Lecture 7 Convolutional Neural Networks CMSC 35246: Deep Learning

Shubhendu Trivedi & Risi Kondor

University of Chicago

April 17, 2017

• A series of matrix multiplications:

- A series of matrix multiplications:
- $\bullet \ \mathbf{x} \mapsto$

• A series of matrix multiplications: • $\mathbf{x} \mapsto W_1^T \mathbf{x} \mapsto \mathbf{h}_1 = f(W_1^T \mathbf{x}) \mapsto$

• A series of matrix multiplications: • $\mathbf{x} \mapsto W_1^T \mathbf{x} \mapsto \mathbf{h}_1 = f(W_1^T \mathbf{x}) \mapsto W_2^T \mathbf{h}_1 \mapsto \mathbf{h}_2 = f(W_2^T \mathbf{h}_1) \mapsto$

CMSC 35246

< 17 >

• A series of matrix multiplications: • $\mathbf{x} \mapsto W_1^T \mathbf{x} \mapsto \mathbf{h}_1 = f(W_1^T \mathbf{x}) \mapsto W_2^T \mathbf{h}_1 \mapsto \mathbf{h}_2 = f(W_2^T \mathbf{h}_1) \mapsto W_3^T \mathbf{h}_2 \mapsto \mathbf{h}_3 = f(W_3^T \mathbf{h}_3) \mapsto$

< 行 →

• A series of matrix multiplications: • $\mathbf{x} \mapsto W_1^T \mathbf{x} \mapsto \mathbf{h}_1 = f(W_1^T \mathbf{x}) \mapsto W_2^T \mathbf{h}_1 \mapsto \mathbf{h}_2 = f(W_2^T \mathbf{h}_1) \mapsto W_3^T \mathbf{h}_2 \mapsto \mathbf{h}_3 = f(W_3^T \mathbf{h}_3) \mapsto W_4^T \mathbf{h}_3 = \hat{y}$

< 行 →

• Neural Networks that use convolution in place of general matrix multiplication in atleast one layer

- Neural Networks that use convolution in place of general matrix multiplication in atleast one layer
- Next:

- Neural Networks that use convolution in place of general matrix multiplication in atleast one layer
- Next:
 - What is convolution?

- Neural Networks that use convolution in place of general matrix multiplication in atleast one layer
- Next:
 - What is convolution?
 - What is pooling?

- Neural Networks that use convolution in place of general matrix multiplication in atleast one layer
- Next:
 - What is convolution?
 - What is pooling?
 - What is the motivation for such architectures (remember LeNet?)

LeNet-5 (LeCun, 1998)

 The original Convolutional Neural Network model goes back to 1989 (LeCun)

AlexNet (Krizhevsky, Sutskever, Hinton 2012)

• ImageNet 2012 15.4% error rate

Convolutional Neural Networks

Figure: Andrej Karpathy

Now let's deconstruct them...

Kernel

 \bullet Convolve image with kernel having weights ${\bf w}$ (learned by backpropagation)

< 17 >

✓ ☐ ►
CMSC 35246

Lecture 7 Convolutional Neural Networks

✓ ☐ ▶
CMSC 35246

Lecture 7 Convolutional Neural Networks

Lecture 7 Convolutional Neural Networks

Lecture 7 Convolutional Neural Networks

Lecture 7 Convolutional Neural Networks

Lecture 7 Convolutional Neural Networks

• What is the number of parameters?

• We used stride of 1, kernel with receptive field of size 3 by 3

- We used stride of 1, kernel with receptive field of size 3 by 3
- Output size:

$$\frac{N-K}{S} + 1$$

- We used stride of 1, kernel with receptive field of size 3 by 3
- Output size:

$$\frac{N-K}{S} + 1$$

• In previous example: N = 6, K = 3, S = 1, Output size = 4

- We used stride of 1, kernel with receptive field of size 3 by 3
- Output size:

$$\frac{N-K}{S} + 1$$

- In previous example: N = 6, K = 3, S = 1, Output size = 4
- For N = 8, K = 3, S = 1, output size is 6

Zero Padding

• Often, we want the output of a convolution to have the same size as the input. Solution: Zero padding.

