
Lecture 7
Convolutional Neural Networks

CMSC 35246: Deep Learning

Shubhendu Trivedi
&

Risi Kondor

University of Chicago

April 17, 2017

Lecture 7 Convolutional Neural Networks CMSC 35246



We saw before:

x1 x2 x3 x4

ŷ

A series of matrix multiplications:

x 7→W T
1 x 7→ h1 = f(W T

1 x) 7→W T
2 h1 7→ h2 = f(W T

2 h1) 7→
W T

3 h2 7→ h3 = f(W T
3 h3) 7→W T

4 h3 = ŷ

Lecture 7 Convolutional Neural Networks CMSC 35246



We saw before:

x1 x2 x3 x4

ŷ

A series of matrix multiplications:

x 7→

W T
1 x 7→ h1 = f(W T

1 x) 7→W T
2 h1 7→ h2 = f(W T

2 h1) 7→
W T

3 h2 7→ h3 = f(W T
3 h3) 7→W T

4 h3 = ŷ

Lecture 7 Convolutional Neural Networks CMSC 35246



We saw before:

x1 x2 x3 x4

ŷ

A series of matrix multiplications:

x 7→W T
1 x 7→ h1 = f(W T

1 x) 7→

W T
2 h1 7→ h2 = f(W T

2 h1) 7→
W T

3 h2 7→ h3 = f(W T
3 h3) 7→W T

4 h3 = ŷ

Lecture 7 Convolutional Neural Networks CMSC 35246



We saw before:

x1 x2 x3 x4

ŷ

A series of matrix multiplications:

x 7→W T
1 x 7→ h1 = f(W T

1 x) 7→W T
2 h1 7→ h2 = f(W T

2 h1) 7→

W T
3 h2 7→ h3 = f(W T

3 h3) 7→W T
4 h3 = ŷ

Lecture 7 Convolutional Neural Networks CMSC 35246



We saw before:

x1 x2 x3 x4

ŷ

A series of matrix multiplications:

x 7→W T
1 x 7→ h1 = f(W T

1 x) 7→W T
2 h1 7→ h2 = f(W T

2 h1) 7→
W T

3 h2 7→ h3 = f(W T
3 h3) 7→

W T
4 h3 = ŷ

Lecture 7 Convolutional Neural Networks CMSC 35246



We saw before:

x1 x2 x3 x4

ŷ

A series of matrix multiplications:

x 7→W T
1 x 7→ h1 = f(W T

1 x) 7→W T
2 h1 7→ h2 = f(W T

2 h1) 7→
W T

3 h2 7→ h3 = f(W T
3 h3) 7→W T

4 h3 = ŷ

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutional Networks

Neural Networks that use convolution in place of general
matrix multiplication in atleast one layer

Next:

• What is convolution?
• What is pooling?
• What is the motivation for such architectures (remember

LeNet?)

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutional Networks

Neural Networks that use convolution in place of general
matrix multiplication in atleast one layer

Next:

• What is convolution?
• What is pooling?
• What is the motivation for such architectures (remember

LeNet?)

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutional Networks

Neural Networks that use convolution in place of general
matrix multiplication in atleast one layer

Next:

• What is convolution?

• What is pooling?
• What is the motivation for such architectures (remember

LeNet?)

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutional Networks

Neural Networks that use convolution in place of general
matrix multiplication in atleast one layer

Next:

• What is convolution?
• What is pooling?

• What is the motivation for such architectures (remember
LeNet?)

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutional Networks

Neural Networks that use convolution in place of general
matrix multiplication in atleast one layer

Next:

• What is convolution?
• What is pooling?
• What is the motivation for such architectures (remember

LeNet?)

Lecture 7 Convolutional Neural Networks CMSC 35246



LeNet-5 (LeCun, 1998)

The original Convolutional Neural Network model goes back
to 1989 (LeCun)

Lecture 7 Convolutional Neural Networks CMSC 35246



AlexNet (Krizhevsky, Sutskever, Hinton 2012)

ImageNet 2012 15.4% error rate

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutional Neural Networks

Figure: Andrej Karpathy

Lecture 7 Convolutional Neural Networks CMSC 35246



Now let’s deconstruct them...

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Grayscale Image

Kernel

w1 w2 w3

w4 w5 w6

w7 w8 w9

Feature Map

Convolve image with kernel having weights w (learned by
backpropagation)

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolution

wTx

What is the number of parameters?

