global Learning rate ε, decay parameter ρ, δ
Initialize r = 0
1: while stopping criteria not met do
2: Sample example (x(i),y(i)) from training set
3: Compute gradient estimate: ĝ← +∇θL(f(x(i); θ),y(i))
4: Accumulate: r← ρr + (1− ρ)ĝ � ĝ
5: Compute update: ∆θ ← − ε

δ+
√
r
� ĝ

6: Apply Update: θ ← θ + ∆θ
7: end while

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



RMSProp with Nesterov

Algorithm 6 RMSProp with Nesterov

Require: Global Learning rate ε, decay parameter ρ, δ, α, v
Initialize r = 0
1: while stopping criteria not met do
2: Sample example (x(i),y(i)) from training set
3: Compute Update: θ̃ ← θ + αv
4: Compute gradient estimate: ĝ← +∇θ̃L(f(x(i); θ̃),y(i))
5: Accumulate: r← ρr + (1− ρ)ĝ � ĝ
6: Compute Velocity: v← αv − ε√

r
� ĝ

7: Apply Update: θ ← θ + v
8: end while

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Adam

We could have used RMSProp with momentum

Use of Momentum with rescaling is not well motivated

Adam is like RMSProp with Momentum but with bias
correction terms for the first and second moments

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Adam

We could have used RMSProp with momentum

Use of Momentum with rescaling is not well motivated

Adam is like RMSProp with Momentum but with bias
correction terms for the first and second moments

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Adam

We could have used RMSProp with momentum

Use of Momentum with rescaling is not well motivated

Adam is like RMSProp with Momentum but with bias
correction terms for the first and second moments

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Adam: ADAptive Moments

Algorithm 7 RMSProp with Nesterov

Require: ε (set to 0.0001), decay rates ρ1 (set to 0.9), ρ2 (set to
0.9), θ, δ
Initialize moments variables s = 0 and r = 0, time step t = 0
1: while stopping criteria not met do
2: Sample example (x(i),y(i)) from training set
3: Compute gradient estimate: ĝ← +∇θL(f(x(i); θ),y(i))
4: t← t+ 1
5: Update: s← ρ1s + (1− ρ1)ĝ
6: Update: r← ρ2r + (1− ρ2)ĝ � ĝ
7: Correct Biases: ŝ← s

1−ρt1
, r̂← r

1−ρt2
8: Compute Update: ∆θ = −ε ŝ√

r̂+δ
9: Apply Update: θ ← θ + ∆θ

10: end while

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



All your GRADs are belong to us!

SGD: θ ← θ − εĝ
Momentum: v← αv − εĝ then θ ← θ + v

Nesterov: v← αv − ε∇θ

(
L(f(x(i); θ + αv),y(i))

)
then θ ← θ + v

AdaGrad: r← r + g � g then ∆θ− ← ε

δ +
√
r
� g then θ ← θ + ∆θ

RMSProp: r← ρr + (1− ρ)ĝ � ĝ then ∆θ ← − ε

δ +
√
r
� ĝ then θ ← θ + ∆θ

Adam: ŝ← s

1− ρt1
, r̂← r

1− ρt2
then ∆θ = −ε ŝ√

r̂ + δ
then θ ← θ + ∆θ

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Batch Normalization

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



A Difficulty in Training Deep Neural Networks

A deep model involves composition of several functions
ŷ = W T

4 (tanh(W T
3 (tanh(W T

2 (tanh(W T
1 x + b1) + b2) + b3))))

x1 x2 x3 x4

ŷ

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



A Difficulty in Training Deep Neural Networks

We have a recipe to compute gradients (Backpropagation),
and update every parameter (we saw half a dozen methods)

Implicit Assumption: Other layers don’t change i.e. other
functions are fixed

In Practice: We update all layers simultaneously

This can give rise to unexpected difficulties

Let’s look at two illustrations

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



A Difficulty in Training Deep Neural Networks

We have a recipe to compute gradients (Backpropagation),
and update every parameter (we saw half a dozen methods)

Implicit Assumption: Other layers don’t change i.e. other
functions are fixed

In Practice: We update all layers simultaneously

This can give rise to unexpected difficulties

Let’s look at two illustrations

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



A Difficulty in Training Deep Neural Networks

We have a recipe to compute gradients (Backpropagation),
and update every parameter (we saw half a dozen methods)