Zero Padding

- Often, we want the output of a convolution to have the same size as the input. Solution: Zero padding.
- In our previous example:

 Common to see convolution layers with stride of 1, filters of size K, and zero padding with K-1/2 to preserve size

< A >

Learn Multiple Filters

Lecture 7 Convolutional Neural Networks

Learn Multiple Filters

• If we use 100 filters, we get 100 feature maps

Figure: I. Kokkinos

In General

• We have only considered a 2-D image as a running example

In General

- We have only considered a 2-D image as a running example
- But we could operate on volumes (e.g. RGB Images would be depth 3 input, filter would have same depth)

In General

- We have only considered a 2-D image as a running example
- But we could operate on volumes (e.g. RGB Images would be depth 3 input, filter would have same depth)

• For convolutional layer:

- For convolutional layer:
 - Suppose input is of size $W_1 \times H_1 \times D_1$

- For convolutional layer:
 - Suppose input is of size $W_1 \times H_1 \times D_1$
 - Filter size is K and stride S

- For convolutional layer:
 - Suppose input is of size $W_1 \times H_1 \times D_1$
 - Filter size is K and stride S
 - We obtain another volume of dimensions $W_2 imes H_2 imes D_2$

- For convolutional layer:
 - Suppose input is of size $W_1 \times H_1 \times D_1$
 - Filter size is K and stride S
 - We obtain another volume of dimensions $W_2 \times H_2 \times D_2$
 - As before:

$$W_2 = \frac{W_1 - K}{S} + 1$$
 and $H_2 = \frac{H_1 - K}{S} + 1$

- For convolutional layer:
 - Suppose input is of size $W_1 \times H_1 \times D_1$
 - Filter size is K and stride S
 - We obtain another volume of dimensions $W_2 \times H_2 \times D_2$
 - As before:

$$W_2 = \frac{W_1 - K}{S} + 1$$
 and $H_2 = \frac{H_1 - K}{S} + 1$

Depths will be equal

Example volume: $28 \times 28 \times 3$ (RGB Image)

Example volume: $28 \times 28 \times 3$ (RGB Image) 100 3 × 3 filters, stride 1

Example volume: $28 \times 28 \times 3$ (RGB Image) 100 3 × 3 filters, stride 1 What is the zero padding needed to preserve size?

Example volume: $28 \times 28 \times 3$ (RGB Image) 100 3×3 filters, stride 1 What is the zero padding needed to preserve size? Number of parameters in this layer?

Example volume: $28 \times 28 \times 3$ (RGB Image) 100 3 × 3 filters, stride 1 What is the zero padding needed to preserve size? Number of parameters in this layer? For every filter: $3 \times 3 \times 3 + 1 = 28$ parameters

Example volume: $28 \times 28 \times 3$ (RGB Image) 100 3 × 3 filters, stride 1 What is the zero padding needed to preserve size? Number of parameters in this layer? For every filter: $3 \times 3 \times 3 + 1 = 28$ parameters Total parameters: $100 \times 28 = 2800$

Figure: Andrej Karpathy

Non-Linearity

• After obtaining feature map, apply an elementwise non-linearity to obtain a transformed feature map (same size)

< 17 >

Figure: Andrej Karpathy

• Other options: Average pooling, L2-norm pooling, random pooling

• We have multiple feature maps, and get an equal number of subsampled maps

- We have multiple feature maps, and get an equal number of subsampled maps
- This changes if cross channel pooling is done

So what's left: Fully Connected Layers

Figure: Andrej Karpathy

LeNet-5

• Filters are of size 5×5 , stride 1

LeNet-5

- Filters are of size 5×5 , stride 1
- Pooling is 2×2 , with stride 2

LeNet-5

- Filters are of size 5×5 , stride 1
- Pooling is 2×2 , with stride 2
- How many parameters?

- Input image: 227 X 227 X 3
- First convolutional layer: 96 filters with $\mathsf{K}=11$ applied with stride = 4
- Width and height of output: $\frac{227-11}{4} + 1 = 55$

< (P) >

• Number of parameters in first layer?