Lecture 7 Convolutional Neural Networks CMSC 35246



Output Size

We used stride of 1, kernel with receptive field of size 3 by 3

Output size:
N −K
S

+ 1

In previous example: N = 6,K = 3, S = 1, Output size = 4

For N = 8,K = 3, S = 1, output size is 6

Lecture 7 Convolutional Neural Networks CMSC 35246



Output Size

We used stride of 1, kernel with receptive field of size 3 by 3

Output size:
N −K
S

+ 1

In previous example: N = 6,K = 3, S = 1, Output size = 4

For N = 8,K = 3, S = 1, output size is 6

Lecture 7 Convolutional Neural Networks CMSC 35246



Output Size

We used stride of 1, kernel with receptive field of size 3 by 3

Output size:
N −K
S

+ 1

In previous example: N = 6,K = 3, S = 1, Output size = 4

For N = 8,K = 3, S = 1, output size is 6

Lecture 7 Convolutional Neural Networks CMSC 35246



Output Size

We used stride of 1, kernel with receptive field of size 3 by 3

Output size:
N −K
S

+ 1

In previous example: N = 6,K = 3, S = 1, Output size = 4

For N = 8,K = 3, S = 1, output size is 6

Lecture 7 Convolutional Neural Networks CMSC 35246



Zero Padding

Often, we want the output of a convolution to have the same
size as the input. Solution: Zero padding.

In our previous example:

0 0 0 0 0 0 0 0

0

0

0

0

0

0

00 0 0 0 0 0 0 0

0

0

0

0

0

0

0

Common to see convolution layers with stride of 1, filters of
size K, and zero padding with K−1

2 to preserve size

Lecture 7 Convolutional Neural Networks CMSC 35246



Zero Padding

Often, we want the output of a convolution to have the same
size as the input. Solution: Zero padding.

In our previous example:

0 0 0 0 0 0 0 0

0

0

0

0

0

0

00 0 0 0 0 0 0 0

0

0

0

0

0

0

0

Common to see convolution layers with stride of 1, filters of
size K, and zero padding with K−1

2 to preserve size

Lecture 7 Convolutional Neural Networks CMSC 35246



Learn Multiple Filters

Lecture 7 Convolutional Neural Networks CMSC 35246



Learn Multiple Filters

If we use 100 filters, we get 100 feature maps

Figure: I. Kokkinos

Lecture 7 Convolutional Neural Networks CMSC 35246



In General

We have only considered a 2-D image as a running example

But we could operate on volumes (e.g. RGB Images would be
depth 3 input, filter would have same depth)

Lecture 7 Convolutional Neural Networks CMSC 35246



In General

We have only considered a 2-D image as a running example

But we could operate on volumes (e.g. RGB Images would be
depth 3 input, filter would have same depth)

Lecture 7 Convolutional Neural Networks CMSC 35246



In General

We have only considered a 2-D image as a running example

But we could operate on volumes (e.g. RGB Images would be
depth 3 input, filter would have same depth)

Lecture 7 Convolutional Neural Networks CMSC 35246



In General: Output Size

For convolutional layer:

• Suppose input is of size W1 ×H1 ×D1

• Filter size is K and stride S
• We obtain another volume of dimensions W2 ×H2 ×D2

• As before:

W2 =
W1 −K

S
+ 1 and H2 =

H1 −K
S

+ 1

• Depths will be equal

Lecture 7 Convolutional Neural Networks CMSC 35246



In General: Output Size

For convolutional layer:

• Suppose input is of size W1 ×H1 ×D1

• Filter size is K and stride S
• We obtain another volume of dimensions W2 ×H2 ×D2

• As before:

W2 =
W1 −K

S
+ 1 and H2 =

H1 −K
S

+ 1

• Depths will be equal

Lecture 7 Convolutional Neural Networks CMSC 35246



In General: Output Size

For convolutional layer:

• Suppose input is of size W1 ×H1 ×D1

• Filter size is K and stride S

• We obtain another volume of dimensions W2 ×H2 ×D2

• As before:

W2 =
W1 −K

S
+ 1 and H2 =

H1 −K
S

+ 1

• Depths will be equal

Lecture 7 Convolutional Neural Networks CMSC 35246



In General: Output Size

For convolutional layer:

• Suppose input is of size W1 ×H1 ×D1

• Filter size is K and stride S
• We obtain another volume of dimensions W2 ×H2 ×D2

• As before:

W2 =
W1 −K

S
+ 1 and H2 =

H1 −K
S

+ 1

• Depths will be equal

Lecture 7 Convolutional Neural Networks CMSC 35246



In General: Output Size

For convolutional layer:

• Suppose input is of size W1 ×H1 ×D1

• Filter size is K and stride S
• We obtain another volume of dimensions W2 ×H2 ×D2

• As before:

