Lecture 7
Convolutional Neural Networks
CMSC 35246: Deep Learning

Shubhendu Trivedi
&
Risi Kondor

University of Chicago

April 17, 2017

Lecture 7 Convolutional Neural Networks CMSC 35246



We saw before:

~

A

I T2 3 Tq

@ A series of matrix multiplications:
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@ A series of matrix multiplications:
o x— Wixhy = f(Wlx)—
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We saw before:
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@ A series of matrix multiplications:
() X|—>W1TX|—>h1:f(WiTX)’—>W2Th1'—>h2:f(WéTh1)'—>
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@ A series of matrix multiplications:
() X|—>W1TX|—>h1:f(WiTX)’—>W2Th1'—>h2:f(WéTh1)'—>
W3Th2 — h3 = f(Wghg) —
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We saw before:
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FEFL
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@ A series of matrix multiplications:
() X|—>W1TX|—>h1:f(WiTX)’—>W2Th1'—>h2:f(WéTh1)'—>
W3Th2»—>h3:f(W3Th3)»—>WZh3:g)
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Convolutional Networks

@ Neural Networks that use convolution in place of general
matrix multiplication in atleast one layer
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Convolutional Networks

@ Neural Networks that use convolution in place of general
matrix multiplication in atleast one layer

o Next:
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Convolutional Networks

@ Neural Networks that use convolution in place of general
matrix multiplication in atleast one layer

o Next:

e What is convolution?
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Convolutional Networks

@ Neural Networks that use convolution in place of general
matrix multiplication in atleast one layer

o Next:

e What is convolution?
e What is pooling?
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Convolutional Networks

@ Neural Networks that use convolution in place of general
matrix multiplication in atleast one layer
o Next:
e What is convolution?
e What is pooling?
e What is the motivation for such architectures (remember
LeNet?)
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LeNet-5 (LeCun, 1998)

o Ca:1. maps 16@10x10
: feature maps S4:1. maps 16@5x5
INFUT 6@28x28 5160

32332 S2: f. maps OS:layer Fg; jayer OUTPUT
120 A 10

sl B
T

|
FuHcon*ecl\on | Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

@ The original Convolutional Neural Network model goes back
to 1989 (LeCun)
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AlexNet (Krizhevsky, Sutskever, Hinton 2012)

@ ImageNet 2012 15.4% error rate
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Convolutional Neural Networks
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Figure: Andrej Karpathy
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Now let's deconstruct them...
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Grayscale Image

Convolution

Kernel

wr

ws

Wy

Wy

Ws

We

w1

w2

w3

Feature Map

e Convolve image with kernel having weights w (learned by

backpropagation)
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Convolution
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Convolution
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NAVANAVANAAN

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

NAVANAVANAAN

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

JNAVAAVANANAN

NAVANAVANAAN

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

MNAVANAVANAVAN
(AVANAVANANAN

©
<
N
o
®
(9]
)
>
(9]




Convolution

AANN AN

NAVAAVANANAN

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

=
L
L
L
>
-

\W/ANMYANANAN

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

(NAVANAVANA VAN

©
<
N
o
®
(9]
)
>
(9]




Convolution

©
<
N
o
®
(9]
)
>
(9]




Convolution

(AVANAVANANAN

©
<
N
o
®
(9]
)
>
(9]




Convolution

(AVANAVANANAN

©
<
N
o
®
(9]
)
>
(9]




Convolution

JNAVAAVANANAN

NAVANAVANAAN

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

MNAVANAVANAVAN
(AVANAVANANAN

©
<
N
o
®
(9]
)
>
(9]




Convolution

AANN AN

NAVAAVANANAN

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

NANANANANAN

P
L
L
L
>
P

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

(NAVANAVANA VAN

©
<
N
o
®
(9]
)
>
(9]




Convolution

A YA NAN
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Convolution
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Convolution

NAVAAVANANAN

NAVAAVANANAN

@ What is the number of parameters?
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-
Output Size

@ We used stride of 1, kernel with receptive field of size 3 by 3
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-
Output Size

@ We used stride of 1, kernel with receptive field of size 3 by 3

o Output size:
N-K

S

+1

Lecture 7 Convolutional Neural Networks CMSC 35246



-
Output Size

@ We used stride of 1, kernel with receptive field of size 3 by 3

o Output size:
N-K

S

+1

@ In previous example: N =6, K = 3,5 =1, Output size =4
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-
Output Size

@ We used stride of 1, kernel with receptive field of size 3 by 3

o Output size:
N-K

1
g +

@ In previous example: N =6, K = 3,5 = 1, Output size =4
@ For N =8, K =3,5 =1, output size is 6
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-
Zero Padding

@ Often, we want the output of a convolution to have the same
size as the input. Solution: Zero padding.
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-
Zero Padding

@ Often, we want the output of a convolution to have the same
size as the input. Solution: Zero padding.