✓ ☐ > CMSC 35246

- Number of parameters in first layer?
- 11 X 11 X 3 X 96 = 34848

• Next layer: Pooling with 3 X 3 filters, stride of 2

- Next layer: Pooling with 3 X 3 filters, stride of 2
- Size of output volume: 27

- Next layer: Pooling with 3 X 3 filters, stride of 2
- Size of output volume: 27
- Number of parameters?

• Popularized the use of ReLUs

- Popularized the use of ReLUs
- Used heavy data augmentation (flipped images, random crops of size 227 by 227)

- Popularized the use of ReLUs
- Used heavy data augmentation (flipped images, random crops of size 227 by 227)
- Parameters: Dropout rate 0.5, Batch size = 128, Weight decay term: 0.0005 ,Momentum term $\alpha = 0.9$, learning rate $\eta = 0.01$, manually reduced by factor of ten on monitoring validation loss.

< 行 →

Short Digression: How do the features look like?

Layer 1 filters

This and the next few illustrations are from Rob Fergus

Layer 2 Patches

Lecture 7 Convolutional Neural Networks

< 177 ►

Layer 2 Patches

Lecture 7 Convolutional Neural Networks

< 67 ►

Layer 3 Patches

Lecture 7 Convolutional Neural Networks

< 177 ►

Layer 3 Patches

B	E.	P.C.	The second	The	To	.A.	1	- M	100		32	and the	36	×.	06	qu.	10	5	15	1	100	and a	3
E		9	a		r 3	- 10	Ťc	n.	a	P	ate	h		- 20									
- Ci		100	ay	T	31	14		Έ	0	9	au		C.C	1058									A
1.4																							133
																							20
1																							
H																							
1																							
111																							0
16	-in																						0
																							1
																							9
225																							13
12																							J.
The																							1
1994																							A.
1 and																							
X									1						61								10

< 🗗 ►

Layer 4 Patches

< 177 ►

Layer 4 Patches

34	a)		0	N	0	0	۲	9	te	-14	Ne	2	1.	Je.	6	(S))	1	-	3	3	TT	TT .	10
24		a	/e	r 4	1-7	Ťc	n	-9	P	at	tcł	ne	4										10
- THE	The second	194	M	Ø	M.	C	÷.	۲	E.	to	1	1	2										101
1																							14
197																							R.
2m																							2/20
-14															1	10	Č,					10%	
1g															39		6						×
W.															10	10	1						(0) ¹
(A)																		1	3	6			1
100																		-	1	0			
-																		P	2	1			
- 19																							. W
۲						.0								٩									N.
3																							ġ.
W.												۲									145		
Me														.0	۲	۲						-	3
W			-		1	in the		1	100			0	0				6	13			6	-	4

< 67 ►

Evolution of Filters

Evolution of Filters

12)	11	K	A	A	**			-	•	*	3	Ø	۲	
	No.	0	(tree	3	0	0	6		and the second s	4	1	⁴	×.	P	*
h.	1	2		d'	Y	Y	V				1	-	1	Ø	Ś
	and in	1	1	2	(2)	(3)	1		-	1	-	14	and the second s	*	*
ST.	1	10	ell,	7	R	-	(And the second	53	1	1	K	10	19	17	10
-	25	and a	312	Sto.	F	R	R	1	N.C.	6	-	.O.	12	19	19
des	F	1	C	0	Ó	C	C		or the second	1A	10	ß	B	1	181
il.	(10))	- Mile	010	2114	(00) sev 2	00	000			4	70	4	Sie.	¥¢	30
1	1	and the second	X	-	X	X		No.		2/1	6. /r	1	2.2	12.8	128
	alle.	111	0	-	Sile	aller.	- Chilling			(89)	8	123	(A	۲	۲
	4	1	1	-	ŧ	-	5			100		Call of the	3	0	
14	13	1		1	1000	100	100			1		<i>\$</i> 3	dist.	i	1
4	>	*	*	La	ayer 4	×	*		19 Miles	14	1 ⁴ 2.	s, La	ayer 5	6	9

Caveat?

