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Architectures from before

AlexNet, 8 layers

VGG, 19 layers
(ILSVRC 2012)

GoogleNet, 22 layers
(ILSVRC 2014)

(ILSVRC 2014) ==
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Depth is clearly a significant factor for superior performance
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Depth is clearly a significant factor for superior performance

Is learning better networks just about stacking more layers?
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Architectures from before

—— 5 layers: easy

— >10 layers: initialization, Batch Normalization

>30 layers: skip connections
>100 layers: identity skip connections
‘ >1000 layers: ?

shallower deeper

Lecture 9 CMSC 35246



Degradation Problem

@ Adding more layers leads to a Degradation Problem
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Degradation Problem

@ Adding more layers leads to a Degradation Problem

@ Increasing depth: Accuracy first saturates, then rapidly
degrades
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-
Degradation Problem

@ Adding more layers leads to a Degradation Problem

@ Increasing depth: Accuracy first saturates, then rapidly
degrades

@ Degradation is not caused due to overfitting

@ On adding more layers after a certain depth training error
increases with depth
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Degradation Problem
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o Networks obtained by stacking 3x3 convolutional layers on
CIFAR-10

Figure: He et al. Deep Residual Learning for Image Recognition, CVPR 2016
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Degradation Problem
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@ Networks obtained by stacking 3x3 convolutional layers on
ImageNet 1000

Figure: He et al. Deep Residual Learning for Image Recognition, CVPR 2016
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A Solution by Construction

y

“extra”
layers

\

Figure: He et al. Deep Residual Learning for Image Recognition, CVPR 2016
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A deeper model should not have higher training error
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e
A Plain Network Block

"

weight layer

relu
\ 4

weight layer

relu
H(x) '

o Let 7(x) be the function to be fit by a few stacked layers
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e
A Plain Network Block

"

weight layer

relu
\ 4

weight layer

relu
H(x) '

o Let 7(x) be the function to be fit by a few stacked layers
@ Above, we hope that the two layers will fit 7 (x)
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Residual Learning

o If stack can approximate H(x), then it can approximate

F(x) =H(x) —x
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Residual Learning

o If stack can approximate H(x), then it can approximate
F(x) =H(x) —x
@ H(x) — x is a residual function (x and H(x) of same size)
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Residual Learning

o If stack can approximate H(x), then it can approximate
F(x) =H(x) —x
@ H(x) — x is a residual function (x and H(x) of same size)

e F(x) is a residual map with respect to the identity
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Residual Learning

o If stack can approximate H(x), then it can approximate
F(x) =H(x) —x
@ H(x) — x is a residual function (x and H(x) of same size)

e F(x) is a residual map with respect to the identity

weight layer
weight layer

Hx)=F(x) +x @

F(x) identity

X
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Residual Learning

weight layer
weight layer

Hx)=Fx) +x @

F(x) identity

X

o If identity map is optimal = drive weights to zero to
approach identity
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Residual Learning

weight layer
weight layer

Hx)=Fx) +x @

F(x) identity

X

o If identity map is optimal = drive weights to zero to
approach identity

o Identity is rarely optimal but it serves to pre-condition the
problem (e.g. similar work in multigrid literature)
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Residual Learning

weight layer
weight layer

Hx)=Fx) +x @

F(x) identity

X

o If identity map is optimal = drive weights to zero to
approach identity

o Identity is rarely optimal but it serves to pre-condition the
problem (e.g. similar work in multigrid literature)

o If the optimal map is closer to identity than a zero map, easier
to find small perturbations w.r.t identity
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Residual Learning

weight layer
weight layer

HX)=Fx) +x @

F(x) identity

X

@ Here F(x) = Wymax{0, Wix}
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Residual Learning

weight layer
weight layer

HX)=Fx) +x @

F(x) identity

X

@ Here F(x) = Wymax{0, Wix}
@ F(x)+ x is implemented as a shortcut and elementwise
addition
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Residual Learning

weight layer
weight layer

HX)=Fx) +x @

F(x) identity

X

@ Here F(x) = Wymax{0, Wix}
@ F(x)+ x is implemented as a shortcut and elementwise
addition

