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@ Things we will look at today

e Methods for Visualizing Convolutional Neural Networks
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@ Things we will look at today

e Methods for Visualizing Convolutional Neural Networks
e Motivations for Convolutions and Pooling

e Variations

e Dilated Convolutions
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@ Things we will look at today

e Methods for Visualizing Convolutional Neural Networks
e Motivations for Convolutions and Pooling

Variations

Dilated Convolutions

Idea genealogy for Convolutional Neural Networks
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Housekeeping

Quiz scores will be uploaded in a few hours
Project proposals due tonight
Mid term - 8 May (Just like quizzes, with some derivations)

Late policy

Lecture 8 Convolutional Neural Networks Il CMSC 35246



Convolutional Neural Networks

RELU RELU RELU RELU RELU RELU

cLNv lcov olwvl CO¢NV lowl

=

=

==
—

Figure: Andrej Karpathy
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Last Time

@ Saw convolutional networks last time
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Last Time

@ Saw convolutional networks last time

@ Worked great (saw all these ImageNet results)
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Last Time

@ Saw convolutional networks last time
@ Worked great (saw all these ImageNet results)

@ How do we probe what they actually learn, or do?
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A Global View: t-SNE
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-
Stochastic Neighborhood Embedding

@ For point x;, one measure of its similarity to another point x;:
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-
Stochastic Neighborhood Embedding

@ For point x;, one measure of its similarity to another point x;:

exp(—||x; — x;3/202)
Dk ©xXP(— % — xx[|3/207)

Pili =
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-
Stochastic Neighborhood Embedding

@ For point x;, one measure of its similarity to another point x;:

exp(—||x; — x;3/202)
Dk ©xXP(— % — xx[|3/207)

Pili =

e == The conditional probability that x; would pick x; as its
neighbor if neighbors were picked in proportion to their
probability density under a Gaussian centered at x;
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-
Stochastic Neighborhood Embedding

@ For point x;, one measure of its similarity to another point x;:

exp(—||x; — x;3/202)
Dk ©xXP(— % — xx[|3/207)

Pili =

e == The conditional probability that x; would pick x; as its
neighbor if neighbors were picked in proportion to their
probability density under a Gaussian centered at x;

@ For nearby points pj; will be high
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-
Stochastic Neighborhood Embedding

For point x;, one measure of its similarity to another point x;:

exp(—||x; — x;3/202)
Dk ©xXP(— % — xx[|3/207)

Pili =

e == The conditional probability that x; would pick x; as its
neighbor if neighbors were picked in proportion to their
probability density under a Gaussian centered at x;

For nearby points p;|; will be high

Suppose we had low dimensional maps x; — y; and x; — y;
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-
Stochastic Neighborhood Embedding

@ Similarity of mapped point y; to y;
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-
Stochastic Neighborhood Embedding

@ Similarity of mapped point y; to y;

exp(—|lyi — y;l3/202)
Zk;ﬁi exp(—|lyi — yxll3/207)

41 =

Lecture 8 Convolutional Neural Networks Il CMSC 35246



-
Stochastic Neighborhood Embedding

@ Similarity of mapped point y; to y;

exp(—|lyi — y;l3/202)
Zk;ﬁi exp(—|lyi — yxll3/207)

41 =

@ SNE aims to find a lower dimensional embedding such that
the discrepancy between p;|; and g;); is minimized
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-
Stochastic Neighborhood Embedding

@ Similarity of mapped point y; to y;

exp(—|lyi — y;l3/202)
Zk;ﬁi exp(—|lyi — yxll3/207)

41 =

@ SNE aims to find a lower dimensional embedding such that
the discrepancy between p;|; and g;); is minimized

@ Obvious cost function:

J = ZKL Pil|Q:) —Zzpﬂzlog
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t-SNE

@ A variant of SNE that is better amenable to visualizations
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@ A variant of SNE that is better amenable to visualizations

o Avoids a crowding problem that SNE suffers from
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t-SNE

@ A variant of SNE that is better amenable to visualizations
o Avoids a crowding problem that SNE suffers from

@ Modifies the cost function and uses a Student t-distribution to
compute similarities in the low-dimensional space
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t-SNE

A variant of SNE that is better amenable to visualizations

(]

Avoids a crowding problem that SNE suffers from

Modifies the cost function and uses a Student ¢-distribution to
compute similarities in the low-dimensional space

Takeaway: t-SNE embeds high dimensional points into a lower
dimensional space so as to preserve pairwise distances
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t-SNE

A variant of SNE that is better amenable to visualizations

(]

Avoids a crowding problem that SNE suffers from

Modifies the cost function and uses a Student ¢-distribution to
compute similarities in the low-dimensional space

Takeaway: t-SNE embeds high dimensional points into a lower
dimensional space so as to preserve pairwise distances

@ In other words: Similar objects get embedded nearby
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e
t-SNE on MNIST
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Figure: van der Maaten and Hinton
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AlexNet
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o AlexNet gives 4096 dimensional codes for each image
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e
AlexNet
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o AlexNet gives 4096 dimensional codes for each image

@ t-SNE: place two codes close in 2D if they are close in 4096D
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-
t-SNE on ImageNet

Sa’tign

o

http://cs.stanford.edu/people/karpathy/cnnembed /
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Visualizing Activations: DeConvolutional Approach
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.
Zeiler and Fergus, ICML 2013

@ Want to interpret activity in intermediate layers
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Zeiler and Fergus, ICML 2013