@ In our previous example:

@ Common to see convolution layers with stride of 1, filters of
K—1

size K, and zero padding with 5= to preserve size
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-
Learn Multiple Filters

AN NN
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-
Learn Multiple Filters

o If we use 100 filters, we get 100 feature maps

Figure: |. Kokkinos
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In General

@ We have only considered a 2-D image as a running example
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In General

@ We have only considered a 2-D image as a running example

@ But we could operate on volumes (e.g. RGB Images would be
depth 3 input, filter would have same depth)
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In General

@ We have only considered a 2-D image as a running example

@ But we could operate on volumes (e.g. RGB Images would be
depth 3 input, filter would have same depth)

— depth
55585 height
- ~ 00000 ~ —
OOOOOK width
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-
In General: Output Size

@ For convolutional layer:
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-
In General: Output Size

@ For convolutional layer:
e Suppose input is of size W7 x Hy x Dy
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-
In General: Output Size

@ For convolutional layer:
e Suppose input is of size W7 x Hy x Dy
e Filter size is K and stride S
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-
In General: Output Size

@ For convolutional layer:
e Suppose input is of size W7 x Hy x Dy
o Filter size is K and stride S
e We obtain another volume of dimensions Wy x Hy X Dy
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-
In General: Output Size

@ For convolutional layer:
e Suppose input is of size W7 x Hy x Dy
o Filter size is K and stride S
e We obtain another volume of dimensions Wy x Hy X Dy
e As before:
W, — K H - K

W2:T+1andH2:T+1
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-
In General: Output Size

@ For convolutional layer:

Suppose input is of size Wy x Hy x D1

Filter size is K and stride S

We obtain another volume of dimensions Wy x Hy X Doy
As before:

W, — K H - K
W2:1T+landH2:lT+1

Depths will be equal
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Convolutional Layer Parameters

Example volume: 28 x 28 x 3 (RGB Image)
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Convolutional Layer Parameters

Example volume: 28 x 28 x 3 (RGB Image)
100 3 x 3 filters, stride 1
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Convolutional Layer Parameters

Example volume: 28 x 28 x 3 (RGB Image)
100 3 x 3 filters, stride 1
What is the zero padding needed to preserve size?
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Convolutional Layer Parameters

Example volume: 28 x 28 x 3 (RGB Image)

100 3 x 3 filters, stride 1

What is the zero padding needed to preserve size?
Number of parameters in this layer?
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Convolutional Layer Parameters

Example volume: 28 x 28 x 3 (RGB Image)

100 3 x 3 filters, stride 1

What is the zero padding needed to preserve size?
Number of parameters in this layer?

For every filter: 3 x 3 x 3 4+ 1 = 28 parameters
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Convolutional Layer Parameters

Example volume: 28 x 28 x 3 (RGB Image)

100 3 x 3 filters, stride 1

What is the zero padding needed to preserve size?
Number of parameters in this layer?

For every filter: 3 x 3 x 3 4+ 1 = 28 parameters
Total parameters: 100 x 28 = 2800
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RELU RELU| RELU RELU| RELU RELU
CONV | conv corwlcowl CONVlCONVl

EERRARY

Figure: Andrej Karpathy
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Non-Linearity

@ After obtaining feature map, apply an elementwise
non-linearity to obtain a transformed feature map (same size)
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RELU RELU| RELU RELU| RELU RELU
CONV | conv corwlcowl CONVlCONVl

EERRARY

Figure: Andrej Karpathy
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Pooling
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-
Pooling

ax{a;}
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-
Pooling
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Pooling




-
Pooling

@ Other options: Average pooling, L2-norm pooling, random
pooling
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Pooling