Implicit Assumption: Other layers don’t change i.e. other
functions are fixed

In Practice: We update all layers simultaneously

This can give rise to unexpected difficulties

Let’s look at two illustrations

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



A Difficulty in Training Deep Neural Networks

We have a recipe to compute gradients (Backpropagation),
and update every parameter (we saw half a dozen methods)

Implicit Assumption: Other layers don’t change i.e. other
functions are fixed

In Practice: We update all layers simultaneously

This can give rise to unexpected difficulties

Let’s look at two illustrations

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



A Difficulty in Training Deep Neural Networks

We have a recipe to compute gradients (Backpropagation),
and update every parameter (we saw half a dozen methods)

Implicit Assumption: Other layers don’t change i.e. other
functions are fixed

In Practice: We update all layers simultaneously

This can give rise to unexpected difficulties

Let’s look at two illustrations

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

Consider a second order approximation of our cost function
(which is a function composition) around current point θ(0):

J(θ) ≈ J(θ(0)) + (θ − θ(0))Tg +
1

2
(θ − θ(0))TH(θ − θ(0))

g is gradient and H the Hessian at θ(0)

If ε is the learning rate, the new point

θ = θ(0) − εg

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

Consider a second order approximation of our cost function
(which is a function composition) around current point θ(0):

J(θ) ≈ J(θ(0)) + (θ − θ(0))Tg +
1

2
(θ − θ(0))TH(θ − θ(0))

g is gradient and H the Hessian at θ(0)

If ε is the learning rate, the new point

θ = θ(0) − εg

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

Consider a second order approximation of our cost function
(which is a function composition) around current point θ(0):

J(θ) ≈ J(θ(0)) + (θ − θ(0))Tg +
1

2
(θ − θ(0))TH(θ − θ(0))

g is gradient and H the Hessian at θ(0)

If ε is the learning rate, the new point

θ = θ(0) − εg

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

Plugging our new point, θ = θ(0) − εg into the approximation:

J(θ(0) − εg) = J(θ(0))− εgTg +
1

2
gTHg

There are three terms here:

• Value of function before update
• Improvement using gradient (i.e. first order information)
• Correction factor that accounts for the curvature of the

function

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

Plugging our new point, θ = θ(0) − εg into the approximation:

J(θ(0) − εg) = J(θ(0))− εgTg +
1

2
gTHg

There are three terms here:

• Value of function before update
• Improvement using gradient (i.e. first order information)
• Correction factor that accounts for the curvature of the

function

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

Plugging our new point, θ = θ(0) − εg into the approximation:

J(θ(0) − εg) = J(θ(0))− εgTg +
1

2
gTHg

There are three terms here:

• Value of function before update

• Improvement using gradient (i.e. first order information)
• Correction factor that accounts for the curvature of the

function

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

Plugging our new point, θ = θ(0) − εg into the approximation:

J(θ(0) − εg) = J(θ(0))− εgTg +
1

2
gTHg

There are three terms here:

• Value of function before update
• Improvement using gradient (i.e. first order information)

• Correction factor that accounts for the curvature of the
function

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

Plugging our new point, θ = θ(0) − εg into the approximation:

J(θ(0) − εg) = J(θ(0))− εgTg +
1

2
gTHg

There are three terms here:

• Value of function before update
• Improvement using gradient (i.e. first order information)
• Correction factor that accounts for the curvature of the

function

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

J(θ(0) − εg) = J(θ(0))− εgTg +
1

2
gTHg

Observations:

• gTHg too large: Gradient will start moving upwards
• gTHg = 0: J will decrease for even large ε
• Optimal step size ε∗ = gTg for zero curvature,

ε∗ = gT g
gTHg

to take into account curvature

Conclusion: Just neglecting second order effects can cause
problems (remedy: second order methods). What about
higher order effects?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

J(θ(0) − εg) = J(θ(0))− εgTg +
1

2
gTHg

Observations:

• gTHg too large: Gradient will start moving upwards
• gTHg = 0: J will decrease for even large ε
• Optimal step size ε∗ = gTg for zero curvature,

ε∗ = gT g
gTHg

to take into account curvature

Conclusion: Just neglecting second order effects can cause
problems (remedy: second order methods). What about
higher order effects?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