@ Want to interpret activity in intermediate layers

@ ldea: Map activations back to the pixel space

Lecture 8 Convolutional Neural Networks Il CMSC 35246



.
Zeiler and Fergus, ICML 2013

@ Want to interpret activity in intermediate layers
@ ldea: Map activations back to the pixel space

° . Visualizing kernel weights beyond the first layer is not
useful
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.
Zeiler and Fergus, ICML 2013

@ Want to interpret activity in intermediate layers
@ ldea: Map activations back to the pixel space

° . Visualizing kernel weights beyond the first layer is not
useful

@ Approach: Use a Deconvolutional Network to map back to
pixel space

Lecture 8 Convolutional Neural Networks Il CMSC 35246



.
Zeiler and Fergus, ICML 2013

Want to interpret activity in intermediate layers

Idea: Map activations back to the pixel space

° . Visualizing kernel weights beyond the first layer is not
useful

Approach: Use a Deconvolutional Network to map back to
pixel space

A Deconvolutional Network is a convnet model run in reverse
(runs all the same operations)
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.
Zeiler and Fergus, ICML 2013

Want to interpret activity in intermediate layers
@ ldea: Map activations back to the pixel space

° . Visualizing kernel weights beyond the first layer is not
useful

@ Approach: Use a Deconvolutional Network to map back to
pixel space

@ A Deconvolutional Network is a convnet model run in reverse
(runs all the same operations)

@ PS: There are many later papers that improve the approach of
Zeiler and Fergus (say using guided backprop), but the basic
idea is similar
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Deconvolutional Network

Layer Above
Reconstruction Pooled Maps

Switches
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Approach

@ Attach a DeConv Net to a s
IByeritiove Pooled Maps
layer of the convnet (to be switches _

= Max Pooling
. Max Unpooling K/
examined) | N |
Unpooled Maps. Rectified Feature Maps
. . Rectified Linear J Rectified Linear
@ Pass input image through Funcron || Fonction
. ‘ Rectified Unpooled Maps ‘ ‘ Feature Maps
CNN and obtain : .
Convolutional $ ? Convolutional
- - Filtering {F'} Filtering {F}
activations
‘ Reconstruction ‘ ‘ Layer Below Pooled Maps. ‘

e For a given neuron, set all
activations to zero and
backprop from there

e
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Unpooling

/l\

Max Locations
“Switches”
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Approach

@ Successively unpool, rectify
. . . . LayelAbcve Pooled Maps
and filter till pixel space is q swiches = M:x,mg
Max Unpooling

reached

Unpooled Maps. Rectified Feature Maps
H H . . Recnﬁed Linear J Rectified Linear
@ Max is not invertible: Keep Funcron || Fonction

‘ Rectified Unpooled Maps ‘ Feature Maps

SWitCh Variables to keep Convolutional XL ? Convolutional
track of locations of max | e I T |
in each pooling
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Max Locations
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Approach

@ RelLU: Pass the signal
La‘/ﬁr Above Pooled Maps
through a RelLU q switches -
. . Max Unpooling St

non-linearity

Unpooled Maps Rectified Feature Maps
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ba c kWa rd Sl g na I ! b u t use ‘ Reconstruction ‘ ‘ Layer Below Pooled Maps. ‘

transposed versions of
filters and applied to RelLU

-
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@ Reconstructions show . /

which parts of input image
are discriminative
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Feature Visualizations from last time were generated by this
approach
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Layer 1 filters
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Matthew Zeiler and Rob Fergus
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Layer 2 Patches
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- Patches from validation images that give maximal activation of a given feature map =




Layer 2 Patches
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Layer 3 Patches
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Layer 3 Patches
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Layer 4 Patches
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Layer 4 Patches
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Evolution of Filters
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Evolution of Filters

Caveat?
=
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Occlusion Experiments

@ Zeiler and Fergus also used feature visualizations to see if
network really identified the object or depended on context
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Occlusion Experiments

@ Zeiler and Fergus also used feature visualizations to see if
network really identified the object or depended on context

@ Approach:Occlude images at different locations and visualize
feature activations and classifier confidence
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Occlusion Experiments

(c) Layer 5, strongest (dj Classifier, probability
(a) Input Image (b) Layer 5, strongest feature map faature map projections of corract class

¢

M True Label: CarWheel [ :

True Label: Afghan Hound
=T
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Class Saliency Visualization
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Image Specific Class Saliency

@ We want to visualize the of a particular class
in an image
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Image Specific Class Saliency

@ We want to visualize the of a particular class
in an image
e Given: Image Iy, a class ¢, a convnet score S.(I)
function (un-normalized log probabilities)
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Image Specific Class Saliency

@ We want to visualize the of a particular class
in an image
e Given: Image Iy, a class ¢, a convnet score S.(I)
function (un-normalized log probabilities)
e Goal: Rank pixels of Iy according to their influence on
score S¢(1p)
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Image Specific Class Saliency

@ We want to visualize the of a particular class
in an image
e Given: Image Iy, a class ¢, a convnet score S.(I)
function (un-normalized log probabilities)
e Goal: Rank pixels of Iy according to their influence on
score S¢(1p)

@ Motivating case: Linear model for class ¢

S.(I) =wIT + b,
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Image Specific Class Saliency

@ We want to visualize the of a particular class
in an image
e Given: Image Iy, a class ¢, a convnet score S.(I)
function (un-normalized log probabilities)
e Goal: Rank pixels of Iy according to their influence on
score S¢(1p)

@ Motivating case: Linear model for class ¢

S.(I) =wIT + b,

e Simple: Magnitude of w; determines influence of pixel i
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Image Specific Class Saliency

@ In convnets S.(I) is a highly non-linear function of I

Lecture 8 Convolutional Neural Networks Il CMSC 35246



Image Specific Class Saliency

@ In convnets S.(I) is a highly non-linear function of I

@ How do we determine influence in this case?
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Image Specific Class Saliency

@ In convnets S.(I) is a highly non-linear function of I
@ How do we determine influence in this case?

o Useful hack: Just work with the first order approximation:

_0S.
REEYRIA

Se(I) I+b
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Image Specific Class Saliency

In convnets S.(I) is a highly non-linear function of I

How do we determine influence in this case?