@ We have multiple feature maps, and get an equal number of
subsampled maps
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Pooling

@ We have multiple feature maps, and get an equal number of
subsampled maps

@ This changes if cross channel pooling is done
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-
So what’s left: Fully Connected Layers

RELU RELU RELU RELU RELU RELU
CONVlCONVl CONVlCONVl CONVlCONVl

¢ |

Figure: Andrej Karpathy
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LeNet-5

C3:1. maps 16@10x10
i C1: feature maps S4:1. maps 16@5%5

shet _— Siait WT— l"rr
IT_ r

|
‘ Full conflection | Gaussian connections
Convolutions ~ Subsampling Full connection

C5:layer gg: jayer OUTPUT
{0 s 0

Convolutions Subsampling

@ Filters are of size 5 x 5, stride 1
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LeNet-5

C3:f. maps 16@10x10
i C1: feature maps
Lo 6@28x28

s W_ "r
T

IT_
\

Convolutions

Convolutions

Subsampling

@ Filters are of size 5 x 5, stride 1

@ Pooling is 2 x 2, with stride 2

Lecture 7 Convolutional Neural Networks

'k

Subsampling

S4:1. maps 16@5%5

C5:layer gg: jayer OUTPUT
{0 s 0

|
Full conflection | Gaussian connections
Full connection




LeNet-5

C3:1. maps 16@10x10
i C1: feature maps S4:1. maps 16@5%5

e B WT_ rl_r
IT_ o

C5:layer gg: jayer OUTPUT
{0 s 0

|
Full conflection | Gaussian connections
Convolutions ~ Subsampling Full connection

Convolutions Subsampling

@ Filters are of size 5 x 5, stride 1
@ Pooling is 2 x 2, with stride 2

@ How many parameters?
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AlexNet

3 | 3
\ i - EIEN 3
X = . 3
3 - ]
192 152 16 2088 \/ 26as \dense
o7 128 -
13 13 k 13
B . j NS A
\ 3 [ 3 8
by E \‘ 3J 13 13 [dens:
3 1000
192 192 128 Max
Max T Max pooling 9% 2048
paoling pooling

@ Input image: 227 X 227 X 3
°

First convolutional layer: 96 filters with K = 11 applied with
stride = 4

Width and height of output: 227711 + 1 = 55
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AlexNet

s |
e[ A
o 3
3 ]
J o 192 192
27 128 =
13 13
0 3
, 5 =l .
\| ) [ EIN G -
N 3 \\ 3J e
\ 3
192 192
Max 128 Max
paoling pooling

@ Number of parameters in first layer?
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AlexNet

s | 3
\ L g RN 3
e — 3|
3 | d
n 192 192 128 2048 \/ 2048 \dense
27 128 =
A 13 13 13
\ . —|l :
o iy :
7 3 \‘ 3J FES 12
J’ 3 1000
152 192 128 Max
Max 128 Max pooling 208 2048
pooling pooling

@ Number of parameters in first layer?
e 11 X 11 X 3 X 96 = 34848
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AlexNet

i }h
o |®
‘“/I/l\w/“"
g
B
g
5

13 13
\ J 2
-\ 3 3 A ;
NCE 3 \\ 3\
J’ 192 192
Max T Max
pooling pooling
48

@ Next layer: Pooling with 3 X 3 filters, stride of 2
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AlexNet

i }h
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g
B
%
5
]

2045' 2as \dense
13 AARE!
[ [ =
|
E|
k ol 3 1] = idens
N 3 ol 3\ 13
3 1600
2 o3 T8 Max
Max 58— Max pooling 2079 2048
pooling pooling

a8

@ Next layer: Pooling with 3 X 3 filters, stride of 2
@ Size of output volume: 27
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AlexNet

i }»
ARyt
‘“/I/l\w/“"
g
B
%
5
]

2045' 2as \dense
AARE!
. [ 5 Jl z
k ol A idens
N 3 \ |\ 13
{ 3 1500
2 193 T8 Max
Max T Max pooling 9% 2048
paoling pooling

a8

@ Next layer: Pooling with 3 X 3 filters, stride of 2
@ Size of output volume: 27

@ Number of parameters?
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AlexNet