W2 =
W1 −K

S
+ 1 and H2 =

H1 −K
S

+ 1

• Depths will be equal

Lecture 7 Convolutional Neural Networks CMSC 35246



In General: Output Size

For convolutional layer:

• Suppose input is of size W1 ×H1 ×D1

• Filter size is K and stride S
• We obtain another volume of dimensions W2 ×H2 ×D2

• As before:

W2 =
W1 −K

S
+ 1 and H2 =

H1 −K
S

+ 1

• Depths will be equal

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutional Layer Parameters

Example volume: 28× 28× 3 (RGB Image)

100 3× 3 filters, stride 1
What is the zero padding needed to preserve size?
Number of parameters in this layer?
For every filter: 3× 3× 3 + 1 = 28 parameters
Total parameters: 100× 28 = 2800

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutional Layer Parameters

Example volume: 28× 28× 3 (RGB Image)
100 3× 3 filters, stride 1

What is the zero padding needed to preserve size?
Number of parameters in this layer?
For every filter: 3× 3× 3 + 1 = 28 parameters
Total parameters: 100× 28 = 2800

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutional Layer Parameters

Example volume: 28× 28× 3 (RGB Image)
100 3× 3 filters, stride 1
What is the zero padding needed to preserve size?

Number of parameters in this layer?
For every filter: 3× 3× 3 + 1 = 28 parameters
Total parameters: 100× 28 = 2800

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutional Layer Parameters

Example volume: 28× 28× 3 (RGB Image)
100 3× 3 filters, stride 1
What is the zero padding needed to preserve size?
Number of parameters in this layer?

For every filter: 3× 3× 3 + 1 = 28 parameters
Total parameters: 100× 28 = 2800

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutional Layer Parameters

Example volume: 28× 28× 3 (RGB Image)
100 3× 3 filters, stride 1
What is the zero padding needed to preserve size?
Number of parameters in this layer?
For every filter: 3× 3× 3 + 1 = 28 parameters

Total parameters: 100× 28 = 2800

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutional Layer Parameters

Example volume: 28× 28× 3 (RGB Image)
100 3× 3 filters, stride 1
What is the zero padding needed to preserve size?
Number of parameters in this layer?
For every filter: 3× 3× 3 + 1 = 28 parameters
Total parameters: 100× 28 = 2800

Lecture 7 Convolutional Neural Networks CMSC 35246



Figure: Andrej Karpathy

Lecture 7 Convolutional Neural Networks CMSC 35246



Non-Linearity

max{0,wTx}

After obtaining feature map, apply an elementwise
non-linearity to obtain a transformed feature map (same size)

Lecture 7 Convolutional Neural Networks CMSC 35246



Figure: Andrej Karpathy

Lecture 7 Convolutional Neural Networks CMSC 35246



Pooling

Lecture 7 Convolutional Neural Networks CMSC 35246



Pooling

max{ai}

Lecture 7 Convolutional Neural Networks CMSC 35246



Pooling

max{ai}

Lecture 7 Convolutional Neural Networks CMSC 35246



Pooling

max{ai}

Lecture 7 Convolutional Neural Networks CMSC 35246



Pooling

max{ai}

Other options: Average pooling, L2-norm pooling, random
pooling

Lecture 7 Convolutional Neural Networks CMSC 35246



Pooling

We have multiple feature maps, and get an equal number of
subsampled maps

This changes if cross channel pooling is done

Lecture 7 Convolutional Neural Networks CMSC 35246



Pooling

We have multiple feature maps, and get an equal number of
subsampled maps

This changes if cross channel pooling is done

Lecture 7 Convolutional Neural Networks CMSC 35246



So what’s left: Fully Connected Layers

Figure: Andrej Karpathy

Lecture 7 Convolutional Neural Networks CMSC 35246



LeNet-5

Filters are of size 5× 5, stride 1

Pooling is 2× 2, with stride 2

How many parameters?

Lecture 7 Convolutional Neural Networks CMSC 35246



LeNet-5

Filters are of size 5× 5, stride 1

Pooling is 2× 2, with stride 2

How many parameters?

Lecture 7 Convolutional Neural Networks CMSC 35246



LeNet-5

Filters are of size 5× 5, stride 1

Pooling is 2× 2, with stride 2

How many parameters?

Lecture 7 Convolutional Neural Networks CMSC 35246



AlexNet

Input image: 227 X 227 X 3

First convolutional layer: 96 filters with K = 11 applied with
stride = 4

Width and height of output: 227−11
4 + 1 = 55

Lecture 7 Convolutional Neural Networks CMSC 35246



AlexNet

Number of parameters in first layer?

11 X 11 X 3 X 96 = 34848

Lecture 7 Convolutional Neural Networks CMSC 35246



AlexNet

Number of parameters in first layer?