(]

Useful hack: Just work with the first order approximation:

_0S.
REEYRIA

Se(I) I+b

= %‘S}C . is the gradient evaluated at I

0

oW
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Image Specific Class Saliency

In convnets S.(I) is a highly non-linear function of I

How do we determine influence in this case?

(]

Useful hack: Just work with the first order approximation:

S,

~ I+b
8IIO+

Se(I)

w = %5}6 is the gradient evaluated at I
I

Magnitude of w; determines pixel influence (take max if
multiple color channels)
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Visualizing Gradients

o If we occlude pixels denoted by black pixels in original image,
we won't mess up the network's prediction
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Visualizing Gradients

o If we occlude pixels that represent the class spatial support,
we willl

Lecture 8 Convolutional Neural Networks Il CMSC 35246



Generating an Image
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Class Model Visualization

@ Another approach: Numerically generate an image for a class
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Class Model Visualization

@ Another approach: Numerically generate an image for a class

@ Let S.(I) be the score function for class ¢:
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Class Model Visualization

@ Another approach: Numerically generate an image for a class
@ Let S.(I) be the score function for class ¢:

e S.(I): Forward pass through convnet and output before
softmax
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Class Model Visualization

@ Another approach: Numerically generate an image for a class
@ Let S.(I) be the score function for class ¢:

e S.(I): Forward pass through convnet and output before
softmax

@ Problem: Find a L2 regularize image I:

arg max S,(T) = M| 73
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Class Model Visualization

Another approach: Numerically generate an image for a class

Let S.(I) be the score function for class c:

e S.(I): Forward pass through convnet and output before
softmax

Problem: Find a L2 regularize image I:

argmax Se(I) = A|7]l3

° How do we find an image?
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Class Model Visualization

@ Just do backpropagation!
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Class Model Visualization

@ Just do backpropagation!
e Earlier: Used backpropagation to update weights
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Class Model Visualization

@ Just do backpropagation!

e Earlier: Used backpropagation to update weights
e Now: Fix the network, pass image through network,
obtain S.(I), go back and update pixels
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Class Model Visualization

@ Just do backpropagation!

e Earlier: Used backpropagation to update weights
e Now: Fix the network, pass image through network,
obtain S.(I), go back and update pixels

@ What should be the initial image?
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.
Class Model Visualization

olololo r_“ 1\ 7 3 3 5 dense dense
0/0/ 0|0 3 g g 1 g
— ) v\ I s i

Input \ | \
0000 L \m:; 55 I | "
0000 w = o

Strde podling pooling
|| gy B

Se(Ip)

Fix network, input image I
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Class Model Visualization

Fix network, input image I

v |
0 O 0 0 N A\ i 13
0000 NE o TS
0/0/0/0 i ; i ! :
™ 55 ] w
468
00/00 | o =
Stride pooiing pooling

dense dense
dense

Max
pooling 0% [40%

Se(Ip)

1000

Obtain S.(Ip) (Reminder: Unnormalized log probability for ¢)
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Class Model Visualization

a7 dense dense

0 0/01/O0 I A\ s 1 3 derce
0000 KN NS A
— 1 s v By 3
0000 L \I:;:;[ - ‘ Lom |y © | "
]
0/0/0/0 wo =2 VM;:‘.., @ [

Stride podling pocling

Se(Ip)

Fix network, input image Iy
Obtain S.(Ip) (Reminder: Unnormalized log probability for ¢)
Update image by backpropagation
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Class Model Visualization

0 O 0 0 1 1\ & 3 3 5 b e
!‘ "
0j0/0/0 — | : . By 3 2‘ B
3 v
0/0/0/0 w :,:,:: 5 \ ) Lowm | m | "
(RG8)
0/0|0/0 wo =2 VM;:‘.., % [i5%

Strde pooiing pooling

Se(Ip)

Fix network, input image Iy
Obtain S.(Ip) (Reminder: Unnormalized log probability for ¢)
Update image by backpropagation

Repeat till convergence
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Class Model Visualization:Examples

washing machine computer keyboard

ostrich limousine
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-
Changing the Regularizer

@ We had the optimization problem:

arg max S.(T) — A1
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-
Changing the Regularizer

@ We had the optimization problem:

arg max S.(T) — A1

@ Problem:Introduces high frequency artifacts
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-
Changing the Regularizer

@ We had the optimization problem:

arg max S.(T) — A1

@ Problem:Introduces high frequency artifacts
° Blur I at each update

@ Also clip pixel values with small contributions
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Class Model Visualization with Blur

Flamingo

Pelican Hartebeest Billiard Table

Ground Beetle Indian Cobra Station Wagon Black Swan

&
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Works for one neuron!

@ We had the optimization problem:

arg mIax Se(I) — )\HIH%
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Works for one neuron!

@ We had the optimization problem:

arg mIax Se(I) — )\HIH%

@ Can do this for any neuronal activation
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Works for one neuron!

@ We had the optimization problem:

arg max S,(1) — A3

@ Can do this for any neuronal activation

arg max a;(I) — AR(I)

@ Process remains the same
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.
Works for one neuron!