3
K EN ..
< Eje 3|
£ | I | )
3| 7 ]
h i, 152 192
5 128
13 13
N P 3
. ] =
3\ EI 3| ;
N 3 \\ 3J =
\ 3
192 192
Max T Max pooling 0% 2048
pooling pooling

o Popularized the use of RelLUs
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e
AlexNet

| 3
N ER "
\ ; i EN
Ei} ‘l A 3 ’] 3
s i N !
.y 152 192
o 128 »
\ Ve 13
v o A 3
. ] =
3\ EIl N fl
‘~’_:1 3 \‘ bl =
—3 -
192 192
Max T Max pooling 2098 2048
pooling pooling

o Popularized the use of RelLUs

@ Used heavy data augmentation (flipped images, random crops
of size 227 by 227)
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e
AlexNet

Sab \dense

2
52 192 128 Max

Max T Max pooling  *0%
pooling pooling

o Popularized the use of RelLUs
@ Used heavy data augmentation (flipped images, random crops
of size 227 by 227)

@ Parameters: Dropout rate 0.5, Batch size = 128, Weight
decay term: 0.0005 ,Momentum term o = 0.9, learning rate n
= 0.01, manually reduced by factor of ten on monitoring
validation loss.
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Short Digression: How do the features look like?
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Layer 1 filters

HEV AN

axlN B
HXA BRI o7

This and the next few illustrations are from Rob Fergus
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Layer 2 Patches

s ke q
X E 5
i
.
0 4 ©
If ; |
= 2]
£ 2
. 4 ¢
& - ) .
)
) C Wi ]
L . —

- Patches from validation images that give maximal activation of a given feature map =




Layer 2 Patches
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Layer 3 Patches

../
-J\.

I-I ;,'_]"' ‘ "i‘ud o
1 I" : Q%. ‘e wll
:,*41

L N ~-g. E r'-~
;,_lx\m\ I“‘l"‘?‘—“
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Layer 3 Patches
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Layer 4 Patches

% ‘:A‘ a ; & ]M..-:
g N

Py
o f" t
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Layer 4 Patches
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Evolution of Filters

ey s e S o,

Frir
o O B N AN Y N
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Evolution of Filters

Caveat?
=
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Back to Architectures
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-
ImageNet 2013

@ Was won by a network similar to AlexNet (Matthew Zeiler
and Rob Fergus)
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-
ImageNet 2013

@ Was won by a network similar to AlexNet (Matthew Zeiler
and Rob Fergus)

@ Changed the first convolutional layer from 11 X 11 with stride
of 4, to 7 X 7 with stride of 2
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-
ImageNet 2013

@ Was won by a network similar to AlexNet (Matthew Zeiler
and Rob Fergus)

@ Changed the first convolutional layer from 11 X 11 with stride
of 4, to 7 X 7 with stride of 2

@ AlexNet used 384, 384 and 256 layers in the next three
convolutional layers, ZF used 512, 1024, 512
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-
ImageNet 2013

@ Was won by a network similar to AlexNet (Matthew Zeiler
and Rob Fergus)

@ Changed the first convolutional layer from 11 X 11 with stride
of 4, to 7 X 7 with stride of 2

@ AlexNet used 384, 384 and 256 layers in the next three
convolutional layers, ZF used 512, 1024, 512

o ImageNet 2013: 14.8 % (reduced from 15.4 %) (top 5 errors)
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- ________________________________________
VGGNet(Simonyan and Zisserman, 2014)

ComNet Configuration
A [ AIRN | B c I
TTweight | 11 weight | 13 weight | T6weight | 16 weight | 19 weizht
layers ‘ layers layers layers ‘ layers ‘ layers
Tuput (221 < 221 RGB
Com3-64 | com3-64 | cowd-64 | cowd-61 | comi-6d | com3-6
LRN | comv3-64 | com3-64 | com3-64 | comv3-64
‘maspool
com3-128 | comv3-128 | comv3-128 | comv comv3-128
conv3-128 | conv com3-128
‘maspool
cons- 56 | com3-236 | com3-236
con- conv3-256 | com3-256
conv1-256 | conv3-256
maspoal
Com3-312 | com3-312 | com3-312 | com3-312 | com3-312 | coma-3i
cony3-512 | com3-512 | com3-512 | com3-512 | com3-512 | comv3-512
conv1-512 | conv3-512 | conv
cony
)
Com3-312 | com3-312 | com3S12 2 T com3312
com3-512 | com3-512 | comv3 onv3-512 | comv3-512
conv1-512 | comy3-512
‘maspol
FCA096
FC-4096
FC-1000
Soff-max.
Table 2: Number of parameters (in millions).
Network AAIRN [ B [ C [ D [ E
Number of parameters | 133 | 133 | 134 | 138 | 144

@ Best model: Column D.