@ Dimensions of F(x) and x must be equal
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Residual Learning

weight layer
weight layer

HX)=Fx) +x @

F(x) identity

X

@ Here F(x) = Wymax{0, Wix}
@ F(x)+ x is implemented as a shortcut and elementwise
addition

@ Dimensions of F(x) and x must be equal

@ If not: Perform linear projection Wyx
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Residual Learning

weight layer
weight layer

HX)=Fx) +x @

F(x) identity

X

Here F(x) = Wy max{0, Wix}
F(x) + x is implemented as a shortcut and elementwise
addition

Dimensions of F(x) and x must be equal

If not: Perform linear projection Wyx

Aside: Can also use a square matrix Wy even if dimensions are
equal, but an identity map is found to be better
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-
First Attempt: VGG Type Network

V6619 3adayerplain  3d-layer residual

ilalo

 —r
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-
First Attempt: VGG Type Network

@ Stacked network of before but with residual connections
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-
First Attempt: VGG Type Network

@ Stacked network of before but with residual connections
@ Training Procedure:
e Both networks are trained from scratch

Lecture 9 CMSC 35246



-
First Attempt: VGG Type Network

@ Stacked network of before but with residual connections
@ Training Procedure:

e Both networks are trained from scratch
e No dropout is used
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-
First Attempt: VGG Type Network

@ Stacked network of before but with residual connections
@ Training Procedure:

e Both networks are trained from scratch
e No dropout is used
e Batch-normalization after every layer
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-
First Attempt: VGG Type Network

@ Stacked network of before but with residual connections
@ Training Procedure:

e Both networks are trained from scratch
e No dropout is used

e Batch-normalization after every layer

e Use similar data augmentation for both
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CIFAR-10

ResNet-20
ResNet-32
~=ResNet-44
=——ResNet-56
=—ResNet-110|

S6-layer

error (%)

—plain-56
0
0 1 2

3 3
iter. (le4) iter. (1e4)

@ For now focus on 32 layer results for both
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-
ImageNet with ResNet

5 SOF N mmm—m———— ———
g4 B M = e 2 m e e =
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==plain-34 =—ResNet-34 34-layer
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30 30
iter. (led) iter. (led)

@ Thin curves: Training Error; Thick curves: Validation Error
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ImageNet with ResNet

SO NS s ————mmm—————————— -
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3 - 3 —— = s ——m— s s (g ToT TR
plain-18 ResNet-18 WMAAANA,
==plain-34 =—ResNet-34 34-layer
) 10 20 30 40 50 o 10 20 30 40 50
iter. (led) ter. (le4)

@ Thin curves: Training Error; Thick curves: Validation Error

@ Deep ResNets have lower training and validation error
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Bottleneck Residual Block

@ 1x1 convolutions to reduce and increase dimensionality
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Bottleneck Residual Block

@ 1x1 convolutions to reduce and increase dimensionality

@ Use parameter free identity shortcuts
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-
Results with Deeper ResNets: CIFAR-10

method error (%)

Maxout [10] 9.38

NIN [25] 8.81

DSN [24] 8.22

# layers | # params

FitNet [35] 19 2.5M 8.39
Highway [42, 43] 19 2.3M 7.54 (71.724+0.16)

Highway [42, 43] 32 1.25M | 8.80

ResNet 20 0.27M | 8.75

ResNet 32 0.46M 7.51

ResNet 44 0.66M | 7.17

ResNet 56 0.85M | 6.97
ResNet 110 1.7M 6.43 (6.6110.16)

ResNet 1202 19.4M 7.93
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-
Results with Deeper ResNets: ImageNet

Classification: ImageNet Challenge top-5 error

152 layers \
A
\
\
\
\
\
\
\
[ 22 layers ‘ ‘ 19 Iayers I
\ 6.7 I

357 ‘ 8Iayers H 8Iavers shallow

ILSVRC'15 ILSVRC'14  ILSVRC'14  ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet
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Revolution of Depth

AlexNet, 8 layers

VGG, 19 layers
(ILSVRC 2012)

(ILSVRC 2014)

&
GoogleNet, 22 layers s
(ILSVRC 2014) =

)
L)
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-
Revolution of Depth

AlexNet, 8 layers VGG, 19 layers
(ILSVRC 2012) (ILSVRC 2014)