@ We had the optimization problem:

arg max S,(1) — A3

@ Can do this for any neuronal activation

arg max a;(I) — AR(I)

@ Process remains the same

@ Can use this to probe what each neuron likes!
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Example Features

Pirate Ship Rocking Chair Teddy Bear Windsor Tie Pitcher

@ Layer 8 visualization is a class model (same as before)

=
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Example Features

&
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Example Features

Layer2 Layer3

E
B
B

https://www.youtube.com/watch?v=AgkflQ4IGaM
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https://www.youtube.com/watch?v=AgkfIQ4IGaM

A Short Digression
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-
Yet Another Image Optimization

@ First we saw:
arg max ,(1) — |1/
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-
Yet Another Image Optimization

@ First we saw:
arg max ,(1) — |1/

@ Next for any internal neuron:

arg max a;(I) — AR(I)
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-
Yet Another Image Optimization

@ First we saw:
arg max ,(1) — |1/

@ Next for any internal neuron:

arg max a;(I) — AR(I)

@ We input a zero image, and optimized to generate an image
that maximized for class score, or neuronal activation
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-
Yet Another Image Optimization

@ First we saw:
arg max ,(1) — |1/

@ Next for any internal neuron:

arg max a;(I) — AR(I)

@ We input a zero image, and optimized to generate an image
that maximized for class score, or neuronal activation

@ We could input a real image, and optimize it over activations
in an entire layer!
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-
Yet Another Image Optimization

First we saw:

arg max S.(T) = M| 73

@ Next for any internal neuron:

arg max a;(I) — AR(I)

@ We input a zero image, and optimized to generate an image
that maximized for class score, or neuronal activation

@ We could input a real image, and optimize it over activations
in an entire layer!

What would happen?
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Deep Dream

Lower layers detect edges etc., on optimization such features will
get boosted up
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Deep Dream

"Admiral Dog!" "The Pig-Snail" "The Camel-Bird" "The Dog-Fish"

Slightly higher layers start to overinterpret shapes in images
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Deep Dream

Horizon

Towers & Pagodas Buildings

Slightly higher layers start to overinterpret shapes in images
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-
Iterating

The input for these were noise images!
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Video: Grocery store trip:
https://www.youtube.com /watch?v=DgPaCWJL7XI
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https://www.youtube.com/watch?v=DgPaCWJL7XI
https://www.youtube.com/watch?v=DgPaCWJL7XI

-
Yet Another Image Optimization

@ We have already seen an example of optimizing an image
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-
Yet Another Image Optimization

@ We have already seen an example of optimizing an image

arg n&in |Ax] s.t. f(x+ Ax;60) =y,
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-
Yet Another Image Optimization

@ We have already seen an example of optimizing an image

argn&in |Ax] s.t. f(x+ Ax;60) =y,
X
@ Adversarial Examples! (Ax is an image)

+.007 x

i

e sign(VaJ(6, %, y)) esign(V,J(0,x.y))
“panda” “nematode™ “gibbon™
57.7% confidence 8.2% confidence 99.3 % confidence
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Convolutions: Motivation

@ Convolution leverages four ideas that can help ML systems:
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@ Convolution leverages four ideas that can help ML systems:
e Sparse interactions
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e Sparse interactions
e Parameter sharing
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@ Convolution leverages four ideas that can help ML systems:

e Sparse interactions
e Parameter sharing
e Equivariant representations
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Convolutions: Motivation

@ Convolution leverages four ideas that can help ML systems:

Sparse interactions

Parameter sharing

Equivariant representations

Ability to work with inputs of variable size
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.
Convolutions: Motivation

@ Convolution leverages four ideas that can help ML systems:

Sparse interactions

Parameter sharing

Equivariant representations

Ability to work with inputs of variable size

e Sparse Interactions

e Plain Vanilla NN (y € R",z € R™): Need matrix
multiplication y = Wz to compute activations for each
layer (every output interacts with every input)
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Convolutions: Motivation

@ Convolution leverages four ideas that can help ML systems:

Sparse interactions

Parameter sharing

Equivariant representations

Ability to work with inputs of variable size

e Sparse Interactions
e Plain Vanilla NN (y € R",z € R™): Need matrix
multiplication y = Wz to compute activations for each
layer (every output interacts with every input)
e Convolutional networks have sparse interactions by
making kernel smaller than input
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Convolutions: Motivation

@ Convolution leverages four ideas that can help ML systems:

Sparse interactions

Parameter sharing

Equivariant representations

Ability to work with inputs of variable size

e Sparse Interactions

e Plain Vanilla NN (y € R",z € R™): Need matrix
multiplication y = Wz to compute activations for each
layer (every output interacts with every input)

e Convolutional networks have sparse interactions by
making kernel smaller than input

e — need to store fewer parameters, computing output
needs fewer operations (O(m x n) versus O(k x n))
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Motivation: Sparse Connectivity

@ Fully connected network: hj3 is computed by full matrix

multiplication with no sparse connectivity
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Motivation: Sparse Connectivity

hl hg h3 h4 h5 hG

o Kernel of size 3, moved with stride of 1
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Motivation: Sparse Connectivity

h1 ha h3 ha hs he

o Kernel of size 3, moved with stride of 1

@ hs only depends on x2, x3, 4
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Motivation: Sparse Connectivity

Ea Z2 x3 T4 T5 Te

@ Connections in CNNs are sparse, but units in deeper layers are
connected to all of the input (larger receptive field sizes)
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Motivation: Parameter Sharing

