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Things we will look at today

• Methods for Visualizing Convolutional Neural Networks

• Motivations for Convolutions and Pooling
• Variations
• Dilated Convolutions
• Idea genealogy for Convolutional Neural Networks
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Housekeeping

Quiz scores will be uploaded in a few hours

Project proposals due tonight

Mid term - 8 May (Just like quizzes, with some derivations)

Late policy
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Convolutional Neural Networks

Figure: Andrej Karpathy
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Last Time

Saw convolutional networks last time

Worked great (saw all these ImageNet results)

How do we probe what they actually learn, or do?
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A Global View: t-SNE
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Stochastic Neighborhood Embedding

For point xj , one measure of its similarity to another point xi:

pj|i =
exp(−‖xi − xj‖22/2σ2

i )∑
k 6=i exp(−‖xi − xk‖22/2σ2

i )

=⇒ The conditional probability that xi would pick xj as its
neighbor if neighbors were picked in proportion to their
probability density under a Gaussian centered at xi

For nearby points pj|i will be high

Suppose we had low dimensional maps xi 7→ yi and xj 7→ yj
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Stochastic Neighborhood Embedding

Similarity of mapped point yj to yi

qj|i =
exp(−‖yi − yj‖22/2σ2

i )∑
k 6=i exp(−‖yi − yk‖22/2σ2

i )

SNE aims to find a lower dimensional embedding such that
the discrepancy between pj|i and qj|i is minimized

Obvious cost function:

J =
∑
i

KL(Pi||Qi) =
∑
i

∑
j

pj|i log
pj|i

qj|i
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t-SNE

A variant of SNE that is better amenable to visualizations

Avoids a crowding problem that SNE suffers from

Modifies the cost function and uses a Student t-distribution to
compute similarities in the low-dimensional space

Takeaway: t-SNE embeds high dimensional points into a lower
dimensional space so as to preserve pairwise distances

In other words: Similar objects get embedded nearby

Lecture 8 Convolutional Neural Networks II CMSC 35246



t-SNE

A variant of SNE that is better amenable to visualizations

Avoids a crowding problem that SNE suffers from

Modifies the cost function and uses a Student t-distribution to
compute similarities in the low-dimensional space

Takeaway: t-SNE embeds high dimensional points into a lower
dimensional space so as to preserve pairwise distances

In other words: Similar objects get embedded nearby

Lecture 8 Convolutional Neural Networks II CMSC 35246



t-SNE

A variant of SNE that is better amenable to visualizations

Avoids a crowding problem that SNE suffers from

Modifies the cost function and uses a Student t-distribution to
compute similarities in the low-dimensional space

Takeaway: t-SNE embeds high dimensional points into a lower
dimensional space so as to preserve pairwise distances

In other words: Similar objects get embedded nearby

Lecture 8 Convolutional Neural Networks II CMSC 35246



t-SNE

A variant of SNE that is better amenable to visualizations

Avoids a crowding problem that SNE suffers from

Modifies the cost function and uses a Student t-distribution to
compute similarities in the low-dimensional space

Takeaway: t-SNE embeds high dimensional points into a lower
dimensional space so as to preserve pairwise distances

In other words: Similar objects get embedded nearby

Lecture 8 Convolutional Neural Networks II CMSC 35246



t-SNE

A variant of SNE that is better amenable to visualizations

Avoids a crowding problem that SNE suffers from

Modifies the cost function and uses a Student t-distribution to
compute similarities in the low-dimensional space

Takeaway: t-SNE embeds high dimensional points into a lower
dimensional space so as to preserve pairwise distances

In other words: Similar objects get embedded nearby

Lecture 8 Convolutional Neural Networks II CMSC 35246



t-SNE on MNIST

Figure: van der Maaten and Hinton
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AlexNet

AlexNet gives 4096 dimensional codes for each image

t-SNE: place two codes close in 2D if they are close in 4096D
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t-SNE on ImageNet

http://cs.stanford.edu/people/karpathy/cnnembed/
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Visualizing Activations: DeConvolutional Approach
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Zeiler and Fergus, ICML 2013

Want to interpret activity in intermediate layers

Idea: Map activations back to the pixel space

Note: Visualizing kernel weights beyond the first layer is not
useful

Approach: Use a Deconvolutional Network to map back to
pixel space

A Deconvolutional Network is a convnet model run in reverse
(runs all the same operations)

PS: There are many later papers that improve the approach of
Zeiler and Fergus (say using guided backprop), but the basic
idea is similar
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Deconvolutional Network
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Approach

Attach a DeConv Net to a
layer of the convnet (to be
examined)

Pass input image through
CNN and obtain
activations

For a given neuron, set all
activations to zero and
backprop from there
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Approach