ResNet, 152 layers
(ILSVRC 2015)
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Types of Shortcut Connections

addi

tion
RelU

//

RelU

(a) original

sigmoid

addition
RelU (f) dropout shortcut
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-
Types of Shortcut Connections

case Fig. ‘ on shortcut | on F ‘ error (%) ‘ remark
original [1] Fig. 2(a) 1 il 6.61
0 1 fail This is a plain net
konstant Fig. 2(b) 0.5 1 fail
0.5 0.5 12.35 frozen gating
- 1—g(x) g(x) fail init by=0 to —5
exclusive he - i
eating Fig. 2(c) 1—g(x) 9(x) 8.70 init by=-6
1—g(x) g(x) 9.81 init by=-7
SllOr[Ql’[—()ul) Fig. 2(d) 1—g(x) 1 12.86 init by =0
gating 1—g(x) 1 6.91 init by=-6
1x1 conv shorteut | Fig. 2(e) 1x1 conv 1 12.22
dropout shortcut | Fig. 2(f) | dropout 0.5 1 fail

@ Results on CIFAR-10 test-set using ResNet-100. Fail

represents error more than 20%
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P A
weight
BN
RelU
weight
BN
addition
RelU
v
Xri1
(a) original

Types of Activations

Xi

A
weight
BN

RelU

weight

Xrin

(b) BN after
addition

1 ) !
-8 - =4
e A S
weight RelLU BN
BN RelU
relu B
Relu BN
BN RelU
el o
a i el
[ addition | [ addition | addition
v v v
Xi1 Xri1 X1

(c) ReLU before
addition

(d) ReLU-only
pre-activation

(e) full pre-activation
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-
Types of Activations

case l Fig. I ResNet-110 | ResNet-164
original Residual Unit [1] | Fig. 4(a) 6.61 5.93
BN after addition Fig. 4(b) Sl 6.50
ReLU before addition Fig. 4(c) 7.84 6.14
ReLU-only pre-activation | Fig. 4(d) 6.71 5.91
full pre-activation Fig. 4(e) 6.37 5.46

@ Results on CIFAR-10 test-set.
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e
A Better Residual Unit

ResNet—1001, original (error: 7.61%)
ResNet—1001, proposed (error: 4.92%)
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s " \
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BN RelU 02r g
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RelU 8 v 2
' 2 105
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BN RelU =
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addition /weighl L 5
REJ'U addition
X1 X741
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(a) original (b) proposed o 1 2 3 4 5 6

Iterations
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e
ResNet in ResNet

residual stream ___transient stream residual stream ____transient stream
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B
\
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(a) (b) (©) (d)
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e
ResNet in ResNet

residual stream transient stream . residual stream _ transient stream
= ! o

¢ Tam o

. = /

- e e > o
T P : I
¢ 1 y/ conv_| | conv | conv_|[conv o | ¢ 1
= N\ </ < \

S ~— g e S —

s , v ; -~

(a) (b) (©) (d)

@ Modular unit is a generalized residual block with two parallel
states:

e A residual stream r with identity shortcuts like in original
ResNets (parameters W )
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e
ResNet in ResNet

resvdua\ stream transient stream . vesiduil stream ___transient stream
- / .

— 76)* e > -
T - ! A
¢ 1 y/ conv cn[\v | conv_|[conv f\?nv ] Y 7
N NN BN

(a) (b) (©) (d)

@ Modular unit is a generalized residual block with two parallel
states:
e A residual stream r with identity shortcuts like in original
ResNets (parameters W )
e A transient stream t, a standard convolution layer
(parameters W ;)
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e
ResNet in ResNet

residual stream transient stream residual stream transient stream

— v
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(a) (b) (©) ()
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e
ResNet in ResNet

1§sndua\ stream transient s‘(eam . residual stream transient stream
T P
V\/ comv_|[ com conv :
N\ / "
. D g . ‘ .
— ¥ F Wl
/T eow P ' d LR
“‘, l V\/ conv curiv CE"V conv /0/0"‘/ : * i
PN N - NI
—e "l 8 )
(a) (b) (©) (d)

e Two additional sets of conv. filters (W ,_, Wi ;_,,) in each
block are used for cross-stream info. transfer
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e
ResNet in ResNet