J(θ(0) − εg) = J(θ(0))− εgTg +
1

2
gTHg

Observations:

• gTHg too large: Gradient will start moving upwards

• gTHg = 0: J will decrease for even large ε
• Optimal step size ε∗ = gTg for zero curvature,

ε∗ = gT g
gTHg

to take into account curvature

Conclusion: Just neglecting second order effects can cause
problems (remedy: second order methods). What about
higher order effects?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

J(θ(0) − εg) = J(θ(0))− εgTg +
1

2
gTHg

Observations:

• gTHg too large: Gradient will start moving upwards
• gTHg = 0: J will decrease for even large ε

• Optimal step size ε∗ = gTg for zero curvature,

ε∗ = gT g
gTHg

to take into account curvature

Conclusion: Just neglecting second order effects can cause
problems (remedy: second order methods). What about
higher order effects?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

J(θ(0) − εg) = J(θ(0))− εgTg +
1

2
gTHg

Observations:

• gTHg too large: Gradient will start moving upwards
• gTHg = 0: J will decrease for even large ε
• Optimal step size ε∗ = gTg for zero curvature,

ε∗ = gT g
gTHg

to take into account curvature

Conclusion: Just neglecting second order effects can cause
problems (remedy: second order methods). What about
higher order effects?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Intuition

J(θ(0) − εg) = J(θ(0))− εgTg +
1

2
gTHg

Observations:

• gTHg too large: Gradient will start moving upwards
• gTHg = 0: J will decrease for even large ε
• Optimal step size ε∗ = gTg for zero curvature,

ε∗ = gT g
gTHg

to take into account curvature

Conclusion: Just neglecting second order effects can cause
problems (remedy: second order methods). What about
higher order effects?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Higher Order Effects: Toy Model

x

h1

h2

...
hl

ŷ

w1

w2

wl

Just one node per layer, no non-linearity

ŷ is linear in x but non-linear in wi

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Higher Order Effects: Toy Model

x

h1

h2

...
hl

ŷ

w1

w2

wl

Just one node per layer, no non-linearity

ŷ is linear in x but non-linear in wi

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Higher Order Effects: Toy Model

x

h1

h2

...
hl

ŷ

w1

w2

wl

Just one node per layer, no non-linearity

ŷ is linear in x but non-linear in wi

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Higher Order Effects: Toy Model

Suppose δ = 1, so we want to decrease our output ŷ

Usual strategy:

• Using backprop find g = ∇w(ŷ − y)2

• Update weights w := w − εg
The first order Taylor approximation (in previous slide) says
the cost will reduce by εgTg

If we need to reduce cost by 0.1, then learning rate should be
0.1
gT g

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Higher Order Effects: Toy Model

Suppose δ = 1, so we want to decrease our output ŷ

Usual strategy:

• Using backprop find g = ∇w(ŷ − y)2

• Update weights w := w − εg
The first order Taylor approximation (in previous slide) says
the cost will reduce by εgTg

If we need to reduce cost by 0.1, then learning rate should be
0.1
gT g

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Higher Order Effects: Toy Model

Suppose δ = 1, so we want to decrease our output ŷ

Usual strategy:

• Using backprop find g = ∇w(ŷ − y)2

• Update weights w := w − εg

The first order Taylor approximation (in previous slide) says
the cost will reduce by εgTg

If we need to reduce cost by 0.1, then learning rate should be
0.1
gT g

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Higher Order Effects: Toy Model

Suppose δ = 1, so we want to decrease our output ŷ

Usual strategy:

• Using backprop find g = ∇w(ŷ − y)2

• Update weights w := w − εg
The first order Taylor approximation (in previous slide) says
the cost will reduce by εgTg

If we need to reduce cost by 0.1, then learning rate should be
0.1
gT g

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Higher Order Effects: Toy Model

Suppose δ = 1, so we want to decrease our output ŷ

Usual strategy:

• Using backprop find g = ∇w(ŷ − y)2

• Update weights w := w − εg
The first order Taylor approximation (in previous slide) says
the cost will reduce by εgTg

If we need to reduce cost by 0.1, then learning rate should be
0.1
gT g

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Higher Order Effects: Toy Model

The new ŷ will however be:

ŷ = x(w1 − εg1)(w2 − εg2) . . . (wl − εgl)

