Lecture 9 CMSC 35246: Deep Learning

Shubhendu Trivedi & Risi Kondor

University of Chicago

April 24, 2017

Architectures from before

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

3x3 conv, 64
*
3x3 conv, 64, pool/2
*
3x3 conv, 128
*
3x3 conv, 128, pool/2
*
3x3 conv, 256
<u> </u>
3x3 conv, 256
¥
3x3 conv, 256
*
3x3 conv, 256, pool/2
3x3 conv. 512
3x3 conv, 512
3x3 conv, 512
3x3 conv. 512
3x3 conv, 512
3x3 conv. 512. pool/2
3x3 conv, 512, pool/2
3x3 conv. 512
3x3 conv, 512
3x3 conv, 512
5X5 CONV, 512
3x3 conv, 512
343 COTIV, 512
3x3 conv, 512, pool/2
- 343 cont, 512, p000/2
fc, 4096
<u> </u>
fc, 4096
*
fc. 1000

GoogleNet, 22 layers (ILSVRC 2014) () - <mark>-</mark> - **0**

-

-10 ÷. 17 17 17 17 17 17 -----------1 ------

Depth is clearly a significant factor for superior performance

Depth is clearly a significant factor for superior performance

Is learning better networks just about stacking more layers?

Architectures from before

• Adding more layers leads to a Degradation Problem

- Adding more layers leads to a Degradation Problem
- Increasing depth: Accuracy first saturates, then rapidly degrades

- Adding more layers leads to a Degradation Problem
- Increasing depth: Accuracy first saturates, then rapidly degrades
- Degradation is not caused due to overfitting
- On adding more layers after a certain depth *training error increases with depth*

 Networks obtained by stacking 3x3 convolutional layers on CIFAR-10

Figure: He et al. Deep Residual Learning for Image Recognition, CVPR 2016

 Networks obtained by stacking 3x3 convolutional layers on ImageNet 1000

Figure: He et al. Deep Residual Learning for Image Recognition, CVPR 2016

A Solution by Construction

Figure: He et al. Deep Residual Learning for Image Recognition, CVPR 2016

A deeper model should not have higher training error

A Plain Network Block

 \bullet Let $\mathcal{H}(\mathbf{x})$ be the function to be fit by a few stacked layers

✓ → CMSC 35246

A Plain Network Block

- \bullet Let $\mathcal{H}(\mathbf{x})$ be the function to be fit by a few stacked layers
- \bullet Above, we hope that the two layers will fit $\mathcal{H}(\mathbf{x})$

• If stack can approximate $\mathcal{H}({\bf x}),$ then it can approximate $\mathcal{F}({\bf x})=\mathcal{H}({\bf x})-{\bf x}$

- If stack can approximate $\mathcal{H}({\bf x}),$ then it can approximate $\mathcal{F}({\bf x})=\mathcal{H}({\bf x})-{\bf x}$
- $\mathcal{H}(\mathbf{x})-\mathbf{x}$ is a residual function (x and $\mathcal{H}(\mathbf{x})$ of same size)

- If stack can approximate $\mathcal{H}(\mathbf{x}),$ then it can approximate $\mathcal{F}(\mathbf{x})=\mathcal{H}(\mathbf{x})-\mathbf{x}$
- $\mathcal{H}(\mathbf{x}) \mathbf{x}$ is a residual function (\mathbf{x} and $\mathcal{H}(\mathbf{x})$ of same size)
- $\mathcal{F}(\mathbf{x})$ is a residual map with respect to the identity

- If stack can approximate $\mathcal{H}(\mathbf{x}),$ then it can approximate $\mathcal{F}(\mathbf{x})=\mathcal{H}(\mathbf{x})-\mathbf{x}$
- $\mathcal{H}(\mathbf{x})-\mathbf{x}$ is a residual function (x and $\mathcal{H}(\mathbf{x})$ of same size)
- $\mathcal{F}(\mathbf{x})$ is a residual map with respect to the identity

• If identity map is optimal \implies drive weights to zero to approach identity

- If identity map is optimal \implies drive weights to zero to approach identity
- Identity is rarely optimal but it serves to pre-condition the problem (e.g. similar work in multigrid literature)

- If identity map is optimal \implies drive weights to zero to approach identity
- Identity is rarely optimal but it serves to pre-condition the problem (e.g. similar work in multigrid literature)
- If the optimal map is *closer* to identity than a zero map, easier to find small perturbations w.r.t identity