1§sndua\ stream transient s‘(eam . residual stream transient stream
T P
V\/ comv_|[ com conv :
N\ / "
. D g . ‘ .
— ¥ F Wl
/T eow P ' d LR
“‘, l V\/ conv curiv CE"V conv /0/0"‘/ : * i
PN N - NI
—e "l 8 )
(a) (b) (©) (d)

e Two additional sets of conv. filters (W ,_, Wi ;_,,) in each
block are used for cross-stream info. transfer

@ Transient stream t allows to process information from either
stream without shortcuts (allowing information to be
discarded)
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-
Highway Networks

@ In ResNets we had

xi41 = FWL,xp) + x4
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-
Highway Networks

@ In ResNets we had

xi41 = FWL,xp) + x4

@ In Highway Networks:

X141 = FWi,x)T(Wr,x;) + x,C(We, x;)
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-
Highway Networks

@ In ResNets we had

xi41 = FWL,xp) + x4

@ In Highway Networks:

X141 = FWi,x)T(Wr,x;) + x,C(We, x;)

@ 7 is the Transfer Gate, C is the Carry Gate
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-
Highway Networks

@ In ResNets we had

xi41 = FWL,xp) + x4

@ In Highway Networks:

X1 = F(W,x)T(Wr,x;) +xC(We, x;)
@ 7 is the Transfer Gate, C is the Carry Gate

e WhenC=1-T

X[+1 = ]:(VVl,Xl)T(WT,Xl) + Xl(l — T(WT,XZ))
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-
Highway Networks

@ In ResNets we had

xi41 = FWL,xp) + x4

@ In Highway Networks:

X1 = F(W,x)T(Wr,x;) +xC(We, x;)
@ 7 is the Transfer Gate, C is the Carry Gate

e WhenC=1-T

X[+1 = ]:(VVl,Xl)T(WT,Xl) + Xl(l — T(WT,XZ))
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-
Highway Networks

X1 = .F(VVZ,XZ)T(WT,XZ) + Xl(l — T(WT,XZ))
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-
Highway Networks

X1 = .F(VVZ,XZ)T(WT,XZ) + Xl(l — T(WT,XZ))

e Dim. of xj41,x;, F(Wy,x7), T (Wrp,%x;) must be same
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-
Highway Networks

X1 = .F(VVZ,XZ)T(WT,XZ) + Xl(l — T(WT,XZ))

e Dim. of xj41,x;, F(Wy,x7), T (Wrp,%x;) must be same
@ Note that:
o If T(Wrp,x;) =0 then x;11 = xy
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-
Highway Networks

X1 = .F(VVZ,XZ)T(WT,XZ) + Xl(l — T(WT,XZ))

e Dim. of xj41,x;, F(Wy,x7), T (Wrp,%x;) must be same
@ Note that:

o If T(Wrp,x;) =0 then x;11 = xy

o If T(Wrp,x;) =1 then x;11 = F(W,x)
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-
Highway Networks

X1 = .F(VVZ,XZ)T(WT,XZ) + Xl(l — T(WT,XZ))

e Dim. of xj41,x;, F(Wy,x7), T (Wrp,%x;) must be same
@ Note that:

o If T(Wrp,x;) =0 then x;11 = xy

o If T(Wrp,x;) =1 then x;11 = F(W,x)

@ The highway layer can smoothly vary between a plain layer
and just the identity map depending on the transfer gate
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-
Highway Networks

X1 = .F(VVZ,XZ)T(WT,XZ) + Xl(l — T(WT,XZ))

Dim. of x;41,x;, F(Wi,x;), T (Wrp,x;) must be same
Note that:

o If T(Wrp,x;) =0 then x;11 = xy

o If T(Wrp,x;) =1 then x;11 = F(W,x)
The highway layer can smoothly vary between a plain layer
and just the identity map depending on the transfer gate

Like the residual block, the highway layer is then repeated to
train deep networks
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-
Highway Networks

@ Was published just before Residual Networks (Srivastava,
Greff, Schmidhuber, 2015)
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-
Highway Networks

@ Was published just before Residual Networks (Srivastava,
Greff, Schmidhuber, 2015)

@ Contrasts:

e While more general, has not demonstrated accuracy gains
with greater depth
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Highway Networks