Contains terms like ε3g1g2g3w4w5 . . . wl

If weights w4, w5, . . . , wl are small, the term is negligible. But
if large, it would explode

Conclusion: Higher order terms make it very hard to choose
the right learning rate

Second Order Methods are already expensive, nth order
methods are hopeless. Solution?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Higher Order Effects: Toy Model

The new ŷ will however be:

ŷ = x(w1 − εg1)(w2 − εg2) . . . (wl − εgl)

Contains terms like ε3g1g2g3w4w5 . . . wl

If weights w4, w5, . . . , wl are small, the term is negligible. But
if large, it would explode

Conclusion: Higher order terms make it very hard to choose
the right learning rate

Second Order Methods are already expensive, nth order
methods are hopeless. Solution?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Higher Order Effects: Toy Model

The new ŷ will however be:

ŷ = x(w1 − εg1)(w2 − εg2) . . . (wl − εgl)

Contains terms like ε3g1g2g3w4w5 . . . wl

If weights w4, w5, . . . , wl are small, the term is negligible. But
if large, it would explode

Conclusion: Higher order terms make it very hard to choose
the right learning rate

Second Order Methods are already expensive, nth order
methods are hopeless. Solution?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Higher Order Effects: Toy Model

The new ŷ will however be:

ŷ = x(w1 − εg1)(w2 − εg2) . . . (wl − εgl)

Contains terms like ε3g1g2g3w4w5 . . . wl

If weights w4, w5, . . . , wl are small, the term is negligible. But
if large, it would explode

Conclusion: Higher order terms make it very hard to choose
the right learning rate

Second Order Methods are already expensive, nth order
methods are hopeless. Solution?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Higher Order Effects: Toy Model

The new ŷ will however be:

ŷ = x(w1 − εg1)(w2 − εg2) . . . (wl − εgl)

Contains terms like ε3g1g2g3w4w5 . . . wl

If weights w4, w5, . . . , wl are small, the term is negligible. But
if large, it would explode

Conclusion: Higher order terms make it very hard to choose
the right learning rate

Second Order Methods are already expensive, nth order
methods are hopeless. Solution?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Batch Normalization

Method to reparameterize a deep network to reduce
co-ordination of update across layers

Can be applied to input layer, or any hidden layer

Let H be a design matrix having activations in any layer for
m examples in the mini-batch

H =


h11 h12 h13 . . . h1k
h21 h22 h23 . . . h2k

...
...

...
. . .

...

hm1 hm2 hm3 . . . hmk



Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Batch Normalization

Method to reparameterize a deep network to reduce
co-ordination of update across layers

Can be applied to input layer, or any hidden layer

Let H be a design matrix having activations in any layer for
m examples in the mini-batch

H =


h11 h12 h13 . . . h1k
h21 h22 h23 . . . h2k

...
...

...
. . .

...

hm1 hm2 hm3 . . . hmk



Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Batch Normalization

Method to reparameterize a deep network to reduce
co-ordination of update across layers

Can be applied to input layer, or any hidden layer

Let H be a design matrix having activations in any layer for
m examples in the mini-batch

H =


h11 h12 h13 . . . h1k
h21 h22 h23 . . . h2k

...
...

...
. . .

...

hm1 hm2 hm3 . . . hmk



Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Batch Normalization

Method to reparameterize a deep network to reduce
co-ordination of update across layers

Can be applied to input layer, or any hidden layer

Let H be a design matrix having activations in any layer for
m examples in the mini-batch

H =


h11 h12 h13 . . . h1k
h21 h22 h23 . . . h2k

...
...

...
. . .

...

hm1 hm2 hm3 . . . hmk



Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Batch Normalization

H =


h11 h12 h13 . . . h1k
h21 h22 h23 . . . h2k

...
...

...
. . .

...

hm1 hm2 hm3 . . . hmk


Each row represents all the activations in layer for one example

Idea: Replace H by H ′ such that:

H ′ =
H − µ
σ

µ is mean of each unit and σ the standard deviation

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Batch Normalization

H =


h11 h12 h13 . . . h1k
h21 h22 h23 . . . h2k

...
...

...
. . .

...

hm1 hm2 hm3 . . . hmk


Each row represents all the activations in layer for one example

Idea: Replace H by H ′ such that:

H ′ =
H − µ
σ

µ is mean of each unit and σ the standard deviation

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Batch Normalization

H =


h11 h12 h13 . . . h1k
h21 h22 h23 . . . h2k

...
...