< 行 →

CMSC 35246

• Here
$$\mathcal{F}(\mathbf{x}) = W_2 \max\{0, W_1 \mathbf{x}\}$$

• Here
$$\mathcal{F}(\mathbf{x}) = W_2 \max\{0, W_1 \mathbf{x}\}$$

• $\mathcal{F}(\mathbf{x}) + \mathbf{x}$ is implemented as a shortcut and elementwise addition

• Here
$$\mathcal{F}(\mathbf{x}) = W_2 \max\{0, W_1 \mathbf{x}\}$$

- $\mathcal{F}(\mathbf{x}) + \mathbf{x}$ is implemented as a shortcut and elementwise addition
- \bullet Dimensions of $\mathcal{F}(\mathbf{x})$ and \mathbf{x} must be equal

- Here $\mathcal{F}(\mathbf{x}) = W_2 \max\{0, W_1 \mathbf{x}\}$
- $\mathcal{F}(\mathbf{x}) + \mathbf{x}$ is implemented as a shortcut and elementwise addition
- \bullet Dimensions of $\mathcal{F}(\mathbf{x})$ and \mathbf{x} must be equal
- If not: Perform linear projection $W_s \mathbf{x}$

- Here $\mathcal{F}(\mathbf{x}) = W_2 \max\{0, W_1 \mathbf{x}\}$
- $\mathcal{F}(\mathbf{x}) + \mathbf{x}$ is implemented as a shortcut and elementwise addition
- \bullet Dimensions of $\mathcal{F}(\mathbf{x})$ and \mathbf{x} must be equal
- If not: Perform linear projection $W_s \mathbf{x}$
- Aside: Can also use a square matrix W_s even if dimensions are equal, but an identity map is found to be better

< (P) >

• Stacked network of before but with residual connections

- Stacked network of before but with residual connections
- Training Procedure:
 - Both networks are trained from scratch

- Stacked network of before but with residual connections
- Training Procedure:
 - Both networks are trained from scratch
 - No dropout is used

- Stacked network of before but with residual connections
- Training Procedure:
 - Both networks are trained from scratch
 - No dropout is used
 - Batch-normalization after every layer

- Stacked network of before but with residual connections
- Training Procedure:
 - · Both networks are trained from scratch
 - No dropout is used
 - Batch-normalization after every layer
 - Use similar data augmentation for both

CIFAR-10

• For now focus on 32 layer results for both

ImageNet with ResNet

• Thin curves: Training Error; Thick curves: Validation Error

✓ ☐ > CMSC 35246

ImageNet with ResNet

- Thin curves: Training Error; Thick curves: Validation Error
- Deep ResNets have lower training and validation error

Bottleneck Residual Block

• 1x1 convolutions to reduce and increase dimensionality

Bottleneck Residual Block

• 1x1 convolutions to reduce and increase dimensionality

• Use parameter free identity shortcuts

Results with Deeper ResNets: CIFAR-10

me	error (%)		
Maxo	9.38		
NIN	8.81		
DSI	8.22		
	# layers	# params	
FitNet [35]	19	2.5M	8.39
Highway [42, 43]	19	2.3M	7.54 (7.72±0.16)
Highway [42, 43]	32	1.25M	8.80
ResNet	20	0.27M	8.75
ResNet	32	0.46M	7.51
ResNet	44	0.66M	7.17
ResNet	56	0.85M	6.97
ResNet	110	1.7M	6.43 (6.61±0.16)
ResNet	1202	19.4M	7.93

Results with Deeper ResNets: ImageNet

Lecture 9

CMSC 35246

< 177 ►

Revolution of Depth

VGG, 19 layers (ILSVRC 2014)

GoogleNet, 22 layers (ILSVRC 2014)

cia i 62 63 63 62 100 ÷ ÷. ------this this bed 1 -------640 640 640 640 -----1015 Die Die bie -------660 -825