@ Was published just before Residual Networks (Srivastava,
Greff, Schmidhuber, 2015)

@ Contrasts:

e While more general, has not demonstrated accuracy gains
with greater depth

e Gates in highway networks are data-dependent while
identity shortcuts in ResNets are parameter-free
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-
Highway Networks

@ Was published just before Residual Networks (Srivastava,
Greff, Schmidhuber, 2015)
o Contrasts:
e While more general, has not demonstrated accuracy gains
with greater depth
e Gates in highway networks are data-dependent while
identity shortcuts in ResNets are parameter-free
e When the gates for shortcut are closed in highway nets,
they highway module represents non-residual functions
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Residuals might not be necessary
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Fractal Networks

@ Work done here in campus (Gustav Larsson, Michael Maire,
Gregory Shakhnarovich)

Fractal Expansion Rule

1
1
1
=z 1
1
i
: Block 1
:
| 7
1
1 Block 2
-
! ¥
: ¥
i i =) Block 3
2 1
folz) for(z) 1 &
1
i Block 4
1
Layer Key ) ¥
— o ca
: = Convolution : : Block 5
I =3 Join : :
1 1
| == Pool ! ;
| B Prediction : :
\ / 1
1
1

Y
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Fractal Networks

Fractal Expansion Rule { z v{
l E I ks
? i T + !
1 L ] 2
: o
!

—F
—
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—1
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==

|

|||||

uuuuuu

@ Base case: f1(z) = conv(z)
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Fractal Networks

ansion Rule |
l T T g
i {1
T P
) h

aaaaaa

aaaaaa

.
S
:{

aaaaaa

@ Base case: f1(z) = conv(z)

e Recursive definition: foi1(2) = [fo o fo(2)] @ [conv(z)]
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Training by DropPath

J

o
|
el

! ! ! !

Iteration #1 Iteration #2 Iteration #3 Iteration #4
(Local) (Global) (Local) (Global)

@ Alternate global and local sampling strategies to encourage
development of individual columns that can be strong
stand-alone subnetworks

@ Can train very deep networks with competitive performance
without residuals
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Performance of Residual Networks might not be due to depth
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.
Viet et al.

@ For an output x3, we have x3 = x2 + f3(x2)
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.
Viet et al.

@ For an output x3, we have x3 = x2 + f3(x2)
e Expanding: x3 = [x1 + fa(x1)] + f3(x1 + fa(x1))
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.
Viet et al.

@ For an output x3, we have x3 = x2 + f3(x2)

e Expanding: x3 = [x1 + fa(x1)] + f3(x1 + fa(x1))
@ Expanding further:

= [x0+f1(x0)+f1(x0+f1(x0))]+f3(x0+f1(x0)+ f1(x0+ f1(%0)))
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.
Viet et al.

@ Unraveled view graphically:

Bullding block

Skip
connection

LT3
Residual
module

(a) Conventional 3-block residual network (b) Unraveled view of (a)
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.
Viet et al.

@ Many paths from the input to output: 2™ paths
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.
Viet et al.

@ Many paths from the input to output: 2™ paths

@ In classical visual hierarchy, each layer of processing depends
only on the output of the previous layer, this is not true for
residual networks due to their inherent structure
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.
Viet et al.

@ Many paths from the input to output: 2™ paths

@ In classical visual hierarchy, each layer of processing depends
only on the output of the previous layer, this is not true for
residual networks due to their inherent structure

e Infact, each module f;(-) can be thought of as being fed data
from a mixture of 2¢~1 different distributions generated from
every possible configuration of the previous i — 1 modules
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.
Viet et al.

@ Many paths from the input to output: 2™ paths

@ In classical visual hierarchy, each layer of processing depends
only on the output of the previous layer, this is not true for
residual networks due to their inherent structure

e Infact, each module f;(-) can be thought of as being fed data
from a mixture of 2¢~1 different distributions generated from
every possible configuration of the previous i — 1 modules

@ Viet et al. provide experimental evidence that most paths in

residual networks are relatively independent of each other, and
usually short paths are active
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.
Viet et al.