Successively unpool, rectify
and filter till pixel space is
reached

Max is not invertible: Keep
switch variables to keep
track of locations of max
in each pooling
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Approach

ReLU: Pass the signal
through a ReLU
non-linearity

Filtering: Use learned
filters to convolve
backward signal, but use
transposed versions of
filters and applied to ReLU
activations

Reconstructions show
which parts of input image
are discriminative
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Feature Visualizations from last time were generated by this
approach
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Layer 1 filters

Matthew Zeiler and Rob Fergus
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Layer 2 Patches
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Layer 3 Patches
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Layer 4 Patches
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Layer 4 Patches
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Evolution of Filters
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Evolution of Filters

Caveat?
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Occlusion Experiments

Zeiler and Fergus also used feature visualizations to see if
network really identified the object or depended on context

Approach:Occlude images at different locations and visualize
feature activations and classifier confidence
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Occlusion Experiments
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Class Saliency Visualization
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Image Specific Class Saliency

We want to visualize the spatial support of a particular class
in an image

• Given: Image I0, a class c, a convnet score Sc(I)
function (un-normalized log probabilities)

• Goal: Rank pixels of I0 according to their influence on
score Sc(I0)

Motivating case: Linear model for class c

Sc(I) = wT
c I + bc

Simple: Magnitude of wi determines influence of pixel i
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Image Specific Class Saliency

In convnets Sc(I) is a highly non-linear function of I

How do we determine influence in this case?

Useful hack: Just work with the first order approximation:

Sc(I) ≈ ∂Sc
∂I

∣∣∣
I0
I + b

w = ∂Sc
∂I

∣∣∣
I0

is the gradient evaluated at I0

Magnitude of wi determines pixel influence (take max if
multiple color channels)
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Visualizing Gradients

If we occlude pixels denoted by black pixels in original image,
we won’t mess up the network’s prediction
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Visualizing Gradients

If we occlude pixels that represent the class spatial support,
we will!
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Generating an Image
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Class Model Visualization

Another approach: Numerically generate an image for a class

Let Sc(I) be the score function for class c:

• Sc(I): Forward pass through convnet and output before
softmax

Problem: Find a L2 regularize image I:

arg max
I
Sc(I)− λ‖I‖22

Question: How do we find an image?
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Class Model Visualization

Just do backpropagation!

• Earlier: Used backpropagation to update weights
• Now: Fix the network, pass image through network,

obtain Sc(I), go back and update pixels

What should be the initial image?
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Class Model Visualization

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Sc(I0)

1 Fix network, input image I0

2 Obtain Sc(I0) (Reminder: Unnormalized log probability for c)

3 Update image by backpropagation

4 Repeat till convergence
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Class Model Visualization:Examples
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Changing the Regularizer

We had the optimization problem:

arg max
I
Sc(I)− λ‖I‖22

Problem:Introduces high frequency artifacts

Another regularizer: Blur I at each update

Also clip pixel values with small contributions
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Class Model Visualization with Blur
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Works for one neuron!

We had the optimization problem:

arg max
I
Sc(I)− λ‖I‖22

Can do this for any neuronal activation

arg max
I
ai(I)− λR(I)

Process remains the same

Can use this to probe what each neuron likes!
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Example Features

Layer 8 visualization is a class model (same as before)
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Example Features

https://www.youtube.com/watch?v=AgkfIQ4IGaM
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A Short Digression
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Yet Another Image Optimization

First we saw:
arg max

I
Sc(I)− λ‖I‖22

Next for any internal neuron:

arg max
I
ai(I)− λR(I)

We input a zero image, and optimized to generate an image
that maximized for class score, or neuronal activation

We could input a real image, and optimize it over activations
in an entire layer!

What would happen?
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Deep Dream

Lower layers detect edges etc., on optimization such features will
get boosted up
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Deep Dream

Slightly higher layers start to overinterpret shapes in images
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Iterating

The input for these were noise images!
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Video: Grocery store trip:
https://www.youtube.com/watch?v=DgPaCWJL7XI
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Yet Another Image Optimization

We have already seen an example of optimizing an image

arg min
∆x
‖∆x‖ s.t. f(x + ∆x; θ) = yg

Adversarial Examples! (∆x is an image)
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Convolutions: Motivation

Convolution leverages four ideas that can help ML systems:

• Sparse interactions
• Parameter sharing
• Equivariant representations
• Ability to work with inputs of variable size

Sparse Interactions

• Plain Vanilla NN (y ∈ Rn, x ∈ Rm): Need matrix
multiplication y = Wx to compute activations for each
layer (every output interacts with every input)

• Convolutional networks have sparse interactions by
making kernel smaller than input