1

Revolution of Depth

< 🗇 ► CMSC 35246

Types of Shortcut Connections

✓ ☐ ►
CMSC 35246

Lecture 9

Types of Shortcut Connections

case	Fig.	on shortcut	on \mathcal{F}	error (%)	remark
original [1]	Fig. 2(a)	1	1	6.61	
constant scaling	Fig. 2(b)	0	1	fail	This is a plain net
		0.5	1	fail	
		0.5	0.5	12.35	frozen gating
exclusive gating	Fig. 2(c)	1 - g(x)	$g(\mathbf{x})$	fail	init $b_g=0$ to -5
		$1 - g(\mathbf{x})$	$g(\mathbf{x})$	8.70	init $b_g = -6$
		$1 - g(\mathbf{x})$	$g(\mathbf{x})$	9.81	init $b_g = -7$
shortcut-only gating	Fig. 2(d)	1 - g(x)	1	12.86	init $b_g=0$
		$1 - g(\mathbf{x})$	1	6.91	init $b_g = -6$
1×1 conv shortcut	Fig. 2(e)	1×1 conv	1	12.22	
dropout shortcut	Fig. 2(f)	dropout 0.5	1	fail	

 \bullet Results on CIFAR-10 test-set using ResNet-100. Fail represents error more than 20%

Types of Activations

Lecture 9

Types of Activations

case	Fig.	ResNet-110	ResNet-164
original Residual Unit [1]	Fig. $4(a)$	6.61	5.93
BN after addition	Fig. 4(b)	8.17	6.50
ReLU before addition	Fig. $4(c)$	7.84	6.14
ReLU-only pre-activation	Fig. $4(d)$	6.71	5.91
full pre-activation	Fig. $4(e)$	6.37	5.46

• Results on CIFAR-10 test-set.

A Better Residual Unit

Lecture 9

Lecture 9

- Modular unit is a *generalized* residual block with two parallel states:
 - A residual stream r with identity shortcuts like in original ResNets (parameters W_{l,r→r})

- Modular unit is a *generalized* residual block with two parallel states:
 - A residual stream r with identity shortcuts like in original ResNets (parameters W_{l,r→r})
 - A transient stream \mathbf{t} , a standard convolution layer (parameters $W_{l,t \rightarrow t}$)

Lecture 9

• Two additional sets of conv. filters $(W_{l,r\to t}, W_{l,t\to r})$ in each block are used for cross-stream info. transfer

- Two additional sets of conv. filters $(W_{l,r\to t}, W_{l,t\to r})$ in each block are used for cross-stream info. transfer
- Transient stream t allows to process information from either stream without shortcuts (allowing information to be discarded)

• In ResNets we had

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) + \mathbf{x}_l$$

• In ResNets we had

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) + \mathbf{x}_l$$

• In Highway Networks:

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) \mathcal{T}(W_T, \mathbf{x}_l) + \mathbf{x}_l \mathcal{C}(\mathbf{W}_{\mathbf{C}}, \mathbf{x}_l)$$

Lecture 9

• In ResNets we had

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) + \mathbf{x}_l$$

• In Highway Networks:

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) \mathcal{T}(W_T, \mathbf{x}_l) + \mathbf{x}_l \mathcal{C}(\mathbf{W}_{\mathbf{C}}, \mathbf{x}_l)$$

• \mathcal{T} is the Transfer Gate, \mathcal{C} is the Carry Gate

• In ResNets we had

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) + \mathbf{x}_l$$

• In Highway Networks:

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) \mathcal{T}(W_T, \mathbf{x}_l) + \mathbf{x}_l \mathcal{C}(\mathbf{W}_{\mathbf{C}}, \mathbf{x}_l)$$

- $\bullet~\mathcal{T}$ is the Transfer Gate, $\mathcal C$ is the Carry Gate
- \bullet When $\mathcal{C}=1-\mathcal{T}$

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) \mathcal{T}(W_T, \mathbf{x}_l) + \mathbf{x}_l (1 - \mathcal{T}(W_T, \mathbf{x}_l))$$

• In ResNets we had

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) + \mathbf{x}_l$$

• In Highway Networks:

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) \mathcal{T}(W_T, \mathbf{x}_l) + \mathbf{x}_l \mathcal{C}(\mathbf{W}_{\mathbf{C}}, \mathbf{x}_l)$$

- $\bullet~\mathcal{T}$ is the Transfer Gate, $\mathcal C$ is the Carry Gate
- \bullet When $\mathcal{C}=1-\mathcal{T}$

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) \mathcal{T}(W_T, \mathbf{x}_l) + \mathbf{x}_l (1 - \mathcal{T}(W_T, \mathbf{x}_l))$$