@ Error: 7.3 % (top five error)

volutional Neural Networks




- ________________________________________
VGGNet(Simonyan and Zisserman, 2014)

e Total number of parameters: 138 Million (calculate!)
e Memory (Karpathy): 24 Million X 4 bytes ~ 93 MB per image
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- ________________________________________
VGGNet(Simonyan and Zisserman, 2014)

e Total number of parameters: 138 Million (calculate!)
e Memory (Karpathy): 24 Million X 4 bytes ~ 93 MB per image

@ For backward pass the memory usage is doubled per image
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- ________________________________________
VGGNet(Simonyan and Zisserman, 2014)

Total number of parameters: 138 Million (calculate!)
Memory (Karpathy): 24 Million X 4 bytes ~ 93 MB per image

For backward pass the memory usage is doubled per image

Observations:

e Early convolutional layers take most memory
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- ________________________________________
VGGNet(Simonyan and Zisserman, 2014)

Total number of parameters: 138 Million (calculate!)
Memory (Karpathy): 24 Million X 4 bytes ~ 93 MB per image

For backward pass the memory usage is doubled per image

Observations:

e Early convolutional layers take most memory
e Most parameters are in the fully connected layers
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-
Going Deeper

Classification: ImageNet Challenge top-5 error

152 layers
A
\
\\
\
\
\\
22 layers 19 Iavers ‘
\ 6.7

3'.57] I» N I 8 layers 8 layers shallow

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

28.2

Figure: Kaiming He, MSR

olutional Neural Networks



Network in Network

(b) Mipconv layer

M. Lin, Q. Chen, S. Yan, Network in Network, ICLR 2014
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Google LeNet

Szegedy et al, Going Deeper With Convolutions, CVPR 2015

@ Error: 6.7 % (top five error)

Lecture 7 Convolutional Neural Networks CMSC 35246



The Inception Module

Filter
concatenation

—_
i —_—

-
-

— 3x3 convolutions 5x5 convolutions 1x1 convelutions

1x1 convolutions § 4 ; 4

LY . 1x1 convalutions 1x1 convolutions 3x3 max paoling
\\_, [
. = =

e ae—

-

Previous layer

@ Parallel paths with different receptive field sizes - capture
sparse patterns of correlation in stack of feature maps

@ Also include auxiliary classifiers for ease of training

@ Also note 1 by 1 convolutions
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-
Google LeNet

type P'::ﬁ;e ! T depth | #1x1 f::: #3%3 f::: #5%5 E params ops

convolution TXT/2 112x112x64 1 27K 34M
‘max pool 3x3/2 565664 0

convolution 3x3/1 56X 563192 2 64 192 112K 360M
‘max pool 3x3/2 28x28x192 0

inception (3a) 28 x28x256 2 o4 96 128 16 32 32 159K 128M
inception (3b) 28X 28X 480 2 128 128 192 32 96 64 380K 304M
max pool 3%3/2 14% 14X 480 0

inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 3M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14x14%x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14%14x528 2 112 144 288 32 64 64 SBOK 119M
inception (4¢) 14x14x832 2 256 160 320 32 128 128 840K 170M
‘max pool 3x3/2 7x7x832 0

inception (Sa) TXTX832 2 256 160 320 32 128 128 102K 54M
inception (5b) 7X7x%1024 2 384 192 384 48 128 128 1388K 7IM
avg pool 7x7/1 1x1x1024 0

dropout (40%) 1X1x1024 0

linear 1x1x1000 1 1000K M

softmax 1x1x1000 [

C. Szegedy et al, Going Deeper With Convolutions, CVPR 2015
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Google LeNet

@ Has 5 Million or 12X fewer parameters than AlexNet
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-
Google LeNet

@ Has 5 Million or 12X fewer parameters than AlexNet

@ Gets rid of fully connected layers
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Inception v2, v3