11 X 11 X 3 X 96 = 34848

Lecture 7 Convolutional Neural Networks CMSC 35246



AlexNet

Next layer: Pooling with 3 X 3 filters, stride of 2

Size of output volume: 27

Number of parameters?

Lecture 7 Convolutional Neural Networks CMSC 35246



AlexNet

Next layer: Pooling with 3 X 3 filters, stride of 2

Size of output volume: 27

Number of parameters?

Lecture 7 Convolutional Neural Networks CMSC 35246



AlexNet

Next layer: Pooling with 3 X 3 filters, stride of 2

Size of output volume: 27

Number of parameters?

Lecture 7 Convolutional Neural Networks CMSC 35246



AlexNet

Popularized the use of ReLUs

Used heavy data augmentation (flipped images, random crops
of size 227 by 227)

Parameters: Dropout rate 0.5, Batch size = 128, Weight
decay term: 0.0005 ,Momentum term α = 0.9, learning rate η
= 0.01, manually reduced by factor of ten on monitoring
validation loss.

Lecture 7 Convolutional Neural Networks CMSC 35246



AlexNet

Popularized the use of ReLUs

Used heavy data augmentation (flipped images, random crops
of size 227 by 227)

Parameters: Dropout rate 0.5, Batch size = 128, Weight
decay term: 0.0005 ,Momentum term α = 0.9, learning rate η
= 0.01, manually reduced by factor of ten on monitoring
validation loss.

Lecture 7 Convolutional Neural Networks CMSC 35246



AlexNet

Popularized the use of ReLUs

Used heavy data augmentation (flipped images, random crops
of size 227 by 227)

Parameters: Dropout rate 0.5, Batch size = 128, Weight
decay term: 0.0005 ,Momentum term α = 0.9, learning rate η
= 0.01, manually reduced by factor of ten on monitoring
validation loss.

Lecture 7 Convolutional Neural Networks CMSC 35246



Short Digression: How do the features look like?

Lecture 7 Convolutional Neural Networks CMSC 35246



Layer 1 filters

This and the next few illustrations are from Rob Fergus

Lecture 7 Convolutional Neural Networks CMSC 35246



Layer 2 Patches

Lecture 7 Convolutional Neural Networks CMSC 35246



Layer 2 Patches

Lecture 7 Convolutional Neural Networks CMSC 35246



Layer 3 Patches

Lecture 7 Convolutional Neural Networks CMSC 35246



Layer 3 Patches

Lecture 7 Convolutional Neural Networks CMSC 35246



Layer 4 Patches

Lecture 7 Convolutional Neural Networks CMSC 35246



Layer 4 Patches

Lecture 7 Convolutional Neural Networks CMSC 35246



Evolution of Filters

Lecture 7 Convolutional Neural Networks CMSC 35246



Evolution of Filters

Caveat?

Lecture 7 Convolutional Neural Networks CMSC 35246



Back to Architectures

Lecture 7 Convolutional Neural Networks CMSC 35246



ImageNet 2013

Was won by a network similar to AlexNet (Matthew Zeiler
and Rob Fergus)

Changed the first convolutional layer from 11 X 11 with stride
of 4, to 7 X 7 with stride of 2

AlexNet used 384, 384 and 256 layers in the next three
convolutional layers, ZF used 512, 1024, 512

ImageNet 2013: 14.8 % (reduced from 15.4 %) (top 5 errors)

Lecture 7 Convolutional Neural Networks CMSC 35246



ImageNet 2013

Was won by a network similar to AlexNet (Matthew Zeiler
and Rob Fergus)

Changed the first convolutional layer from 11 X 11 with stride
of 4, to 7 X 7 with stride of 2

AlexNet used 384, 384 and 256 layers in the next three
convolutional layers, ZF used 512, 1024, 512

ImageNet 2013: 14.8 % (reduced from 15.4 %) (top 5 errors)

Lecture 7 Convolutional Neural Networks CMSC 35246



ImageNet 2013

Was won by a network similar to AlexNet (Matthew Zeiler
and Rob Fergus)

Changed the first convolutional layer from 11 X 11 with stride
of 4, to 7 X 7 with stride of 2

AlexNet used 384, 384 and 256 layers in the next three
convolutional layers, ZF used 512, 1024, 512

ImageNet 2013: 14.8 % (reduced from 15.4 %) (top 5 errors)

Lecture 7 Convolutional Neural Networks CMSC 35246



ImageNet 2013

Was won by a network similar to AlexNet (Matthew Zeiler
and Rob Fergus)

Changed the first convolutional layer from 11 X 11 with stride
of 4, to 7 X 7 with stride of 2

AlexNet used 384, 384 and 256 layers in the next three
convolutional layers, ZF used 512, 1024, 512

ImageNet 2013: 14.8 % (reduced from 15.4 %) (top 5 errors)

Lecture 7 Convolutional Neural Networks CMSC 35246



VGGNet(Simonyan and Zisserman, 2014)

Best model: Column D.