@ Plain vanilla NN: Each element of W is used exactly once to
compute output of a layer
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Motivation: Parameter Sharing

@ Plain vanilla NN: Each element of W is used exactly once to
compute output of a layer

@ In convolutional networks, parameters are tied: weight applied
to one input is tied to value of a weight applied elsewhere
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Motivation: Parameter Sharing

@ Plain vanilla NN: Each element of W is used exactly once to
compute output of a layer

@ In convolutional networks, parameters are tied: weight applied
to one input is tied to value of a weight applied elsewhere

@ Same kernel is used throughout the image, so instead learning
a parameter for each location, only a set of parameters is
learnt
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Motivation: Parameter Sharing

@ Plain vanilla NN: Each element of W is used exactly once to
compute output of a layer

@ In convolutional networks, parameters are tied: weight applied
to one input is tied to value of a weight applied elsewhere

@ Same kernel is used throughout the image, so instead learning
a parameter for each location, only a set of parameters is
learnt

e Forward propagation remains unchanged O(k X n)
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Motivation: Parameter Sharing

@ Plain vanilla NN: Each element of W is used exactly once to
compute output of a layer

@ In convolutional networks, parameters are tied: weight applied
to one input is tied to value of a weight applied elsewhere

@ Same kernel is used throughout the image, so instead learning
a parameter for each location, only a set of parameters is
learnt

e Forward propagation remains unchanged O(k X n)

@ Storage improves dramatically as k < m,n
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Motivation: Equivariance

o Let's first formally define convolution:
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Motivation: Equivariance

o Let's first formally define convolution:

s(t) = (zxw)(t) = /m(a)w(t —a)da

@ In Convolutional Network terminology x is referred to as
input, w as the kernel and s as the feature map
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Motivation: Equivariance

o Let's first formally define convolution:

s(t) = (zxw)(t) = /m(a)w(t —a)da

@ In Convolutional Network terminology x is referred to as
input, w as the kernel and s as the feature map

@ Discrete Convolution:

S, 7)== K)(i ZZImn (i—m,j—n)
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Motivation: Equivariance

Let's first formally define convolution:

s(t) = (zxw)(t) = /m(a)w(t —a)da

In Convolutional Network terminology x is referred to as
input, w as the kernel and s as the feature map

Discrete Convolution:

S(i,j)=UI=*K)(@ ZZImn —m,j—mn)

Convolution is commutative, thus:

Lecture 8 Convolutional Neural Networks Il CMSC 35246



Motivation: Equivariance

Let's first formally define convolution:

s(t) = (zxw)(t) = /m(a)w(t —a)da

In Convolutional Network terminology x is referred to as
input, w as the kernel and s as the feature map

Discrete Convolution:

S, 7)== K)(i ZZImn (i—m,j—n)

Convolution is commutative, thus:

S(i,j) = (I = K)(i ZZIz—mJ—n)K( n)
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Aside

@ The latter is usually more straightforward to implement in ML
libraries (less variation in range of valid values of m and n)
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Aside

@ The latter is usually more straightforward to implement in ML
libraries (less variation in range of valid values of m and n)

@ Neither are usually used in practice in Neural Networks
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Aside

@ The latter is usually more straightforward to implement in ML
libraries (less variation in range of valid values of m and n)

@ Neither are usually used in practice in Neural Networks

o Libraries implement Cross Correlation, same as convolution,
but without flipping the kernel
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Aside

@ The latter is usually more straightforward to implement in ML
libraries (less variation in range of valid values of m and n)

@ Neither are usually used in practice in Neural Networks

o Libraries implement Cross Correlation, same as convolution,
but without flipping the kernel

S(i,j) = (I« K)(i ZZI2+mJ+n)K( n)
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Motivation: Equivariance

e Equivariance: f is equivariant to g if f(g(x)) = g(f(x))
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Motivation: Equivariance

e Equivariance: f is equivariant to g if f(g(x)) = g(f(x))
@ The form of parameter sharing used by CNNs causes each
layer to be equivariant to translation
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Motivation: Equivariance

e Equivariance: f is equivariant to g if f(g(x)) = g(f(x))
@ The form of parameter sharing used by CNNs causes each
layer to be equivariant to translation

e That is, if g is any function that translates the input, the
convolution function is equivariant to g
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Motivation: Equivariance

@ Implication: While processing time series data, convolution
produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)
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Motivation: Equivariance

@ Implication: While processing time series data, convolution
produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)

@ Images: If we move an object in the image, its representation
will move the same amount in the output
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Motivation: Equivariance

@ Implication: While processing time series data, convolution
produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)

@ Images: If we move an object in the image, its representation
will move the same amount in the output

@ This property is useful when we know some local function is
useful everywhere (e.g. edge detectors)
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Motivation: Equivariance

@ Implication: While processing time series data, convolution
produces a timeline that shows when different features
appeared (if an event is shifted in time in the input, the same
representation will appear in the output)

@ Images: If we move an object in the image, its representation
will move the same amount in the output

@ This property is useful when we know some local function is
useful everywhere (e.g. edge detectors)

e Convolution is not equivariant to other operations such as
change in scale or rotation
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Pooling: Motivation

@ Pooling helps the representation become slightly invariant to
small translations of the input
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Pooling: Motivation

@ Pooling helps the representation become slightly invariant to
small translations of the input

@ Reminder: Invariance: f(g(x)) = f(x)
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Pooling: Motivation

@ Pooling helps the representation become slightly invariant to
small translations of the input

@ Reminder: Invariance: f(g(x)) = f(x)

o If input is translated by small amount: values of most pooled
outputs don’t change
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Pooling: Invariance

POOLING STAGE

DETECTOR STAGE

POOLING STAGE

DETECTOR STAGE

Figure: Goodfellow et al.
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Pooling

@ Invariance to local translation can be useful if we care more
about whether a certain feature is present rather than exactly
where it is
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Pooling

@ Invariance to local translation can be useful if we care more
about whether a certain feature is present rather than exactly
where it is

@ Pooling over spatial regions produces invariance to translation,
what if we pool over separately parameterized convolutions?
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Pooling

@ Invariance to local translation can be useful if we care more
about whether a certain feature is present rather than exactly
where it is

@ Pooling over spatial regions produces invariance to translation,
what if we pool over separately parameterized convolutions?