Filter Concat
—

:733

EEE

C. Szegedy et al, Rethinking the Inception Architecture for Computer Vision, CVPR 2016

@ Use Batch Normalization during training to reduce
dependence on auxiliary classifiers

@ More aggressive factorization of filters
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Why do CNNs make sense? (Brain Stuff next time)
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Convolutions: Motivation

@ Convolution leverages four ideas that can help ML systems:
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Convolutions: Motivation

@ Convolution leverages four ideas that can help ML systems:

Sparse interactions

Parameter sharing

Equivariant representations

Ability to work with inputs of variable size

e Sparse Interactions

e Plain Vanilla NN (y € R",z € R™): Need matrix
multiplication y = Wz to compute activations for each
layer (every output interacts with every input)
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Convolutions: Motivation

@ Convolution leverages four ideas that can help ML systems:

Sparse interactions

Parameter sharing

Equivariant representations

Ability to work with inputs of variable size

e Sparse Interactions

e Plain Vanilla NN (y € R",z € R™): Need matrix
multiplication y = Wz to compute activations for each
layer (every output interacts with every input)

e Convolutional networks have sparse interactions by
making kernel smaller than input

e — need to store fewer parameters, computing output
needs fewer operations (O(m x n) versus O(k x n))
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Motivation: Sparse Connectivity

@ Fully connected network: hj3 is computed by full matrix

multiplication with no sparse connectivity
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Lecture 7 Con



Motivation: Sparse Connectivity

hl hg h3 h4 h5 hG

o Kernel of size 3, moved with stride of 1
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Motivation: Sparse Connectivity

h1 ha h3 ha hs he

o Kernel of size 3, moved with stride of 1

@ hs only depends on x2, x3, 4
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Motivation: Sparse Connectivity

Ea Z2 x3 T4 T5 Te

@ Connections in CNNs are sparse, but units in deeper layers are
connected to all of the input (larger receptive field sizes)
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Motivation: Parameter Sharing

@ Plain vanilla NN: Each element of W is used exactly once to
compute output of a layer
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Motivation: Parameter Sharing

@ Plain vanilla NN: Each element of W is used exactly once to
compute output of a layer

@ In convolutional networks, parameters are tied: weight applied
to one input is tied to value of a weight applied elsewhere

@ Same kernel is used throughout the image, so instead learning
a parameter for each location, only a set of parameters is
learnt
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Motivation: Parameter Sharing

@ Plain vanilla NN: Each element of W is used exactly once to
compute output of a layer

@ In convolutional networks, parameters are tied: weight applied
to one input is tied to value of a weight applied elsewhere

@ Same kernel is used throughout the image, so instead learning
a parameter for each location, only a set of parameters is
learnt

e Forward propagation remains unchanged O(k X n)
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Motivation: Parameter Sharing

@ Plain vanilla NN: Each element of W is used exactly once to
compute output of a layer

@ In convolutional networks, parameters are tied: weight applied
to one input is tied to value of a weight applied elsewhere

@ Same kernel is used throughout the image, so instead learning
a parameter for each location, only a set of parameters is
learnt

e Forward propagation remains unchanged O(k X n)

@ Storage improves dramatically as k < m,n
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Motivation: Equivariance

o Let's first formally define convolution:
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Motivation: Equivariance

o Let's first formally define convolution:

s(t) = (zxw)(t) = /m(a)w(t —a)da

@ In Convolutional Network terminology x is referred to as
input, w as the kernel and s as the feature map
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o Let's first formally define convolution:

s(t) = (zxw)(t) = /m(a)w(t —a)da

@ In Convolutional Network terminology x is referred to as
input, w as the kernel and s as the feature map

@ Discrete Convolution:
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Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Equivariance

Let's first formally define convolution:

s(t) = (zxw)(t) = /m(a)w(t —a)da

In Convolutional Network terminology x is referred to as
input, w as the kernel and s as the feature map

Discrete Convolution:

S(i,j)=UI=*K)(@ ZZImn —m,j—mn)

Convolution is commutative, thus:
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Motivation: Equivariance

Let's first formally define convolution:

s(t) = (zxw)(t) = /m(a)w(t —a)da

In Convolutional Network terminology x is referred to as
input, w as the kernel and s as the feature map