Error: 7.3 % (top five error)

Lecture 7 Convolutional Neural Networks CMSC 35246



VGGNet(Simonyan and Zisserman, 2014)

Total number of parameters: 138 Million (calculate!)

Memory (Karpathy): 24 Million X 4 bytes ≈ 93 MB per image

For backward pass the memory usage is doubled per image

Observations:

• Early convolutional layers take most memory
• Most parameters are in the fully connected layers

Lecture 7 Convolutional Neural Networks CMSC 35246



VGGNet(Simonyan and Zisserman, 2014)

Total number of parameters: 138 Million (calculate!)

Memory (Karpathy): 24 Million X 4 bytes ≈ 93 MB per image

For backward pass the memory usage is doubled per image

Observations:

• Early convolutional layers take most memory
• Most parameters are in the fully connected layers

Lecture 7 Convolutional Neural Networks CMSC 35246



VGGNet(Simonyan and Zisserman, 2014)

Total number of parameters: 138 Million (calculate!)

Memory (Karpathy): 24 Million X 4 bytes ≈ 93 MB per image

For backward pass the memory usage is doubled per image

Observations:

• Early convolutional layers take most memory

• Most parameters are in the fully connected layers

Lecture 7 Convolutional Neural Networks CMSC 35246



VGGNet(Simonyan and Zisserman, 2014)

Total number of parameters: 138 Million (calculate!)

Memory (Karpathy): 24 Million X 4 bytes ≈ 93 MB per image

For backward pass the memory usage is doubled per image

Observations:

• Early convolutional layers take most memory
• Most parameters are in the fully connected layers

Lecture 7 Convolutional Neural Networks CMSC 35246



Going Deeper

Figure: Kaiming He, MSR

Lecture 7 Convolutional Neural Networks CMSC 35246



Network in Network

M. Lin, Q. Chen, S. Yan, Network in Network, ICLR 2014

Lecture 7 Convolutional Neural Networks CMSC 35246



Google LeNet

C.

Szegedy et al, Going Deeper With Convolutions, CVPR 2015

Error: 6.7 % (top five error)

Lecture 7 Convolutional Neural Networks CMSC 35246



The Inception Module

Parallel paths with different receptive field sizes - capture
sparse patterns of correlation in stack of feature maps

Also include auxiliary classifiers for ease of training

Also note 1 by 1 convolutions

Lecture 7 Convolutional Neural Networks CMSC 35246



Google LeNet

C. Szegedy et al, Going Deeper With Convolutions, CVPR 2015

Lecture 7 Convolutional Neural Networks CMSC 35246



Google LeNet

Has 5 Million or 12X fewer parameters than AlexNet

Gets rid of fully connected layers

Lecture 7 Convolutional Neural Networks CMSC 35246



Google LeNet

Has 5 Million or 12X fewer parameters than AlexNet

Gets rid of fully connected layers

Lecture 7 Convolutional Neural Networks CMSC 35246



Inception v2, v3

C. Szegedy et al, Rethinking the Inception Architecture for Computer Vision, CVPR 2016

Use Batch Normalization during training to reduce
dependence on auxiliary classifiers

More aggressive factorization of filters

Lecture 7 Convolutional Neural Networks CMSC 35246



Why do CNNs make sense? (Brain Stuff next time)

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutions: Motivation

Convolution leverages four ideas that can help ML systems:

• Sparse interactions
• Parameter sharing
• Equivariant representations
• Ability to work with inputs of variable size

Sparse Interactions

• Plain Vanilla NN (y ∈ Rn, x ∈ Rm): Need matrix
multiplication y = Wx to compute activations for each
layer (every output interacts with every input)

• Convolutional networks have sparse interactions by
making kernel smaller than input

• =⇒ need to store fewer parameters, computing output
needs fewer operations (O(m× n) versus O(k × n))

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutions: Motivation

Convolution leverages four ideas that can help ML systems:

• Sparse interactions

• Parameter sharing
• Equivariant representations
• Ability to work with inputs of variable size

Sparse Interactions

• Plain Vanilla NN (y ∈ Rn, x ∈ Rm): Need matrix
multiplication y = Wx to compute activations for each
layer (every output interacts with every input)

• Convolutional networks have sparse interactions by
making kernel smaller than input