...
. . .

...

hm1 hm2 hm3 . . . hmk


Each row represents all the activations in layer for one example

Idea: Replace H by H ′ such that:

H ′ =
H − µ
σ

µ is mean of each unit and σ the standard deviation

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Batch Normalization

µ is a vector with µj the column mean

σ is a vector with σj the column standard deviation

Hi,j is normalized by subtracting µj and dividing by σj

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Batch Normalization

µ is a vector with µj the column mean

σ is a vector with σj the column standard deviation

Hi,j is normalized by subtracting µj and dividing by σj

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Batch Normalization

µ is a vector with µj the column mean

σ is a vector with σj the column standard deviation

Hi,j is normalized by subtracting µj and dividing by σj

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Batch Normalization

During training we have:

µ =
1

m

∑
j

H:,j

σ =

√
δ +

1

m

∑
j

(H − µ)2j

We then operate on H ′ as before =⇒ we backpropagate
through the normalized activations

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Batch Normalization

During training we have:

µ =
1

m

∑
j

H:,j

σ =

√
δ +

1

m

∑
j

(H − µ)2j

We then operate on H ′ as before =⇒ we backpropagate
through the normalized activations

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Why is this good?

The update will never act to only increase the mean and
standard deviation of any activation

Previous approaches added penalties to cost or per layer to
encourage units to have standardized outputs

Batch normalization makes the reparameterization easier

At test time: Use running averages of µ and σ collected
during training, use these for evaluating new input x

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Why is this good?

The update will never act to only increase the mean and
standard deviation of any activation

Previous approaches added penalties to cost or per layer to
encourage units to have standardized outputs

Batch normalization makes the reparameterization easier

At test time: Use running averages of µ and σ collected
during training, use these for evaluating new input x

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Why is this good?

The update will never act to only increase the mean and
standard deviation of any activation

Previous approaches added penalties to cost or per layer to
encourage units to have standardized outputs

Batch normalization makes the reparameterization easier

At test time: Use running averages of µ and σ collected
during training, use these for evaluating new input x

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Why is this good?

The update will never act to only increase the mean and
standard deviation of any activation

Previous approaches added penalties to cost or per layer to
encourage units to have standardized outputs

Batch normalization makes the reparameterization easier

At test time: Use running averages of µ and σ collected
during training, use these for evaluating new input x

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



An Innovation

Standardizing the output of a unit can limit the expressive
power of the neural network

Solution: Instead of replacing H by H ′, replace it will γH ′+β

γ and β are also learned by backpropagation

Normalizing for mean and standard deviation was the goal of
batch normalization, why add γ and β again?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



An Innovation

Standardizing the output of a unit can limit the expressive
power of the neural network

Solution: Instead of replacing H by H ′, replace it will γH ′+β

γ and β are also learned by backpropagation

Normalizing for mean and standard deviation was the goal of
batch normalization, why add γ and β again?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



An Innovation

Standardizing the output of a unit can limit the expressive
power of the neural network

Solution: Instead of replacing H by H ′, replace it will γH ′+β

γ and β are also learned by backpropagation

Normalizing for mean and standard deviation was the goal of
batch normalization, why add γ and β again?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



An Innovation

Standardizing the output of a unit can limit the expressive
power of the neural network

Solution: Instead of replacing H by H ′, replace it will γH ′+β

γ and β are also learned by backpropagation

Normalizing for mean and standard deviation was the goal of
batch normalization, why add γ and β again?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Initialization Strategies

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



In convex problems with good ε no matter what the
initialization, convergence is guaranteed

In the non-convex regime initialization is much more
important

Some parameter initialization can be unstable, not converge

Neural Networks are not well understood to have principled,
mathematically nice initialization strategies

What is known: Initialization should break symmetry (quiz!)

What is known: Scale of weights is important

Most initialization strategies are based on intuitions and
heuristics

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



In convex problems with good ε no matter what the
initialization, convergence is guaranteed

In the non-convex regime initialization is much more
important

Some parameter initialization can be unstable, not converge

Neural Networks are not well understood to have principled,
mathematically nice initialization strategies

What is known: Initialization should break symmetry (quiz!)