Back to Architectures

ImageNet 2013

• Was won by a network similar to AlexNet (Matthew Zeiler and Rob Fergus)

ImageNet 2013

- Was won by a network similar to AlexNet (Matthew Zeiler and Rob Fergus)
- Changed the first convolutional layer from 11 X 11 with stride of 4, to 7 X 7 with stride of 2

ImageNet 2013

- Was won by a network similar to AlexNet (Matthew Zeiler and Rob Fergus)
- Changed the first convolutional layer from 11 X 11 with stride of 4, to 7 X 7 with stride of 2
- AlexNet used 384, 384 and 256 layers in the next three convolutional layers, ZF used 512, 1024, 512
ImageNet 2013

- Was won by a network similar to AlexNet (Matthew Zeiler and Rob Fergus)
- Changed the first convolutional layer from 11 X 11 with stride of 4, to 7 X 7 with stride of 2
- AlexNet used 384, 384 and 256 layers in the next three convolutional layers, ZF used 512, 1024, 512
- ImageNet 2013: 14.8 % (reduced from 15.4 %) (top 5 errors)

A	A-LRN	B	C	D	E	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weigh	
layers	layers	layers	layers			
		nput (224×2)	24 RGB imag	e)		
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	64 conv3-64 conv3-64		conv3-64	
			pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
			pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-250	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-250	
			conv1-256	conv3-256	conv3-250	
					conv3-256	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool			
			4096			
			4096			
			1000			
		soft	-max			

Table 2: Number of para	meters (in millions)
-------------------------	----------------------

Network	A,A-LRN	В	С	D	E
Number of parameters	133	133	134	138	144

- Best model: Column D.
- Error: 7.3 % (top five error)

- Total number of parameters: 138 Million (calculate!)
- Memory (Karpathy): 24 Million X 4 bytes \approx 93 MB per image

- Total number of parameters: 138 Million (calculate!)
- Memory (Karpathy): 24 Million X 4 bytes \approx 93 MB per image
- For backward pass the memory usage is doubled per image

- Total number of parameters: 138 Million (calculate!)
- Memory (Karpathy): 24 Million X 4 bytes \approx 93 MB per image
- For backward pass the memory usage is doubled per image
- Observations:
 - Early convolutional layers take most memory

- Total number of parameters: 138 Million (calculate!)
- Memory (Karpathy): 24 Million X 4 bytes \approx 93 MB per image
- For backward pass the memory usage is doubled per image
- Observations:
 - Early convolutional layers take most memory
 - Most parameters are in the fully connected layers

Going Deeper

Classification: ImageNet Challenge top-5 error

Figure: Kaiming He, MSR

Lecture 7 Convolutional Neural Networks

Network in Network

M. Lin, Q. Chen, S. Yan, Network in Network, ICLR 2014

Szegedy et al, Going Deeper With Convolutions, CVPR 2015

• Error: 6.7 % (top five error)

Lecture 7 Convolutional Neural Networks

The Inception Module

- Parallel paths with different receptive field sizes capture sparse patterns of correlation in stack of feature maps
- Also include auxiliary classifiers for ease of training
- Also note 1 by 1 convolutions

< A >

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

C. Szegedy et al, Going Deeper With Convolutions, CVPR 2015

< 67 ►

• Has 5 Million or 12X fewer parameters than AlexNet

- Has 5 Million or 12X fewer parameters than AlexNet
- Gets rid of fully connected layers

Inception v2, v3

< 行 →

CMSC 35246

C. Szegedy et al, Rethinking the Inception Architecture for Computer Vision, CVPR 2016

- Use Batch Normalization during training to reduce dependence on auxiliary classifiers
- More aggressive factorization of filters

Why do CNNs make sense? (Brain Stuff next time)

• Convolution leverages four ideas that can help ML systems:

- Convolution leverages four ideas that can help ML systems:
 - Sparse interactions

- Convolution leverages four ideas that can help ML systems:
 - Sparse interactions
 - Parameter sharing

- Convolution leverages four ideas that can help ML systems:
 - Sparse interactions
 - Parameter sharing
 - Equivariant representations

- Convolution leverages four ideas that can help ML systems:
 - Sparse interactions
 - Parameter sharing
 - Equivariant representations
 - · Ability to work with inputs of variable size