• =⇒ need to store fewer parameters, computing output
needs fewer operations (O(m× n) versus O(k × n))

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutions: Motivation

Convolution leverages four ideas that can help ML systems:

• Sparse interactions
• Parameter sharing

• Equivariant representations
• Ability to work with inputs of variable size

Sparse Interactions

• Plain Vanilla NN (y ∈ Rn, x ∈ Rm): Need matrix
multiplication y = Wx to compute activations for each
layer (every output interacts with every input)

• Convolutional networks have sparse interactions by
making kernel smaller than input

• =⇒ need to store fewer parameters, computing output
needs fewer operations (O(m× n) versus O(k × n))

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutions: Motivation

Convolution leverages four ideas that can help ML systems:

• Sparse interactions
• Parameter sharing
• Equivariant representations

• Ability to work with inputs of variable size

Sparse Interactions

• Plain Vanilla NN (y ∈ Rn, x ∈ Rm): Need matrix
multiplication y = Wx to compute activations for each
layer (every output interacts with every input)

• Convolutional networks have sparse interactions by
making kernel smaller than input

• =⇒ need to store fewer parameters, computing output
needs fewer operations (O(m× n) versus O(k × n))

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutions: Motivation

Convolution leverages four ideas that can help ML systems:

• Sparse interactions
• Parameter sharing
• Equivariant representations
• Ability to work with inputs of variable size

Sparse Interactions

• Plain Vanilla NN (y ∈ Rn, x ∈ Rm): Need matrix
multiplication y = Wx to compute activations for each
layer (every output interacts with every input)

• Convolutional networks have sparse interactions by
making kernel smaller than input

• =⇒ need to store fewer parameters, computing output
needs fewer operations (O(m× n) versus O(k × n))

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutions: Motivation

Convolution leverages four ideas that can help ML systems:

• Sparse interactions
• Parameter sharing
• Equivariant representations
• Ability to work with inputs of variable size

Sparse Interactions

• Plain Vanilla NN (y ∈ Rn, x ∈ Rm): Need matrix
multiplication y = Wx to compute activations for each
layer (every output interacts with every input)

• Convolutional networks have sparse interactions by
making kernel smaller than input

• =⇒ need to store fewer parameters, computing output
needs fewer operations (O(m× n) versus O(k × n))

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutions: Motivation

Convolution leverages four ideas that can help ML systems:

• Sparse interactions
• Parameter sharing
• Equivariant representations
• Ability to work with inputs of variable size

Sparse Interactions

• Plain Vanilla NN (y ∈ Rn, x ∈ Rm): Need matrix
multiplication y = Wx to compute activations for each
layer (every output interacts with every input)

• Convolutional networks have sparse interactions by
making kernel smaller than input

• =⇒ need to store fewer parameters, computing output
needs fewer operations (O(m× n) versus O(k × n))

Lecture 7 Convolutional Neural Networks CMSC 35246



Convolutions: Motivation

Convolution leverages four ideas that can help ML systems:

• Sparse interactions
• Parameter sharing
• Equivariant representations
• Ability to work with inputs of variable size

Sparse Interactions

• Plain Vanilla NN (y ∈ Rn, x ∈ Rm): Need matrix
multiplication y = Wx to compute activations for each
layer (every output interacts with every input)

• Convolutional networks have sparse interactions by
making kernel smaller than input

• =⇒ need to store fewer parameters, computing output
needs fewer operations (O(m× n) versus O(k × n))

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Sparse Connectivity

x1 x2 x3 x4 x5 x6

h1 h2 h3 h4 h5 h6

Fully connected network: h3 is computed by full matrix
multiplication with no sparse connectivity

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Sparse Connectivity

x1 x2 x3 x4 x5 x6

h1 h2 h3 h4 h5 h6

Kernel of size 3, moved with stride of 1

h3 only depends on x2, x3, x4

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Sparse Connectivity

x1 x2 x3 x4 x5 x6

h1 h2 h3 h4 h5 h6

Kernel of size 3, moved with stride of 1

h3 only depends on x2, x3, x4

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Sparse Connectivity

x1 x2 x3 x4 x5 x6

h1 h2 h3 h4 h5 h6

s1 s2 s3 s4 s5 s6

Connections in CNNs are sparse, but units in deeper layers are
connected to all of the input (larger receptive field sizes)

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Parameter Sharing

Plain vanilla NN: Each element of W is used exactly once to
compute output of a layer

In convolutional networks, parameters are tied: weight applied
to one input is tied to value of a weight applied elsewhere

Same kernel is used throughout the image, so instead learning
a parameter for each location, only a set of parameters is
learnt

Forward propagation remains unchanged O(k × n)
Storage improves dramatically as k � m,n