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) \mathcal{T}(W_T, \mathbf{x}_l) + \mathbf{x}_l (1 - \mathcal{T}(W_T, \mathbf{x}_l))$$

✓ ☐ ▶
CMSC 35246

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) \mathcal{T}(W_T, \mathbf{x}_l) + \mathbf{x}_l (1 - \mathcal{T}(W_T, \mathbf{x}_l))$$

• Dim. of $\mathbf{x}_{l+1}, \mathbf{x}_l, \mathcal{F}(W_l, \mathbf{x}_l), \mathcal{T}(W_T, \mathbf{x}_l)$ must be same

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) \mathcal{T}(W_T, \mathbf{x}_l) + \mathbf{x}_l (1 - \mathcal{T}(W_T, \mathbf{x}_l))$$

- Dim. of $\mathbf{x}_{l+1}, \mathbf{x}_l, \mathcal{F}(W_l, \mathbf{x}_l), \mathcal{T}(W_T, \mathbf{x}_l)$ must be same
- Note that:
 - If $\mathcal{T}(W_T, \mathbf{x}_l) = 0$ then $\mathbf{x}_{l+1} = \mathbf{x}_l$

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) \mathcal{T}(W_T, \mathbf{x}_l) + \mathbf{x}_l (1 - \mathcal{T}(W_T, \mathbf{x}_l))$$

- Dim. of $\mathbf{x}_{l+1}, \mathbf{x}_l, \mathcal{F}(W_l, \mathbf{x}_l), \mathcal{T}(W_T, \mathbf{x}_l)$ must be same
- Note that:
 - If $\mathcal{T}(W_T, \mathbf{x}_l) = 0$ then $\mathbf{x}_{l+1} = \mathbf{x}_l$
 - If $\mathcal{T}(W_T, \mathbf{x}_l) = 1$ then $\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l)$

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) \mathcal{T}(W_T, \mathbf{x}_l) + \mathbf{x}_l (1 - \mathcal{T}(W_T, \mathbf{x}_l))$$

- Dim. of $\mathbf{x}_{l+1}, \mathbf{x}_l, \mathcal{F}(W_l, \mathbf{x}_l), \mathcal{T}(W_T, \mathbf{x}_l)$ must be same
- Note that:
 - If $\mathcal{T}(W_T, \mathbf{x}_l) = 0$ then $\mathbf{x}_{l+1} = \mathbf{x}_l$
 - If $\mathcal{T}(W_T, \mathbf{x}_l) = 1$ then $\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l)$
- The highway layer can smoothly vary between a plain layer and just the identity map depending on the transfer gate

$$\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l) \mathcal{T}(W_T, \mathbf{x}_l) + \mathbf{x}_l (1 - \mathcal{T}(W_T, \mathbf{x}_l))$$

- Dim. of $\mathbf{x}_{l+1}, \mathbf{x}_l, \mathcal{F}(W_l, \mathbf{x}_l), \mathcal{T}(W_T, \mathbf{x}_l)$ must be same
- Note that:
 - If $\mathcal{T}(W_T, \mathbf{x}_l) = 0$ then $\mathbf{x}_{l+1} = \mathbf{x}_l$
 - If $\mathcal{T}(W_T, \mathbf{x}_l) = 1$ then $\mathbf{x}_{l+1} = \mathcal{F}(W_l, \mathbf{x}_l)$
- The highway layer can smoothly vary between a plain layer and just the identity map depending on the transfer gate
- Like the residual block, the highway layer is then repeated to train deep networks

< 行 →

• Was published just before Residual Networks (Srivastava, Greff, Schmidhuber, 2015)

- Was published just before Residual Networks (Srivastava, Greff, Schmidhuber, 2015)
- Contrasts:
 - While more general, has not demonstrated accuracy gains with greater depth

- Was published just before Residual Networks (Srivastava, Greff, Schmidhuber, 2015)
- Contrasts:
 - While more general, has not demonstrated accuracy gains with greater depth
 - Gates in highway networks are data-dependent while identity shortcuts in ResNets are parameter-free

- Was published just before Residual Networks (Srivastava, Greff, Schmidhuber, 2015)
- Contrasts:
 - While more general, has not demonstrated accuracy gains with greater depth
 - Gates in highway networks are data-dependent while identity shortcuts in ResNets are parameter-free
 - When the gates for shortcut are closed in highway nets, they highway module represents non-residual functions