@ Many paths from the input to output: 2™ paths

@ In classical visual hierarchy, each layer of processing depends
only on the output of the previous layer, this is not true for
residual networks due to their inherent structure

e Infact, each module f;(-) can be thought of as being fed data
from a mixture of 2¢~1 different distributions generated from
every possible configuration of the previous i — 1 modules

@ Viet et al. provide experimental evidence that most paths in
residual networks are relatively independent of each other, and
usually short paths are active

@ The strength of ResNets may not come from depth, but due
to an ensemble of exponentially many shallow networks
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DenseNets
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DenseNets

@ The [th layer has [ inputs, consisting of feature maps of all
preceding convolutional blocks

1npY Xo
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DenseNets

@ The [th layer has [ inputs, consisting of feature maps of all
preceding convolutional blocks

1npY Xo
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DenseNets

@ A Deep Dense Net with 3 dense blocks

Prediction
| | DenseBlock2 | | penseBiocks | ||
{8l »{8ls] Nl a ha/ss
5 — > LRSS f(:? 5

Input

Dense Block 1
O

v
[Coomonss
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Achitectures

Layers Output Size | DenseNet-121(k = 32) [ DenseNe(-169(k = 32) | DenseNet-201(k = 32) | DenseNet-161(k = 48)
Convolution 112 x 112 7 x 7 conv, stride 2
Pooling 56 x 56 3 % 3 max pool. stride 2
Dense Block 56 % 56 {Ix]con\}x(‘ ‘[lemm}xh {]xlcunv] o ‘[lxlwm}xh
(1) 3 x 3 conv 3 x 3 conv 3 x 3 conv 3 x 3 conv
Transition Layer 56 x 56 1 x 1 conv
) 28 x 28 2 x 2 average pool. stride 2
Dense Block R { 1 x 1 conv } e ’ [ 1 x 1 conv } 0 ‘ { 1% 1 conv ] 10 ‘ [ 1 1 conv } .10
2) 3 % 3 conv 3 % 3 conv 3 x 3 conv 3 x 3 conv
Transition Layer | 28 x 28 1 % 1 conv
2 14 % 14 2 x 2 average pool. stride 2
Dense Block — {Ix]wn\}xz_‘ ‘[lecnnv}x}z H]xlcom]us ‘[lxlmm}xm
3) 3 x 3 conv 3 x 3 conv 3 x 3 conv 3 x 3 conv
Transition Layer 14 x 14 1 x 1 conv
3) 7x17 2 x 2 average pool. stride 2
Dense Block —- { 1% I conv } - ‘ [ 1% I conv } _— { 1 x I conv ] w5 ‘ [ 1 1 conv } -
) 3 % 3 conv 3 % 3 conv 3 % 3 conv 3 % 3 conv
Classification 15l 7 x 7 global average pool
Layer

1000D fully-connected. softmax

k is growth factor (if F; produces k feature maps as o/p, it follows that the Ith layer has
k X (I — 1) + kg input feature maps. Where kq is the number of channels in the input image)
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Results
Method Depth Params Cl10 C100 C100+ SVHN

Network in Network - - 10.41 35.68 - 285
AlI-CNN - - 9.08 - 3371 -
Deeply Supervised Net - - 9.69 - 3457 192
Highway Network - - - - 3239 -
FractalNet 21 38.6M 10.18 23.30 2.01
with Dropout/Drop-path 21 38.6M 7.33 23.73 1.87
ResNet 110 1.7M - - -
ResNet 110 1.7M 13.63 44.74 2.01
ResNet with Stochastic Depth 110 1.7M 11.66 37.80 i76]

1202 10.2M - =
Wide ResNet 16 11.0M - - -

28 36.5M - - 3 -
with Dropout 16 2.7M - - - - 1.64
ResNet (pre-activation) 164 1L.7M 11.26* 5.46 35.58* 24.33 -

1001 10.2M 10.56* 4.62 33.47* 22:71 -
DenseNet (k = 12) 40 1.0M 7.00 5.24 27.55 24.42 1.79
DenseNet (k = 12) 100 7.0M 5.71 4.10 2379 20.20 1.67
DenseNet (% 100 27.2M 5.83 3.74 2342 19.25 1.59
DenseNet-BC 2 100 0.8M 5.92 451 24.15 22.27 1.76
DenseNet-BC (k = 24) 250 5.19 3.62 19.64 17.60 1.74
DenseNet-BC (k = 40) 190 25.6M - 3.46 - 17.18 -
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Similarity Learning and Siamese Networks
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Who is more similar?
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Similar Gender
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Similar Age
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Similar Hair
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Similarity depends on the context, which may not be adequately
captured by the Euclidean distance on the native feature space
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Distance Metric Learning (Linear Case)