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Parameter Sharing

Plain vanilla NN: Each element of W is used exactly once to
compute output of a layer

In convolutional networks, parameters are tied: weight applied
to one input is tied to value of a weight applied elsewhere

Same kernel is used throughout the image, so instead learning
a parameter for each location, only a set of parameters is
learnt

Forward propagation remains unchanged O(k × n)
Storage improves dramatically as k � m,n

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Parameter Sharing

Plain vanilla NN: Each element of W is used exactly once to
compute output of a layer

In convolutional networks, parameters are tied: weight applied
to one input is tied to value of a weight applied elsewhere

Same kernel is used throughout the image, so instead learning
a parameter for each location, only a set of parameters is
learnt

Forward propagation remains unchanged O(k × n)
Storage improves dramatically as k � m,n

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Parameter Sharing

Plain vanilla NN: Each element of W is used exactly once to
compute output of a layer

In convolutional networks, parameters are tied: weight applied
to one input is tied to value of a weight applied elsewhere

Same kernel is used throughout the image, so instead learning
a parameter for each location, only a set of parameters is
learnt

Forward propagation remains unchanged O(k × n)

Storage improves dramatically as k � m,n

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Parameter Sharing

Plain vanilla NN: Each element of W is used exactly once to
compute output of a layer

In convolutional networks, parameters are tied: weight applied
to one input is tied to value of a weight applied elsewhere

Same kernel is used throughout the image, so instead learning
a parameter for each location, only a set of parameters is
learnt

Forward propagation remains unchanged O(k × n)
Storage improves dramatically as k � m,n

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Equivariance

Let’s first formally define convolution:

s(t) = (x ∗ w)(t) =
∫
x(a)w(t− a)da

In Convolutional Network terminology x is referred to as
input, w as the kernel and s as the feature map

Discrete Convolution:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

Convolution is commutative, thus:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n)

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Equivariance

Let’s first formally define convolution:

s(t) = (x ∗ w)(t) =
∫
x(a)w(t− a)da

In Convolutional Network terminology x is referred to as
input, w as the kernel and s as the feature map

Discrete Convolution:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

Convolution is commutative, thus:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n)

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Equivariance

Let’s first formally define convolution:

s(t) = (x ∗ w)(t) =
∫
x(a)w(t− a)da

In Convolutional Network terminology x is referred to as
input, w as the kernel and s as the feature map

Discrete Convolution:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

Convolution is commutative, thus:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n)

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Equivariance

Let’s first formally define convolution:

s(t) = (x ∗ w)(t) =
∫
x(a)w(t− a)da

In Convolutional Network terminology x is referred to as
input, w as the kernel and s as the feature map

Discrete Convolution:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

Convolution is commutative, thus:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n)

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Equivariance

Let’s first formally define convolution:

s(t) = (x ∗ w)(t) =
∫
x(a)w(t− a)da

In Convolutional Network terminology x is referred to as
input, w as the kernel and s as the feature map

Discrete Convolution:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

Convolution is commutative, thus:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n)

Lecture 7 Convolutional Neural Networks CMSC 35246



Aside

The latter is usually more straightforward to implement in ML
libraries (less variation in range of valid values of m and n)

Neither are usually used in practice in Neural Networks

Libraries implement Cross Correlation, same as convolution,
but without flipping the kernel

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n)

Lecture 7 Convolutional Neural Networks CMSC 35246



Aside

The latter is usually more straightforward to implement in ML
libraries (less variation in range of valid values of m and n)

Neither are usually used in practice in Neural Networks

Libraries implement Cross Correlation, same as convolution,
but without flipping the kernel

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n)

Lecture 7 Convolutional Neural Networks CMSC 35246



Aside

The latter is usually more straightforward to implement in ML
libraries (less variation in range of valid values of m and n)

Neither are usually used in practice in Neural Networks

Libraries implement Cross Correlation, same as convolution,
but without flipping the kernel

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n)

Lecture 7 Convolutional Neural Networks CMSC 35246



Aside

The latter is usually more straightforward to implement in ML
libraries (less variation in range of valid values of m and n)

Neither are usually used in practice in Neural Networks

Libraries implement Cross Correlation, same as convolution,
but without flipping the kernel

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n)

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Equivariance

Equivariance: f is equivariant to g if f(g(x)) = g(f(x))

The form of parameter sharing used by CNNs causes each
layer to be equivariant to translation

That is, if g is any function that translates the input, the
convolution function is equivariant to g

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Equivariance

Equivariance: f is equivariant to g if f(g(x)) = g(f(x))

The form of parameter sharing used by CNNs causes each
layer to be equivariant to translation