Residuals might not be necessary

Fractal Networks

• Work done here in campus (Gustav Larsson, Michael Maire, Gregory Shakhnarovich) Fractal Expansion Rule Block 1 f_C f_C Block 2 f_C Block 3 $f_{C+1}(z)$ $f_C(z)$ Block 4 Layer Key Convolution Block 5 Join Pool Prediction $f_4(z)$ < (P) >

CMSC 35246

Fractal Networks

• Base case: $f_1(z) = conv(z)$

Lecture 9

Fractal Networks

- Base case: $f_1(z) = conv(z)$
- Recursive definition: $f_{C+1}(z) = [f_C \circ f_C(z)] \oplus [conv(z)]$

Training by DropPath

- Alternate global and local sampling strategies to encourage development of individual columns that can be strong stand-alone subnetworks
- Can train very deep networks with competitive performance without residuals
Performance of Residual Networks might not be due to depth

• For an output \mathbf{x}_3 , we have $\mathbf{x}_3 = \mathbf{x}_2 + f_3(\mathbf{x}_2)$

- For an output \mathbf{x}_3 , we have $\mathbf{x}_3 = \mathbf{x}_2 + f_3(\mathbf{x}_2)$
- Expanding: $\mathbf{x}_3 = [\mathbf{x}_1 + f_2(\mathbf{x}_1)] + f_3(\mathbf{x}_1 + f_2(\mathbf{x}_1))$

- For an output \mathbf{x}_3 , we have $\mathbf{x}_3 = \mathbf{x}_2 + f_3(\mathbf{x}_2)$
- Expanding: $\mathbf{x}_3 = [\mathbf{x}_1 + f_2(\mathbf{x}_1)] + f_3(\mathbf{x}_1 + f_2(\mathbf{x}_1))$
- Expanding further:

$$= [\mathbf{x}_0 + f_1(\mathbf{x}_0) + f_1(\mathbf{x}_0 + f_1(\mathbf{x}_0))] + f_3(\mathbf{x}_0 + f_1(\mathbf{x}_0) + f_1(\mathbf{x}_0 + f_1(\mathbf{x}_0)))$$

• Unraveled view graphically:

(a) Conventional 3-block residual network

(b) Unraveled view of (a)

 $\bullet\,$ Many paths from the input to output: 2^n paths

- Many paths from the input to output: 2^n paths
- In classical visual hierarchy, each layer of processing depends only on the output of the previous layer, this is not true for residual networks due to their inherent structure

- Many paths from the input to output: 2^n paths
- In classical visual hierarchy, each layer of processing depends only on the output of the previous layer, this is not true for residual networks due to their inherent structure
- Infact, each module $f_i(\cdot)$ can be thought of as being fed data from a mixture of 2^{i-1} different distributions generated from every possible configuration of the previous i-1 modules

- Many paths from the input to output: 2^n paths
- In classical visual hierarchy, each layer of processing depends only on the output of the previous layer, this is not true for residual networks due to their inherent structure
- Infact, each module $f_i(\cdot)$ can be thought of as being fed data from a mixture of 2^{i-1} different distributions generated from every possible configuration of the previous i-1 modules
- Viet *et al.* provide experimental evidence that most paths in residual networks are relatively independent of each other, and usually short paths are active

- Many paths from the input to output: 2^n paths
- In classical visual hierarchy, each layer of processing depends only on the output of the previous layer, this is not true for residual networks due to their inherent structure
- Infact, each module $f_i(\cdot)$ can be thought of as being fed data from a mixture of 2^{i-1} different distributions generated from every possible configuration of the previous i-1 modules
- Viet *et al.* provide experimental evidence that most paths in residual networks are relatively independent of each other, and usually short paths are active
- The strength of ResNets may not come from depth, but due to an ensemble of exponentially many shallow networks

• The *l*th layer has *l* inputs, consisting of feature maps of all preceding convolutional blocks

• The *l*th layer has *l* inputs, consisting of feature maps of all preceding convolutional blocks