• =⇒ need to store fewer parameters, computing output
needs fewer operations (O(m× n) versus O(k × n))
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Motivation: Sparse Connectivity

x1 x2 x3 x4 x5 x6

h1 h2 h3 h4 h5 h6

Fully connected network: h3 is computed by full matrix
multiplication with no sparse connectivity
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Motivation: Sparse Connectivity

x1 x2 x3 x4 x5 x6

h1 h2 h3 h4 h5 h6

Kernel of size 3, moved with stride of 1

h3 only depends on x2, x3, x4
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Motivation: Sparse Connectivity

x1 x2 x3 x4 x5 x6

h1 h2 h3 h4 h5 h6

s1 s2 s3 s4 s5 s6

Connections in CNNs are sparse, but units in deeper layers are
connected to all of the input (larger receptive field sizes)
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Motivation: Parameter Sharing

Plain vanilla NN: Each element of W is used exactly once to
compute output of a layer

In convolutional networks, parameters are tied: weight applied
to one input is tied to value of a weight applied elsewhere

Same kernel is used throughout the image, so instead learning
a parameter for each location, only a set of parameters is
learnt

Forward propagation remains unchanged O(k × n)

Storage improves dramatically as k � m,n
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Motivation: Equivariance

Let’s first formally define convolution:

s(t) = (x ∗ w)(t) =

∫
x(a)w(t− a)da

In Convolutional Network terminology x is referred to as
input, w as the kernel and s as the feature map

Discrete Convolution:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

Convolution is commutative, thus:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n)
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Aside

The latter is usually more straightforward to implement in ML
libraries (less variation in range of valid values of m and n)

Neither are usually used in practice in Neural Networks

Libraries implement Cross Correlation, same as convolution,
but without flipping the kernel

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n)
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Motivation: Equivariance

Equivariance: f is equivariant to g if f(g(x)) = g(f(x))

The form of parameter sharing used by CNNs causes each
layer to be equivariant to translation

That is, if g is any function that translates the input, the
convolution function is equivariant to g
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Motivation: Equivariance

Implication: While processing time series data, convolution
produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)

Images: If we move an object in the image, its representation
will move the same amount in the output

This property is useful when we know some local function is
useful everywhere (e.g. edge detectors)

Convolution is not equivariant to other operations such as
change in scale or rotation

Lecture 8 Convolutional Neural Networks II CMSC 35246



Motivation: Equivariance

Implication: While processing time series data, convolution
produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)

Images: If we move an object in the image, its representation
will move the same amount in the output

This property is useful when we know some local function is
useful everywhere (e.g. edge detectors)

Convolution is not equivariant to other operations such as
change in scale or rotation

Lecture 8 Convolutional Neural Networks II CMSC 35246



Motivation: Equivariance

Implication: While processing time series data, convolution
produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)

Images: If we move an object in the image, its representation
will move the same amount in the output

This property is useful when we know some local function is
useful everywhere (e.g. edge detectors)

Convolution is not equivariant to other operations such as
change in scale or rotation

Lecture 8 Convolutional Neural Networks II CMSC 35246



Motivation: Equivariance

Implication: While processing time series data, convolution
produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)

Images: If we move an object in the image, its representation
will move the same amount in the output

This property is useful when we know some local function is
useful everywhere (e.g. edge detectors)

Convolution is not equivariant to other operations such as
change in scale or rotation

Lecture 8 Convolutional Neural Networks II CMSC 35246



Pooling: Motivation

Pooling helps the representation become slightly invariant to
small translations of the input

Reminder: Invariance: f(g(x)) = f(x)

If input is translated by small amount: values of most pooled
outputs don’t change
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Pooling: Invariance

Figure: Goodfellow et al.
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Pooling

Invariance to local translation can be useful if we care more
about whether a certain feature is present rather than exactly
where it is

Pooling over spatial regions produces invariance to translation,
what if we pool over separately parameterized convolutions?

Features can learn which transformations to become invariant
to (Example: Maxout Networks, Goodfellow et al 2013)

One more advantage: Since pooling is used for downsampling,
it can be used to handle inputs of varying sizes
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Variations
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Locally Connected Layers

In some applications: Feature should still be function of a
small part of space, but might not occur throughout it

Convolution: Have one kernel that we move across the grid to
generate a feature map

Unshared Convolution: Kernel is different at every location

No parameter sharing!
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Locally Connected Layer

wT
1 x
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Locally Connected Layer

wT
2 x
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Locally Connected Layer

wT
3 x

Lecture 8 Convolutional Neural Networks II CMSC 35246



Locally Connected Layer

wT
4 x
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Locally Connected Layer

wT
5 x
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Locally Connected Layer

wT
6 x
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Locally Connected Layer

wT
7 x
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Locally Connected Layer
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Locally Connected Layer

wT
9 x
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Locally Connected Layer
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10x
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Locally Connected Layer
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Locally Connected Layer

wT
15x
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Locally Connected Layer

wT
16x

What is the number of parameters?
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Tiled Convolution