What is known: Scale of weights is important

Most initialization strategies are based on intuitions and
heuristics

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



In convex problems with good ε no matter what the
initialization, convergence is guaranteed

In the non-convex regime initialization is much more
important

Some parameter initialization can be unstable, not converge

Neural Networks are not well understood to have principled,
mathematically nice initialization strategies

What is known: Initialization should break symmetry (quiz!)

What is known: Scale of weights is important

Most initialization strategies are based on intuitions and
heuristics

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



In convex problems with good ε no matter what the
initialization, convergence is guaranteed

In the non-convex regime initialization is much more
important

Some parameter initialization can be unstable, not converge

Neural Networks are not well understood to have principled,
mathematically nice initialization strategies

What is known: Initialization should break symmetry (quiz!)

What is known: Scale of weights is important

Most initialization strategies are based on intuitions and
heuristics

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



In convex problems with good ε no matter what the
initialization, convergence is guaranteed

In the non-convex regime initialization is much more
important

Some parameter initialization can be unstable, not converge

Neural Networks are not well understood to have principled,
mathematically nice initialization strategies

What is known: Initialization should break symmetry (quiz!)

What is known: Scale of weights is important

Most initialization strategies are based on intuitions and
heuristics

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



In convex problems with good ε no matter what the
initialization, convergence is guaranteed

In the non-convex regime initialization is much more
important

Some parameter initialization can be unstable, not converge

Neural Networks are not well understood to have principled,
mathematically nice initialization strategies

What is known: Initialization should break symmetry (quiz!)

What is known: Scale of weights is important

Most initialization strategies are based on intuitions and
heuristics

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



In convex problems with good ε no matter what the
initialization, convergence is guaranteed

In the non-convex regime initialization is much more
important

Some parameter initialization can be unstable, not converge

Neural Networks are not well understood to have principled,
mathematically nice initialization strategies

What is known: Initialization should break symmetry (quiz!)

What is known: Scale of weights is important

Most initialization strategies are based on intuitions and
heuristics

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Some Heuristics

For a fully connected layer with m inputs and n outputs,
sample:

Wij ∼ U(− 1√
m
,

1√
m

)

Xavier Initialization: Sample

Wij ∼ U(− 6√
m+ n

,
6√

m+ n
)

Xavier initialization is derived considering that the network
consists of matrix multiplications with no nonlinearites

Works well in practice!

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Some Heuristics

For a fully connected layer with m inputs and n outputs,
sample:

Wij ∼ U(− 1√
m
,

1√
m

)

Xavier Initialization: Sample

Wij ∼ U(− 6√
m+ n

,
6√

m+ n
)

Xavier initialization is derived considering that the network
consists of matrix multiplications with no nonlinearites

Works well in practice!

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Some Heuristics

For a fully connected layer with m inputs and n outputs,
sample:

Wij ∼ U(− 1√
m
,

1√
m

)

Xavier Initialization: Sample

Wij ∼ U(− 6√
m+ n

,
6√

m+ n
)

Xavier initialization is derived considering that the network
consists of matrix multiplications with no nonlinearites

Works well in practice!

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Some Heuristics

For a fully connected layer with m inputs and n outputs,
sample:

Wij ∼ U(− 1√
m
,

1√
m

)

Xavier Initialization: Sample

Wij ∼ U(− 6√
m+ n

,
6√

m+ n
)

Xavier initialization is derived considering that the network
consists of matrix multiplications with no nonlinearites

Works well in practice!

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



More Heuristics

Saxe et al. 2013, recommend initialzing to random orthogonal
matrices, with a carefully chosen gain g that accounts for
non-linearities

If g could be divined, it could solve the vanishing and
exploding gradients problem (more later)

The idea of choosing g and initializing weights accordingly is
that we want norm of activations to increase, and pass back
strong gradients

Martens 2010, suggested an initialization that was sparse:
Each unit could only receive k non-zero weights

Motivation: Ir is a bad idea to have all initial weights to have
the same standard deviation 1√

m

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



More Heuristics

Saxe et al. 2013, recommend initialzing to random orthogonal
matrices, with a carefully chosen gain g that accounts for
non-linearities

If g could be divined, it could solve the vanishing and
exploding gradients problem (more later)

The idea of choosing g and initializing weights accordingly is
that we want norm of activations to increase, and pass back
strong gradients