• A Deep Dense Net with 3 dense blocks

Achitectures

Layers	Output Size	DenseNet-121 $(k = 32)$	DenseNet-169 $(k = 32)$	DenseNet-201 $(k = 32)$	DenseNet-161 $(k = 48)$						
Convolution	112×112	7×7 conv, stride 2									
Pooling	56×56	3×3 max pool, stride 2									
Dense Block (1)	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$						
Transition Layer	56×56	1×1 conv									
(1)	e pool, stride 2										
Dense Block (2)	28×28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$						
Transition Layer	28×28										
(2)	14×14	2×2 average pool, stride 2									
Dense Block (3)	14×14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 36$						
Transition Layer	14×14	14 1 × 1 conv									
(3)	7×7	2×2 average pool, stride 2									
Dense Block (4)	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$						
Classification	1×1	7×7 global average pool									
Layer		1000D fully-connected, softmax									

k is growth factor (if F_l produces k feature maps as o/p, it follows that the *l*th layer has
k × (l − 1) + k₀ input feature maps. Where k₀ is the number of channels in the input image)

Results

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network	-	-	10.41	8.81	35.68	-	2.35
All-CNN	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net	-	-	9.69	7.97	-	34.57	1.92
Highway Network		-	-	7.72		32.39	
FractalNet	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet	110	1.7M	-	6.61	-		-
ResNet	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet	16	11.0M	-	4.81	-	22.07	-
	28	36.5M	-	4.17		20.50	-
with Dropout	16	2.7M	-		-		1.64
ResNet (pre-activation)	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-

Similarity Learning and Siamese Networks

Who is more similar?

Similar Gender

Similar Age

Similar Hair

✓ ☐ > CMSC 35246 Similarity depends on the context, which may not be adequately captured by the Euclidean distance on the native feature space

• Learning a distance metric:

- Learning a distance metric:
 - Amplify informative directions

- Learning a distance metric:
 - Amplify informative directions
 - Squash non-informative directions

< A >

CMSC 35246

• Learning a distance metric:

- Learning a distance metric:
 - Amplify informative directions

- Learning a distance metric:
 - Amplify informative directions
 - Squash non-informative directions

• Learning a distance metric:

- Learning a distance metric:
 - Amplify informative directions

- Learning a distance metric:
 - Amplify informative directions
 - Squash non-informative directions

< 行 →

CMSC 35246

• Here the map is $\mathbf{x} \mapsto L\mathbf{x}$

• Fundamental intuition behind most work in the area:

- Fundamental intuition behind most work in the area:
 - "Pull" good neighbors (from the correct class for a given point) closer

- Fundamental intuition behind most work in the area:
 - "Pull" good neighbors (from the correct class for a given point) closer
 - "Pushing" bad neighbors (from the incorrect class for a given point) farther away

• Fundamental intuition behind most work in the area:

- "Pull" good neighbors (from the correct class for a given point) closer
- "Pushing" bad neighbors (from the incorrect class for a given point) farther away
- "Good" and "Bad" is usually some combination of label agreement and proximity

• Fundamental intuition behind most work in the area:

- "Pull" good neighbors (from the correct class for a given point) closer
- "Pushing" bad neighbors (from the incorrect class for a given point) farther away
- "Good" and "Bad" is usually some combination of label agreement and proximity
- Exact formulation of "Good" and "Bad", and how many to consider for each training point, varies from algorithm to algorithm

Distance Metric Learning

Lecture 9

Semantic Embeddings

• In general, we can have a non-linear map $\mathbf{x} \mapsto \phi(\mathbf{x})$

Semantic Embeddings

- In general, we can have a non-linear map $\mathbf{x} \mapsto \phi(\mathbf{x})$
- ϕ can be modeled by a neural network!

Semantic Embeddings

- In general, we can have a non-linear map $\mathbf{x} \mapsto \phi(\mathbf{x})$
- ϕ can be modeled by a neural network!
- Reminder: Goal Given labeled data, learn a metric that has the form $d(\mathbf{x}, \mathbf{x}') = \|\phi(\mathbf{x}) \phi(\mathbf{x})'\|$ that is compatible with labels

(同)

Siamese Networks

• Uses a contrastive cost function:

$$J = \min_{\phi} y_{i,j} D(\mathbf{x}_i, \mathbf{x}_j)^2 + (1 - y_{i,j}) \max\{0, \alpha - D(\mathbf{x}_i, \mathbf{x}_j)^2\}$$

Siamese Networks

• Uses a contrastive cost function:

$$J = \min_{\phi} y_{i,j} D(\mathbf{x}_i, \mathbf{x}_j)^2 + (1 - y_{i,j}) \max\{0, \alpha - D(\mathbf{x}_i, \mathbf{x}_j)^2\}$$