- Convolution leverages four ideas that can help ML systems:
 - Sparse interactions
 - Parameter sharing
 - Equivariant representations
 - Ability to work with inputs of variable size
- Sparse Interactions
 - Plain Vanilla NN $(y \in \mathbb{R}^n, x \in \mathbb{R}^m)$: Need matrix multiplication $y = \mathbf{W}x$ to compute activations for each layer (every output interacts with every input)

- Convolution leverages four ideas that can help ML systems:
 - Sparse interactions
 - Parameter sharing
 - Equivariant representations
 - · Ability to work with inputs of variable size
- Sparse Interactions
 - Plain Vanilla NN (y ∈ ℝⁿ, x ∈ ℝ^m): Need matrix multiplication y = Wx to compute activations for each layer (every output interacts with every input)
 - Convolutional networks have *sparse interactions* by making kernel smaller than input

- Convolution leverages four ideas that can help ML systems:
 - Sparse interactions
 - Parameter sharing
 - Equivariant representations
 - · Ability to work with inputs of variable size
- Sparse Interactions
 - Plain Vanilla NN $(y \in \mathbb{R}^n, x \in \mathbb{R}^m)$: Need matrix multiplication $y = \mathbf{W}x$ to compute activations for each layer (every output interacts with every input)
 - Convolutional networks have *sparse interactions* by making kernel smaller than input
 - \implies need to store fewer parameters, computing output needs fewer operations $(O(m \times n) \text{ versus } O(k \times n))$

< A >

• Fully connected network: *h*₃ is computed by full matrix multiplication with no sparse connectivity

• Kernel of size 3, moved with stride of 1

< 17 >

CMSC 35246

- Kernel of size 3, moved with stride of 1
- h_3 only depends on x_2, x_3, x_4

• Connections in CNNs are sparse, but units in deeper layers are connected to all of the input (larger receptive field sizes)

< 17 >

• Plain vanilla NN: Each element of **W** is used exactly once to compute output of a layer

- Plain vanilla NN: Each element of **W** is used exactly once to compute output of a layer
- In convolutional networks, parameters are *tied*: weight applied to one input is tied to value of a weight applied elsewhere

- Plain vanilla NN: Each element of **W** is used exactly once to compute output of a layer
- In convolutional networks, parameters are *tied*: weight applied to one input is tied to value of a weight applied elsewhere
- Same kernel is used throughout the image, so instead learning a parameter for each location, only a set of parameters is learnt

- Plain vanilla NN: Each element of **W** is used exactly once to compute output of a layer
- In convolutional networks, parameters are *tied*: weight applied to one input is tied to value of a weight applied elsewhere
- Same kernel is used throughout the image, so instead learning a parameter for each location, only a set of parameters is learnt
- Forward propagation remains unchanged $O(k \times n)$

- Plain vanilla NN: Each element of **W** is used exactly once to compute output of a layer
- In convolutional networks, parameters are *tied*: weight applied to one input is tied to value of a weight applied elsewhere
- Same kernel is used throughout the image, so instead learning a parameter for each location, only a set of parameters is learnt
- Forward propagation remains unchanged $O(k \times n)$
- Storage improves dramatically as $k \ll m, n$

< A >

• Let's first formally define convolution:

• Let's first formally define convolution:

$$s(t) = (x * w)(t) = \int x(a)w(t-a)da$$

 In Convolutional Network terminology x is referred to as input, w as the kernel and s as the feature map

• Let's first formally define convolution:

$$s(t) = (x * w)(t) = \int x(a)w(t-a)da$$

- In Convolutional Network terminology x is referred to as input, w as the kernel and s as the feature map
- Discrete Convolution:

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n) K(i-m,j-n)$$

• Let's first formally define convolution:

$$s(t) = (x * w)(t) = \int x(a)w(t-a)da$$

- In Convolutional Network terminology x is referred to as input, w as the kernel and s as the feature map
- Discrete Convolution:

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

• Convolution is commutative, thus:
• Let's first formally define convolution:

$$s(t) = (x * w)(t) = \int x(a)w(t-a)da$$

- In Convolutional Network terminology x is referred to as input, w as the kernel and s as the feature map
- Discrete Convolution:

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

• Convolution is commutative, thus:

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(i-m, j-n)K(m, n)$$

Aside

• The latter is usually more straightforward to implement in ML libraries (less variation in range of valid values of m and n)

- The latter is usually more straightforward to implement in ML libraries (less variation in range of valid values of m and n)
- Neither are usually used in practice in Neural Networks

Aside

- The latter is usually more straightforward to implement in ML libraries (less variation in range of valid values of m and n)
- Neither are usually used in practice in Neural Networks
- Libraries implement *Cross Correlation*, same as convolution, but without flipping the kernel

Aside

- The latter is usually more straightforward to implement in ML libraries (less variation in range of valid values of m and n)
- Neither are usually used in practice in Neural Networks
- Libraries implement *Cross Correlation*, same as convolution, but without flipping the kernel

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(i+m, j+n)K(m, n)$$

• Equivariance: f is equivariant to g if $f(g(\mathbf{x})) = g(f(\mathbf{x}))$

- Equivariance: f is equivariant to g if $f(g(\mathbf{x})) = g(f(\mathbf{x}))$
- The form of parameter sharing used by CNNs causes each layer to be equivariant to translation

- Equivariance: f is equivariant to g if $f(g(\mathbf{x})) = g(f(\mathbf{x}))$
- The form of parameter sharing used by CNNs causes each layer to be equivariant to translation
- That is, if g is any function that translates the input, the convolution function is equivariant to g

• Implication: While processing time series data, convolution produces a timeline that shows when different features appeared (if an event is shifted in time in the input, the same representation will appear in the output)

- Implication: While processing time series data, convolution produces a timeline that shows when different features appeared (if an event is shifted in time in the input, the same representation will appear in the output)
- Images: If we move an object in the image, its representation will move the same amount in the output

- Implication: While processing time series data, convolution produces a timeline that shows when different features appeared (if an event is shifted in time in the input, the same representation will appear in the output)
- Images: If we move an object in the image, its representation will move the same amount in the output
- This property is useful when we know some local function is useful everywhere (e.g. edge detectors)

- Implication: While processing time series data, convolution produces a timeline that shows when different features appeared (if an event is shifted in time in the input, the same representation will appear in the output)
- Images: If we move an object in the image, its representation will move the same amount in the output
- This property is useful when we know some local function is useful everywhere (e.g. edge detectors)
- Convolution is not equivariant to other operations such as change in scale or rotation

Pooling: Motivation

 Pooling helps the representation become slightly *invariant* to small translations of the input

Pooling: Motivation

- Pooling helps the representation become slightly *invariant* to small translations of the input
- Reminder: Invariance: $f(g(\mathbf{x})) = f(\mathbf{x})$

Pooling: Motivation

- Pooling helps the representation become slightly *invariant* to small translations of the input
- Reminder: Invariance: $f(g(\mathbf{x})) = f(\mathbf{x})$
- If input is translated by small amount: values of most pooled outputs don't change

Pooling: Invariance

Figure: Goodfellow et al.

• Invariance to local translation can be useful if we care more about whether a certain feature is present rather than exactly where it is

- Invariance to local translation can be useful if we care more about whether a certain feature is present rather than exactly where it is
- Pooling over spatial regions produces invariance to translation, what if we pool over separately parameterized convolutions?

- Invariance to local translation can be useful if we care more about whether a certain feature is present rather than exactly where it is
- Pooling over spatial regions produces invariance to translation, what if we pool over separately parameterized convolutions?
- Features can learn which transformations to become invariant to (Example: Maxout Networks, Goodfellow *et al* 2013)

- Invariance to local translation can be useful if we care more about whether a certain feature is present rather than exactly where it is
- Pooling over spatial regions produces invariance to translation, what if we pool over separately parameterized convolutions?
- Features can learn which transformations to become invariant to (Example: Maxout Networks, Goodfellow *et al* 2013)
- One more advantage: Since pooling is used for downsampling, it can be used to handle inputs of varying sizes

Next time

- More Architectures
- Variants on the CNN idea
- More motivation
- Group Equivariance
- Equivariance to Rotation

Quiz!