That is, if g is any function that translates the input, the
convolution function is equivariant to g

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Equivariance

Equivariance: f is equivariant to g if f(g(x)) = g(f(x))

The form of parameter sharing used by CNNs causes each
layer to be equivariant to translation

That is, if g is any function that translates the input, the
convolution function is equivariant to g

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Equivariance

Implication: While processing time series data, convolution
produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)

Images: If we move an object in the image, its representation
will move the same amount in the output

This property is useful when we know some local function is
useful everywhere (e.g. edge detectors)

Convolution is not equivariant to other operations such as
change in scale or rotation

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Equivariance

Implication: While processing time series data, convolution
produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)

Images: If we move an object in the image, its representation
will move the same amount in the output

This property is useful when we know some local function is
useful everywhere (e.g. edge detectors)

Convolution is not equivariant to other operations such as
change in scale or rotation

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Equivariance

Implication: While processing time series data, convolution
produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)

Images: If we move an object in the image, its representation
will move the same amount in the output

This property is useful when we know some local function is
useful everywhere (e.g. edge detectors)

Convolution is not equivariant to other operations such as
change in scale or rotation

Lecture 7 Convolutional Neural Networks CMSC 35246



Motivation: Equivariance

Implication: While processing time series data, convolution
produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)

Images: If we move an object in the image, its representation
will move the same amount in the output

This property is useful when we know some local function is
useful everywhere (e.g. edge detectors)

Convolution is not equivariant to other operations such as
change in scale or rotation

Lecture 7 Convolutional Neural Networks CMSC 35246



Pooling: Motivation

Pooling helps the representation become slightly invariant to
small translations of the input

Reminder: Invariance: f(g(x)) = f(x)

If input is translated by small amount: values of most pooled
outputs don’t change

Lecture 7 Convolutional Neural Networks CMSC 35246



Pooling: Motivation

Pooling helps the representation become slightly invariant to
small translations of the input

Reminder: Invariance: f(g(x)) = f(x)

If input is translated by small amount: values of most pooled
outputs don’t change

Lecture 7 Convolutional Neural Networks CMSC 35246



Pooling: Motivation

Pooling helps the representation become slightly invariant to
small translations of the input

Reminder: Invariance: f(g(x)) = f(x)

If input is translated by small amount: values of most pooled
outputs don’t change

Lecture 7 Convolutional Neural Networks CMSC 35246



Pooling: Invariance

Figure: Goodfellow et al.

Lecture 7 Convolutional Neural Networks CMSC 35246



Pooling

Invariance to local translation can be useful if we care more
about whether a certain feature is present rather than exactly
where it is

Pooling over spatial regions produces invariance to translation,
what if we pool over separately parameterized convolutions?

Features can learn which transformations to become invariant
to (Example: Maxout Networks, Goodfellow et al 2013)

One more advantage: Since pooling is used for downsampling,
it can be used to handle inputs of varying sizes

Lecture 7 Convolutional Neural Networks CMSC 35246



Pooling

Invariance to local translation can be useful if we care more
about whether a certain feature is present rather than exactly
where it is

Pooling over spatial regions produces invariance to translation,
what if we pool over separately parameterized convolutions?

Features can learn which transformations to become invariant
to (Example: Maxout Networks, Goodfellow et al 2013)

One more advantage: Since pooling is used for downsampling,
it can be used to handle inputs of varying sizes

Lecture 7 Convolutional Neural Networks CMSC 35246



Pooling

Invariance to local translation can be useful if we care more
about whether a certain feature is present rather than exactly
where it is

Pooling over spatial regions produces invariance to translation,
what if we pool over separately parameterized convolutions?

Features can learn which transformations to become invariant
to (Example: Maxout Networks, Goodfellow et al 2013)

One more advantage: Since pooling is used for downsampling,
it can be used to handle inputs of varying sizes

Lecture 7 Convolutional Neural Networks CMSC 35246



Pooling

Invariance to local translation can be useful if we care more
about whether a certain feature is present rather than exactly
where it is

Pooling over spatial regions produces invariance to translation,
what if we pool over separately parameterized convolutions?

Features can learn which transformations to become invariant
to (Example: Maxout Networks, Goodfellow et al 2013)

One more advantage: Since pooling is used for downsampling,
it can be used to handle inputs of varying sizes

Lecture 7 Convolutional Neural Networks CMSC 35246



Next time

More Architectures

Variants on the CNN idea

More motivation

Group Equivariance

Equivariance to Rotation

Lecture 7 Convolutional Neural Networks CMSC 35246



Quiz!

Lecture 7 Convolutional Neural Networks CMSC 35246