@ Learning a distance metric:
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Distance Metric Learning (Linear Case)

@ Learning a distance metric:
e Amplify informative directions
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Distance Metric Learning (Linear Case)

@ Learning a distance metric:

e Amplify informative directions
e Squash non-informative directions

e
>

'A
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4
I._——’
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® A A
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Distance Metric Learning (Linear Case)

@ Learning a distance metric:
e Amplify informative directions
e Squash non-informative directions

A
‘A

Euclidean Metric Learnt Metric
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@ Learning a distance metric:
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Distance Metric Learning (Linear Case)

@ Learning a distance metric:
e Amplify informative directions
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Distance Metric Learning (Linear Case)

@ Learning a distance metric:
e Amplify informative directions
e Squash non-informative directions

Euclidean Mahalanobis
/'y
® N A Gi =)0 —x) @ =)Wl =)
‘ o~ W =0
A Y
.. / A 4 Positive Semi-definite
II *:\\
S A A
} i
. v---7
A/ A
\\,I
Euclidean Metric Learnt Metric
w=ITL

@ Here the map is x — Lx
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Distance Metric Learning

@ Fundamental intuition behind most work in the area:
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e "Pull” good neighbors (from the correct class for a given
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Distance Metric Learning

@ Fundamental intuition behind most work in the area:
e "Pull” good neighbors (from the correct class for a given
point) closer
e "Pushing” bad neighbors (from the incorrect class for a
given point) farther away
@ "Good" and "Bad" is usually some combination of label
agreement and proximity
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Distance Metric Learning

@ Fundamental intuition behind most work in the area:

e "Pull” good neighbors (from the correct class for a given
point) closer

e "Pushing” bad neighbors (from the incorrect class for a
given point) farther away

@ "Good" and "Bad" is usually some combination of label
agreement and proximity

@ Exact formulation of "Good” and "Bad”, and how many to
consider for each training point, varies from algorithm to
algorithm
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Distance Metric Learning
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Semantic Embeddings

L

= L
g Convolutional (e) Results 1: visually similar products
i & Neural —— .
Network —_ ! :
e s ¢ [

Learned
Parameters 6

(a) Query 2: Product (b) Project into 236D embedding (e) Reeults 2: use of product in-situ

@ In general, we can have a non-linear map x — ¢(x)
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Semantic Embeddings

| 1 1 {
L N -
- m L)

[ W&

g Convolutional (c) Results 1: visually similar products
. . Neural -
i Network v !

Learned
Parameters 6

(e) Reeults 2: use of product in-situ

(a) Query 2: Product (b) Project into 256D embedding

@ In general, we can have a non-linear map x — ¢(x)

@ ¢ can be modeled by a neural network!
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Semantic Embeddings

(a) Query 2: Product (b) Project into 256D embedding

@ In general, we can have a non-linear map x — ¢(x)
@ ¢ can be modeled by a neural network!

@ Reminder: Goal — Given labeled data, learn a metric that has
the form d(x,x’) = ||¢(x) — ¢(x)’|| that is compatible with
labels
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Siamese Networks

@ Uses a contrastive cost function:

J = miny;;D(xi, x;)? + (1 = yij) max{0, & — D(x;, x;)*}
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Siamese Networks
@ Uses a contrastive cost function:
J = miny;;D(xi, x;)? + (1 = yij) max{0, & — D(x;, x;)*}

o With D(x;,%x;) = [[¢(x:) — o(x;) |2
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Siamese Networks

@ Uses a contrastive cost function:

J = miny;;D(xi, x;)? + (1 = yij) max{0, & — D(x;, x;)*}

o With D(xi,x;) = [|p(x:) — o(x;j)ll2
@ Two neural networks with shared weights, trained by
backpropagation
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-
Triplet Embeddings

@ We have an anchor point x¢
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Triplet Embeddings

@ We have an anchor point x¢

@ We pick a point with the same class x¥, and a point with a
wrong class x7'
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Triplet Embeddings