• With
$$D(\mathbf{x}_i, \mathbf{x}_j) = \|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|_2$$

Siamese Networks

• Uses a contrastive cost function:

$$J = \min_{\phi} y_{i,j} D(\mathbf{x}_i, \mathbf{x}_j)^2 + (1 - y_{i,j}) \max\{0, \alpha - D(\mathbf{x}_i, \mathbf{x}_j)^2\}$$

- With $D(\mathbf{x}_i, \mathbf{x}_j) = \|\phi(\mathbf{x}_i) \phi(\mathbf{x}_j)\|_2$
- Two neural networks with shared weights, trained by backpropagation

• We have an anchor point \mathbf{x}_i^a

Lecture 9

- We have an anchor point \mathbf{x}^a_i
- We pick a point with the same class \mathbf{x}_i^p , and a point with a wrong class \mathbf{x}_i^n

- We have an anchor point \mathbf{x}^a_i
- We pick a point with the same class \mathbf{x}_i^p , and a point with a wrong class \mathbf{x}_i^n
- We then optimize the following objective function:

- We have an anchor point \mathbf{x}_i^a
- We pick a point with the same class \mathbf{x}_i^p , and a point with a wrong class \mathbf{x}_i^n
- We then optimize the following objective function:

$$J = \min_{\phi} \sum_{i} \max\{0, D(\mathbf{x}_{i}^{a}, \mathbf{x}_{i}^{p})^{2} - D(\mathbf{x}_{i}^{a}, \mathbf{x}_{i}^{n})^{2} + \alpha\}$$

- We have an anchor point \mathbf{x}_i^a
- We pick a point with the same class \mathbf{x}_i^p , and a point with a wrong class \mathbf{x}_i^n
- We then optimize the following objective function:

$$J = \min_{\phi} \sum_{i} \max\{0, D(\mathbf{x}_{i}^{a}, \mathbf{x}_{i}^{p})^{2} - D(\mathbf{x}_{i}^{a}, \mathbf{x}_{i}^{n})^{2} + \alpha\}$$

• With
$$D(\mathbf{x}_i, \mathbf{x}_j) = \|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|_2$$

- We have an anchor point \mathbf{x}^a_i
- We pick a point with the same class \mathbf{x}_i^p , and a point with a wrong class \mathbf{x}_i^n
- We then optimize the following objective function:

$$J = \min_{\phi} \sum_{i} \max\{0, D(\mathbf{x}_{i}^{a}, \mathbf{x}_{i}^{p})^{2} - D(\mathbf{x}_{i}^{a}, \mathbf{x}_{i}^{n})^{2} + \alpha\}$$

- With $D(\mathbf{x}_i, \mathbf{x}_j) = \|\phi(\mathbf{x}_i) \phi(\mathbf{x}_j)\|_2$
- Three neural networks with shared weights, trained by backpropagation

Application: Visual Analogies

• Analogies: "A is to B as C is to D" e.g. "Paris is to France as London is to UK"

Application: Visual Analogies

- Analogies: "A is to B as C is to D" e.g. "Paris is to France as London is to UK"
- How to solve analogies using embeddings?

• Suppose we have learned a semantic embedding for a face database (multiple images per person)

- Suppose we have learned a semantic embedding for a face database (multiple images per person)
- Now we have ONE image of a new class given to us. How can we integrate it in our system?

- Suppose we have learned a semantic embedding for a face database (multiple images per person)
- Now we have ONE image of a new class given to us. How can we integrate it in our system?
- Leverage examples from other classes and transfer knowledge

• Suppose we have learned a semantic embedding for a face database (multiple images per person)

- Suppose we have learned a semantic embedding for a face database (multiple images per person)
- Now we have ONE image of a new class given to us. How can we integrate it in our system?

- Suppose we have learned a semantic embedding for a face database (multiple images per person)
- Now we have ONE image of a new class given to us. How can we integrate it in our system?
- Leverage examples from other classes and transfer knowledge

• Semantic embedding learning using a siamese network

• Semantic embedding learning using a siamese network

• We train the network to detect whether a pair comes from same class or not

Now given one training example x
_i from each new class and a query x, estimate label as: ŷ = arg max_i F(x
_i, x)

• Koch and Salakhutdinov (2015), used a Siamese CNN architecture to get the state of the art performance on the OmniGlot dataset

< A >

Au