Martens 2010, suggested an initialization that was sparse:
Each unit could only receive k non-zero weights

Motivation: Ir is a bad idea to have all initial weights to have
the same standard deviation 1√

m

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



More Heuristics

Saxe et al. 2013, recommend initialzing to random orthogonal
matrices, with a carefully chosen gain g that accounts for
non-linearities

If g could be divined, it could solve the vanishing and
exploding gradients problem (more later)

The idea of choosing g and initializing weights accordingly is
that we want norm of activations to increase, and pass back
strong gradients

Martens 2010, suggested an initialization that was sparse:
Each unit could only receive k non-zero weights

Motivation: Ir is a bad idea to have all initial weights to have
the same standard deviation 1√

m

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



More Heuristics

Saxe et al. 2013, recommend initialzing to random orthogonal
matrices, with a carefully chosen gain g that accounts for
non-linearities

If g could be divined, it could solve the vanishing and
exploding gradients problem (more later)

The idea of choosing g and initializing weights accordingly is
that we want norm of activations to increase, and pass back
strong gradients

Martens 2010, suggested an initialization that was sparse:
Each unit could only receive k non-zero weights

Motivation: Ir is a bad idea to have all initial weights to have
the same standard deviation 1√

m

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



More Heuristics

Saxe et al. 2013, recommend initialzing to random orthogonal
matrices, with a carefully chosen gain g that accounts for
non-linearities

If g could be divined, it could solve the vanishing and
exploding gradients problem (more later)

The idea of choosing g and initializing weights accordingly is
that we want norm of activations to increase, and pass back
strong gradients

Martens 2010, suggested an initialization that was sparse:
Each unit could only receive k non-zero weights

Motivation: Ir is a bad idea to have all initial weights to have
the same standard deviation 1√

m

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Polyak Averaging: Motivation

Gradient points towards right

Consider gradient descent above with high step size ε

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Polyak Averaging: Motivation

Gradient points towards left

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Polyak Averaging: Motivation

Gradient points towards right

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Polyak Averaging: Motivation

Gradient points towards left

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Polyak Averaging: Motivation

Gradient points towards right

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



A Solution: Polyak Averaging

Suppose in t iterations you have parameters θ(1), θ(2), . . . , θ(t)

Polyak Averaging suggests setting θ̂(t) = 1
t

∑
i θ

(i)

Has strong convergence guarantees in convex settings

Is this a good idea in non-convex problems?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



A Solution: Polyak Averaging

Suppose in t iterations you have parameters θ(1), θ(2), . . . , θ(t)

Polyak Averaging suggests setting θ̂(t) = 1
t

∑
i θ

(i)

Has strong convergence guarantees in convex settings

Is this a good idea in non-convex problems?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



A Solution: Polyak Averaging

Suppose in t iterations you have parameters θ(1), θ(2), . . . , θ(t)

Polyak Averaging suggests setting θ̂(t) = 1
t

∑
i θ

(i)

Has strong convergence guarantees in convex settings

Is this a good idea in non-convex problems?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



A Solution: Polyak Averaging

Suppose in t iterations you have parameters θ(1), θ(2), . . . , θ(t)

Polyak Averaging suggests setting θ̂(t) = 1
t

∑
i θ

(i)

Has strong convergence guarantees in convex settings

Is this a good idea in non-convex problems?

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Simple Modification

In non-convex surfaces the parameter space can differ greatly
in different regions

Averaging is not useful

Typical to consider the exponentially decaying average instead:

θ̂(t) = αθ̂(t−1) + (1− α)θ̂(t) with α ∈ [0, 1]

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Simple Modification

In non-convex surfaces the parameter space can differ greatly
in different regions

Averaging is not useful

Typical to consider the exponentially decaying average instead:

θ̂(t) = αθ̂(t−1) + (1− α)θ̂(t) with α ∈ [0, 1]

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Simple Modification

In non-convex surfaces the parameter space can differ greatly
in different regions

Averaging is not useful

Typical to consider the exponentially decaying average instead:

θ̂(t) = αθ̂(t−1) + (1− α)θ̂(t) with α ∈ [0, 1]

Lecture 6 Optimization for Deep Neural Networks CMSC 35246



Next time

Convolutional Neural Networks

Lecture 6 Optimization for Deep Neural Networks CMSC 35246