Discrete Convolution:

S, 7)== K)(i ZZImn (i—m,j—n)

Convolution is commutative, thus:

S(i,j) = (I = K)(i ZZIz—mJ—n)K( n)
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Aside

@ The latter is usually more straightforward to implement in ML
libraries (less variation in range of valid values of m and n)

Lecture 7 Convolutional Neural Networks CMSC 35246



Aside

@ The latter is usually more straightforward to implement in ML
libraries (less variation in range of valid values of m and n)

@ Neither are usually used in practice in Neural Networks

Lecture 7 Convolutional Neural Networks CMSC 35246



Aside

@ The latter is usually more straightforward to implement in ML
libraries (less variation in range of valid values of m and n)

@ Neither are usually used in practice in Neural Networks

o Libraries implement Cross Correlation, same as convolution,
but without flipping the kernel
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Aside

@ The latter is usually more straightforward to implement in ML
libraries (less variation in range of valid values of m and n)

@ Neither are usually used in practice in Neural Networks

o Libraries implement Cross Correlation, same as convolution,
but without flipping the kernel

S(i,j) = (I« K)(i ZZI2+mJ+n)K( n)
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Motivation: Equivariance

e Equivariance: f is equivariant to g if f(g(x)) = g(f(x))
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Motivation: Equivariance

e Equivariance: f is equivariant to g if f(g(x)) = g(f(x))
@ The form of parameter sharing used by CNNs causes each
layer to be equivariant to translation
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Motivation: Equivariance

e Equivariance: f is equivariant to g if f(g(x)) = g(f(x))
@ The form of parameter sharing used by CNNs causes each
layer to be equivariant to translation

e That is, if g is any function that translates the input, the
convolution function is equivariant to g
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Motivation: Equivariance

@ Implication: While processing time series data, convolution
produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)
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Motivation: Equivariance

@ Implication: While processing time series data, convolution
produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)

@ Images: If we move an object in the image, its representation
will move the same amount in the output
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produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)

@ Images: If we move an object in the image, its representation
will move the same amount in the output

@ This property is useful when we know some local function is
useful everywhere (e.g. edge detectors)
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Motivation: Equivariance

@ Implication: While processing time series data, convolution
produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)

@ Images: If we move an object in the image, its representation
will move the same amount in the output

@ This property is useful when we know some local function is
useful everywhere (e.g. edge detectors)

e Convolution is not equivariant to other operations such as
change in scale or rotation
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Pooling: Motivation

@ Pooling helps the representation become slightly invariant to
small translations of the input
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@ Pooling helps the representation become slightly invariant to
small translations of the input

@ Reminder: Invariance: f(g(x)) = f(x)
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Pooling: Motivation

@ Pooling helps the representation become slightly invariant to
small translations of the input

@ Reminder: Invariance: f(g(x)) = f(x)

o If input is translated by small amount: values of most pooled
outputs don’t change
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Pooling: Invariance

POOLING STAGE

DETECTOR STAGE

POOLING STAGE

DETECTOR STAGE

Figure: Goodfellow et al.
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Pooling

@ Invariance to local translation can be useful if we care more
about whether a certain feature is present rather than exactly
where it is
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Pooling

@ Invariance to local translation can be useful if we care more
about whether a certain feature is present rather than exactly
where it is

@ Pooling over spatial regions produces invariance to translation,
what if we pool over separately parameterized convolutions?
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Pooling

@ Invariance to local translation can be useful if we care more
about whether a certain feature is present rather than exactly
where it is

@ Pooling over spatial regions produces invariance to translation,
what if we pool over separately parameterized convolutions?

@ Features can learn which transformations to become invariant
to (Example: Maxout Networks, Goodfellow et al 2013)
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Pooling

@ Invariance to local translation can be useful if we care more
about whether a certain feature is present rather than exactly
where it is

@ Pooling over spatial regions produces invariance to translation,
what if we pool over separately parameterized convolutions?

@ Features can learn which transformations to become invariant
to (Example: Maxout Networks, Goodfellow et al 2013)

@ One more advantage: Since pooling is used for downsampling,
it can be used to handle inputs of varying sizes
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Next time

More Architectures
Variants on the CNN idea
More motivation

Group Equivariance

Equivariance to Rotation
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Quiz!
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