@ Features can learn which transformations to become invariant
to (Example: Maxout Networks, Goodfellow et al 2013)
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-
Pooling

@ Invariance to local translation can be useful if we care more
about whether a certain feature is present rather than exactly
where it is

@ Pooling over spatial regions produces invariance to translation,
what if we pool over separately parameterized convolutions?

@ Features can learn which transformations to become invariant
to (Example: Maxout Networks, Goodfellow et al 2013)

@ One more advantage: Since pooling is used for downsampling,
it can be used to handle inputs of varying sizes
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Variations
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Locally Connected Layers

@ In some applications: Feature should still be function of a
small part of space, but might not occur throughout it
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Locally Connected Layers

@ In some applications: Feature should still be function of a
small part of space, but might not occur throughout it

° Have one kernel that we move across the grid to
generate a feature map
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Locally Connected Layers

@ In some applications: Feature should still be function of a
small part of space, but might not occur throughout it

° Have one kernel that we move across the grid to
generate a feature map
@ Unshared Convolution: Kernel is different at every location
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Locally Connected Layers

@ In some applications: Feature should still be function of a
small part of space, but might not occur throughout it

° Have one kernel that we move across the grid to
generate a feature map

@ Unshared Convolution: Kernel is different at every location

@ No parameter sharing!
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Locally Connected Layer

J/ANDYANANAN
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Locally Connected Layer

NANN VAN
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Locally Connected Layer

NV VANANAN
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Locally Connected Layer

AVANAVANANAN
MNAVANAVANANAN

CMSC 35246
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Locally Connected Layer

NAYANAVANAN

\V/ANMYANANAN
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Locally Connected Layer
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Locally Connected Layer

MNAVANAVANANAN
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Locally Connected Layer

AVANAVANANAN
MNAVANAVANANAN
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Locally Connected Layer
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Locally Connected Layer

NAYANANANAN
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Locally Connected Layer

MNAVANAVANANAN
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Locally Connected Layer

AVANAVANANAN
MNAVANAVANANAN
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Locally Connected Layer




Locally Connected Layer

YA N NN
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Locally Connected Layer

NV VANANAN
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Locally Connected Layer

NAVAAVANANAN

NAVAAVANANAN

@ What is the number of parameters?
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Tiled Convolution

@ A compromise between locally connected layers and
convolution
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Tiled Convolution

@ A compromise between locally connected layers and
convolution

@ ldea: Have a set of kernels and rotate them while traversal
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.
Tiled Convolution

@ A compromise between locally connected layers and
convolution

@ ldea: Have a set of kernels and rotate them while traversal

@ Ensures that immediate neighbors have different kernels
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.
Tiled Convolution

@ A compromise between locally connected layers and
convolution

@ ldea: Have a set of kernels and rotate them while traversal
@ Ensures that immediate neighbors have different kernels

@ Some parameters sharing (for 5 kernels in the previous
example, what is the number of parameters?)
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Dilated Convolutions
a trous: Convolutions with Holes
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A Problem with regular convolutions

Eal Z2 x3 T4 T5 Te

@ Connections in CNNs are sparse, but units in deeper layers are
connected to more of the input. At what rate does the
effective receptive field size increase with depth?
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A Problem with regular convolutions

@ Convolutional networks repeat CONV-POOL-CONV-POOL to
aggregate multiscale information until a global prediction is
obtained
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A Problem with regular convolutions

@ Convolutional networks repeat CONV-POOL-CONV-POOL to
aggregate multiscale information until a global prediction is
obtained

@ In some applications we require dense prediction: Need
multiscale reasoning as well as full-resolution output

Lecture 8 Convolutional Neural Networks Il CMSC 35246



A Problem with regular convolutions

@ Convolutional networks repeat CONV-POOL-CONV-POOL to

aggregate multiscale information until a global prediction is
obtained

@ In some applications we require dense prediction: Need
multiscale reasoning as well as full-resolution output

@ The global context of convolutional neural networks grows too
slow for such applications
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A Problem with regular convolutions

@ Convolutional networks repeat CONV-POOL-CONV-POOL to
aggregate multiscale information until a global prediction is

obtained

@ In some applications we require dense prediction: Need
multiscale reasoning as well as full-resolution output

@ The global context of convolutional neural networks grows too
slow for such applications

@ Some examples?
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Semantic Segmentation

(a) Image (b) FCN-8s (c) DeepLab (d)Our frontend  (e) Ground truth

Image: Multiscale Context Aggregation by Dilated Convolutions, Yu and Koltun, ICLR 2016
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WaveNet: Causal Convolutions

(3 (> Hidden Layer

OOQQQQOQQQQQQQQ/JWW
(z) Ki\ (i\ f;\' g‘\ (;\ (i\ fj\ (;} /5 /i\ fl\ C;; (j) ;\ b)