A compromise between locally connected layers and
convolution

Idea: Have a set of kernels and rotate them while traversal

Ensures that immediate neighbors have different kernels

Some parameters sharing (for 5 kernels in the previous
example, what is the number of parameters?)
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Dilated Convolutions
à trous: Convolutions with Holes
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A Problem with regular convolutions

x1 x2 x3 x4 x5 x6

h1 h2 h3 h4 h5 h6

s1 s2 s3 s4 s5 s6

Connections in CNNs are sparse, but units in deeper layers are
connected to more of the input. At what rate does the
effective receptive field size increase with depth?
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A Problem with regular convolutions

Convolutional networks repeat CONV-POOL-CONV-POOL to
aggregate multiscale information until a global prediction is
obtained

In some applications we require dense prediction: Need
multiscale reasoning as well as full-resolution output

The global context of convolutional neural networks grows too
slow for such applications

Some examples?
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Semantic Segmentation

Image: Multiscale Context Aggregation by Dilated Convolutions, Yu and Koltun, ICLR 2016
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WaveNet: Causal Convolutions

Image: WaveNet: A Generative Model for Raw Audio, Oord et al., ICLR 2016
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A Solution: Dilated Convolutions

Recall discrete convolution:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

Dilated Convolution:

S(i, j) = (I ∗l K)(i, j) =
∑
m

∑
n

I(m,n)K(i− lm, j − ln)

l is a dilation factor

Very old idea going to the 80s wavelet theory literature
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Regular Convolution

The unit on the second layer has a receptive field of size 3× 3
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Regular Convolution
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Regular Convolution

The unit on the third layer has an effective receptive field of size 5× 5
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The unit on the second layer has a receptive field of size 3× 3
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Dilated Convolution: Dilation of 1
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Dilated Convolution

The unit on the second layer has a receptive field of size 9× 9
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WaveNet: Dilated Causal Convolutions

Image: WaveNet: A Generative Model for Raw Audio, Oord et al., ICLR 2016

We will see this in detail a few classes later
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The Neuroscientific Motivation for Convolutional Networks

Idea Genealogy for CNNs
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Hubel-Wiesel Experiments, 1959

David Hubel and Torsten
Wiesel did a set of famous
experiments to determine
basic facts about
mammalian vision

Example: Recorded activity
of individual neurons and
observed responses to
images projected in precise
locations on a screen in
front of the cat
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Hubel-Wiesel Experiments, 1959

Neurons in the cat’s early
visual system responded
very strongly to specific
patterns of light, such as
oriented bars and almost
not at all to other patterns

Neurons in the later visual
system responded to more
complex stimuli and
responses also exhibited
invariance to translations
etc
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A Simplified View of Brain Function

Image Source: Fukushima, 1980

Images are projected onto the retina, neurons in retina do
some simple preprocessing but do not substantially alter the
representation

The signal channels into the area LGN (through the optic
nerve)

Let’s assume these regions simply carry the signal from eye to
area V1
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A Simplified View of Brain Function

Image Source: Fukushima, 1980

V1 is arranged in a spatial map:

- 2D structure that mirrors structure of image in the retina

- Light incident in the lower half of the retina only affects
the lower half of V1
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V1 is arranged in a spatial map:

- 2D structure that mirrors structure of image in the retina
- Light incident in the lower half of the retina only affects
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A Simplified View of Brain Function

Image Source: Fukushima, 1980

V1 has many simple cells: Roughly characterized by a linear
function of image in small, spatially localized receptive fields
(detection)

V1 has many complex cells: Features detected similar to
simple cells, but invariant to small shifts in position of feature
(pooling)

Also invariant to some changes in lighting
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A Simplified View of Brain Function

Image Source: Fukushima, 1980

In the simplified view, this basic strategy is repeated many
times

After multiple layers, we find cells that respond to only
specific concepts and are invariant to many transformations of
the input (grandmother cells in the medial temporal lobe)
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Simple and Complex Cells

Image Source: Scholarpedia
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Neocognitron (Fukushima, 1980)

Fukushima used this simplified view of brain function to build
a neural network

Was trained by an unsupervised procedure
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TDNNs and CNNs

Waibel and Hinton introduced a 1-D Convolutional Network
and trained it by backpropagation

Convolutional Networks topology was directly inspired by the
Neocognitron which was directly inspired by the Hubel-Weisel
model

TDNNs inspired the use of backpropagation for training for
2D CNNs (Yann LeCun, 1989)
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Next time

More on Equivariance

Group Equivariant CNNs

Spatial Transformers and related ideas

Back to Architectures: Ultra Deep Models

Begin: CNNs on Graphs and Combinatorial Data
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Quiz!
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