@ We have an anchor point x¢

@ We pick a point with the same class x¥, and a point with a
wrong class x7'

@ We then optimize the following objective function:
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Triplet Embeddings

@ We have an anchor point x¢

@ We pick a point with the same class x¥, and a point with a
wrong class x7'

@ We then optimize the following objective function:

J = m(;anaX{O,D(x?,xf)Q — D(x%,x")? +a}
i
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Triplet Embeddings

@ We have an anchor point x¢

@ We pick a point with the same class x¥, and a point with a
wrong class x7'

@ We then optimize the following objective function:

J = m(;anaX{O,D(x?,xf)Q — D(x%,x")? +a}
i

o With D(x;,x;) = [[¢(x:) — &(x;)l|2
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-
Triplet Embeddings

We have an anchor point x¢

We pick a point with the same class x¥, and a point with a
wrong class x7'

We then optimize the following objective function:

J = m(;anaX{O,D(x?,xf)Q — D(x%,x")? +a}
i

With D(xi,x;) = [|o(x:) — ¢(x;)|l2
Three neural networks with shared weights, trained by
backpropagation
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Application: Visual Analogies

@ Analogies: "Ais to B as Cis to D" e.g. "Paris is to France as
London is to UK"
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Application: Visual Analogies

@ Analogies: "Ais to B as Cis to D" e.g. "Paris is to France as
London is to UK"

@ How to solve analogies using embeddings?

By .<I>(B)
B(A)
A D
s N v o)
@ ®(C)
G .D ./
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-
Application: One Shot Learning

@ Suppose we have learned a semantic embedding for a face
database (multiple images per person)
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Application: One Shot Learning

@ Suppose we have learned a semantic embedding for a face
database (multiple images per person)

@ Now we have ONE image of a new class given to us. How can
we integrate it in our system?
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Application: One Shot Learning

@ Suppose we have learned a semantic embedding for a face
database (multiple images per person)
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we integrate it in our system?

@ Leverage examples from other classes and transfer knowledge
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Application: One Shot Learning

@ Suppose we have learned a semantic embedding for a face
database (multiple images per person)

@ Now we have ONE image of a new class given to us. How can
we integrate it in our system?

@ Leverage examples from other classes and transfer knowledge
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-
Application: One Shot Learning

@ Semantic embedding learning using a siamese network

si = 1yi1 =y
@ @ ® ... (Yi1 = Yi2)
e @ @&
@
® d
. T F(xq,x2)
@ PY U |~
* / ® =
PS ®
F(fvi.lwfl/'i.Z) = P(Ll/i.1 =VYi2 \ x'i.l-,xiQ)
@
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Application: One Shot Learning

@ Semantic embedding learning using a siamese network

si = 1yi1 =y
@ @ ® ... (Yi1 = Yi2)
e @ @&
@
® d
. T F(xq,x2)
@ PY U |~
* / ® =
PS ®
F(fvi.lwfl/'i.Z) = P(Ll/i.1 =VYi2 \ x'i.l-,xiQ)
@

Lecture 9 CMSC 35246



-
Application: One Shot Learning

@ We train the network to detect whether a pair comes from
same class or not

s = 1(ys,1 = ¥,
e ®o ... (i1 = Yiz2)
e @ ..
. B ] F(zqy,20)
@ PY U |~
. / ) /
&
® o

F(iL'i.1-,IL'z‘.2) = P(yi.l =VYi2 \ iL’z‘.l-,iL'z'.Q)
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-
Application: One Shot Learning

@ Now given one training example Z; from each new class and a
query x, estimate label as: § = arg max; F'(Z;, x)

o %9 .'.

® o ® ..
) . . \ P —
& PY U |—
& © o T FG, )
o«

. 5

@
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-
Application: One Shot Learning

e Koch and Salakhutdinov (2015), used a Siamese CNN
architecture to get the state of the art performance on the
OmniGlot dataset

o1 du=q
diék"?»k(ﬂﬂkt?ﬁ
X X I
°B8BXYX Y mmm
XAVET 5 mm
¥RXDOO X m
AG %% A |
=] 5
TT9 5% 5 —
TPRF AP 1
595 3% §7 mamm
8%t s A Y .
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