(O Hidden Layer

Hidden Layer
W Input

Image: WavelNet: A Generative Model for Raw Audio, Oord et al., ICLR 2016

Lecture 8 Convolutional Neural Networks Il CMSC 35246



A Solution: Dilated Convolutions

@ Recall discrete convolution:

S(i,§) = (I K)(,5)=>_ > I(m,n)K(i—m,j—n)

m n

Lecture 8 Convolutional Neural Networks Il CMSC 35246



A Solution: Dilated Convolutions

@ Recall discrete convolution:

S(i,§) = (I K)(,5)=>_ > I(m,n)K(i—m,j—n)

m n

@ Dilated Convolution:

Lecture 8 Convolutional Neural Networks Il CMSC 35246



A Solution: Dilated Convolutions

@ Recall discrete convolution:

S(i,§) = (I K)(,5)=>_ > I(m,n)K(i—m,j—n)

m n

@ Dilated Convolution:

S(,j)=UIx K ZZImn (t—1Ilm,j—In)
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A Solution: Dilated Convolutions

@ Recall discrete convolution:

S(i,§) = (I K)(,5)=>_ > I(m,n)K(i—m,j—n)

m n

@ Dilated Convolution:
S(,j)=UIx K ZZImn (t—1Ilm,j—In)

[ is a dilation factor
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A Solution: Dilated Convolutions

@ Recall discrete convolution:

S(i,§) = (I K)(,5)=>_ > I(m,n)K(i—m,j—n)

m n
@ Dilated Convolution:

S(,j)=UIx K ZZImn (t—1Ilm,j—In)

[ is a dilation factor

@ Very old idea going to the 80s wavelet theory literature
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Regular Convolution

@ The unit on the second layer has a receptive field of size 3 x 3
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Regular Convolution
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Regular Convolution

@ The unit on the third layer has an effective receptive field of size 5 x 5

Lecture 8 Convolutional Neural Networks Il CMSC 35246



@ The unit on the second layer has a receptive field of size 3 x 3
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Dilated Convolution: Dilation of 1
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Dilated Convolution

@ The unit on the second layer has a receptive field of size 9 x 9
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.
WaveNet: Dilated Causal Convolutions

Output
Dilation =8

Hidden Layer
Dilation = 4

Hidden Layer
Dilation =2

Hidden Layer
Dilation =1

Input
Image: WavelNet: A Generative Model for Raw Audio, Oord et al., ICLR 2016

@ We will see this in detail a few classes later
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The Neuroscientific Motivation for Convolutional Networks

Idea Genealogy for CNNs
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Hubel-Wiesel Experiments, 1959

@ David Hubel and Torsten
Wiesel did a set of famous
experiments to determine
basic facts about
mammalian vision
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-
Hubel-Wiesel Experiments, 1959

@ David Hubel and Torsten
Wiesel did a set of famous
experiments to determine
basic facts about
mammalian vision

@ Example: Recorded activity
of individual neurons and
observed responses to
images projected in precise
locations on a screen in
front of the cat
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Hubel-Wiesel Experiments, 1959

@ Neurons in the cat's early
visual system responded
very strongly to specific
patterns of light, such as
oriented bars and almost
not at all to other patterns
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-
Hubel-Wiesel Experiments, 1959

@ Neurons in the cat's early
visual system responded
very strongly to specific
patterns of light, such as
oriented bars and almost
not at all to other patterns

@ Neurons in the later visual
system responded to more
complex stimuli and
responses also exhibited
invariance to translations
etc
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A Simplified View of Brain Function

fe visual area ———fassociation area —-
B TR i . _,. lower-order __ higher-order _,, ___grandmother
retina LGB sln‘\ple corr\pfex Nypereonplei ™ Ipercompled Pl
: S ST AR v e m ey —b modifiable synapses
| - |
Uo >Us, > Ucu >Us; >Uc, LD Usy Uz —> unmodifiable synapses
N RS Sz

Image Source: Fukushima, 1980

@ Images are projected onto the retina, neurons in retina do
some simple preprocessing but do not substantially alter the

representation
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A Simplified View of Brain Function

fe visual area ———fassociation area —-
B TR i . _,. lower-order __ higher-order _,, ___grandmother
retina LGB sln‘\ple corr\pfex perea ™ Thsercompie! plrs
—— r———imw‘ o T —b modifiable synapses
I [ |
Uy "—L>U5| HUU?DUSZ——)UCZ T \LDUg—'_)Umn_" o —> unmodifiable synapses
2 [ oo T

Image Source: Fukushima, 1980

@ Images are projected onto the retina, neurons in retina do
some simple preprocessing but do not substantially alter the
representation

@ The signal channels into the area LGN (through the optic
nerve)
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A Simplified View of Brain Function

5 visual area ———fassociation area —-

lower-order __ higher-order ., __grandmother
hypercomplex  hypercomplex cell ?

retina —~LGB —simple — complex -
% et y

——— ———i——vw‘ o v e m ey —b modifiable synapses
i L i

Uo T >Ug, >Ug 7 ™Us; >Uc,T L >Ug; Uz 7" —> unmodifiable synapses
e T I e . LI e B )

Image Source: Fukushima, 1980

@ Images are projected onto the retina, neurons in retina do
some simple preprocessing but do not substantially alter the
representation

@ The signal channels into the area LGN (through the optic
nerve)

@ Let's assume these regions simply carry the signal from eye to
area V1
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A Simplified View of Brain Function

f visual area ——————}cassociation area -

lower-order __ higher-order _ ., ___grandmother
hypercomplex . hypercomplex cell ?

retina —- LGB —=simple — complex —
St i .

— modifiable synapses
—> unmodifiable synapses

e V1 is arranged in a spatial map:
- 2D structure that mirrors structure of image in the retina
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A Simplified View of Brain Function

e visual area ————sf-association area —-
i sl . _,. lower-order __ higher-order _,, ___grandmother
retina —=~LGB —simple — complex —= LR hypercompies il
o - T ———4——1‘ [ - i —> modifiable synapses
I
Uy —,LPUS, —>Ug J—LDU52—>UCZJ—L‘>US3—>UC3>_' - —> unmodifiable synapses

Image Source: Fukushima, 1980

e V1 is arranged in a spatial map:

- 2D structure that mirrors structure of image in the retina
- Light incident in the lower half of the retina only affects
the lower half of V1
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A Simplified View of Brain Function

fe visual area ~——————}association area -
i sl . _,. lower-order __ higher-order ., __grandmother
retina — LGB —simple — complex hypercomplex ™ hypercomplex cell 2
i [ 1ore ———4——1‘ [ ‘7-‘ —b modifiable synapses
| i
Ug _"PUSI —>Uy ﬁDU52—> U, ‘V_\LDUSB_>UC3'_ e —> unmodifiable synapses

Image Source: Fukushima, 1980

@ V1 has many simple cells: Roughly characterized by a linear
function of image in small, spatially localized receptive fields
(detection)
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A Simplified View of Brain Function

fe visual area ~——————}association area -
i sl . _,. lower-order __ higher-order ., __grandmother
retina — LGB —simple — complex hypercomplex ™ hypercomplex cell 2
i [ 1ore ———4——1‘ [ ‘7-‘ —b modifiable synapses
| i
Ug _"PUSI —>Uy ﬁDU52—> U, ‘V_\LDUSB_>UC3'_ e —> unmodifiable synapses

Image Source: Fukushima, 1980

@ V1 has many simple cells: Roughly characterized by a linear
function of image in small, spatially localized receptive fields
(detection)

@ V1 has many complex cells: Features detected similar to
simple cells, but invariant to small shifts in position of feature
(pooling)
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A Simplified View of Brain Function

fe visual area ~——————}association area -
i sl . _,. lower-order __ higher-order ., __grandmother
retina —=LGB —=simple — complex hypercomplex ™ hypercomplex cell 2
P —— —=> modifiable synapses

L ! t
U=y Yoy s> Ue TP

|
U3z~~~ —> unmodifiable synapses

Image Source: Fukushima, 1980

@ V1 has many simple cells: Roughly characterized by a linear
function of image in small, spatially localized receptive fields
(detection)

@ V1 has many complex cells: Features detected similar to
simple cells, but invariant to small shifts in position of feature
(pooling)

@ Also invariant to some changes in lighting
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A Simplified View of Brain Function

f—— visual area —————————fcassociation area -

lower-order _,_ higher-order _ ., ___grandmother

retina 4LGB»sinTpLe - compfex* sbpeleeil Sl et P
. R Ty 1 [oTrTT T poesoems = —> modifiable synapses
i L |
Uo ’LDUSI >Ue 7 PUs; U, TP Uss >Ues— " —> unmodifiable synapses
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Image Source: Fukushima, 1980

@ In the simplified view, this basic strategy is repeated many

times
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A Simplified View of Brain Function

f—— visual area —————————fcassociation area -

lower-order _,_ higher-order _ ., ___grandmother

retina 4LGB»sunTpre — o ™ e indme
1 peeme—— w‘ ‘r* "***‘**w‘ ****** . -‘ — modifiable synapses
! i
Uo T >Ug, > Uy T >Us, >Ue, it >Ugy Uz —> unmodifiable synapses
=S _ Tl s el TS T

Image Source: Fukushima, 1980

@ In the simplified view, this basic strategy is repeated many
times

@ After multiple layers, we find cells that respond to only
specific concepts and are invariant to many transformations of
the input (grandmother cells in the medial temporal lobe)
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-
Simple and Complex Cells

V2/V4-like simple units
tuned to the non-

linear combination of

multiple orientations

simple units combine afferent
units with different selectivities
(here different orientations)

Vi-like complex unit
tuned to a single
orientation and toler-
ant with respect to the
exact position and
scale of the bar within
its receptive field

Image Source: Scholarpedia
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Neocognitron (Fukushima, 1980)

@ Fukushima used this simplified view of brain function to build
a neural network
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Neocognitron (Fukushima, 1980)

@ Fukushima used this simplified view of brain function to build
a neural network

@ Was trained by an unsupervised procedure
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e
TDNNs and CNNs

@ Waibel and Hinton introduced a 1-D Convolutional Network
and trained it by backpropagation
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e
TDNNs and CNNs

@ Waibel and Hinton introduced a 1-D Convolutional Network
and trained it by backpropagation

@ Convolutional Networks topology was directly inspired by the
Neocognitron which was directly inspired by the Hubel-Weisel
model
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e
TDNNs and CNNs

@ Waibel and Hinton introduced a 1-D Convolutional Network
and trained it by backpropagation

@ Convolutional Networks topology was directly inspired by the
Neocognitron which was directly inspired by the Hubel-Weisel
model

@ TDNNs inspired the use of backpropagation for training for
2D CNNs (Yann LeCun, 1989)
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Next time

More on Equivariance
Group Equivariant CNNs
Spatial Transformers and related ideas

Back to Architectures: Ultra Deep Models

Begin: CNNs on Graphs and Combinatorial Data
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