Koopman Operators and Dynamic Mode
Decomposition

Shubhendu Trivedi

The University of Chicago
Toyota Technological Institute
Chicago, IL - 60637

Shubhendu Trivedi (TTI-C) Koopman Operators 1/50



|
On White Board (fill later)

@ Intro to dynamical systems and Poincairé’s geometric picture

Shubhendu Trivedi (TTI-C) Koopman Operators 2/50



|
On White Board (fill later)

@ Intro to dynamical systems and Poincairé’s geometric picture

@ Definitions: Fixed points, Limit cycles, Invariant sets, Attractors,
Bifurcations

Shubhendu Trivedi (TTI-C) Koopman Operators 2/50



|
On White Board (fill later)

@ Intro to dynamical systems and Poincairé’s geometric picture

@ Definitions: Fixed points, Limit cycles, Invariant sets, Attractors,
Bifurcations

@ Two results: Poincairé’s recurrence theorem and Bendixson’s
criterion

Shubhendu Trivedi (TTI-C) Koopman Operators 2/50



|
On White Board (fill later)

@ Intro to dynamical systems and Poincairé’s geometric picture

@ Definitions: Fixed points, Limit cycles, Invariant sets, Attractors,
Bifurcations

@ Two results: Poincairé’s recurrence theorem and Bendixson’s
criterion

@ Problems with the geometric picture

Shubhendu Trivedi (TTI-C) Koopman Operators 2/50



|
On White Board (fill later)

@ Intro to dynamical systems and Poincairé’s geometric picture

@ Definitions: Fixed points, Limit cycles, Invariant sets, Attractors,
Bifurcations

@ Two results: Poincairé’s recurrence theorem and Bendixson’s
criterion

@ Problems with the geometric picture
@ Alternative picture: Dynamics of observables

Shubhendu Trivedi (TTI-C) Koopman Operators 2/50



I
On White Board (fill later)

@ Intro to dynamical systems and Poincairé’s geometric picture

@ Definitions: Fixed points, Limit cycles, Invariant sets, Attractors,
Bifurcations

@ Two results: Poincairé’s recurrence theorem and Bendixson’s
criterion

@ Problems with the geometric picture
@ Alternative picture: Dynamics of observables

@ Two dual operators in the "dynamics of observables” picture:
Perron-Frobenius operator and Koopman Operator

Shubhendu Trivedi (TTI-C) Koopman Operators 2/50



I
On White Board (fill later)

@ Intro to dynamical systems and Poincairé’s geometric picture

@ Definitions: Fixed points, Limit cycles, Invariant sets, Attractors,
Bifurcations

@ Two results: Poincairé’s recurrence theorem and Bendixson’s
criterion

@ Problems with the geometric picture
@ Alternative picture: Dynamics of observables

@ Two dual operators in the "dynamics of observables” picture:
Perron-Frobenius operator and Koopman Operator

@ Next: Koopman Operator
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Dynamical Systems

@ Denote the state space by M

@ M can be an arbitrary set with no structure

@ The dynamics on M are specified by an iterated map T : M — M
@ The abstract dynamical system is specified by the pair (M, T)
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@ M is a measurable space with a o-algebra %5
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Measure Preserving Dynamical Systems

@ M is a measurable space with a o-algebra %5
@ T is B measurable

@ T is measure preserving:
3 an invariant measure p, such that for any S € B

u(S) = w(IT'S)
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Shubhendu Trivedi (TTI-C) Koopman Operators 5/50



Observables on State Space

@ Want to study the behaviour of observables on the state space
@ Observable: Some f: M — C

Shubhendu Trivedi (TTI-C) Koopman Operators 5/50



Observables on State Space

@ Want to study the behaviour of observables on the state space
@ Observable: Some f: M — C
@ f € F (F is afunction space, of unspecified structure)

Shubhendu Trivedi (TTI-C) Koopman Operators 5/50



Observables on State Space

@ Want to study the behaviour of observables on the state space
@ Observable: Some f: M — C

@ f € F (F is afunction space, of unspecified structure)

@ Concrete interpretation: Sensor probe for the dynamical system

Shubhendu Trivedi (TTI-C) Koopman Operators 5/50



Observables on State Space

@ Want to study the behaviour of observables on the state space
@ Observable: Some f: M — C

@ f € F (F is afunction space, of unspecified structure)

@ Concrete interpretation: Sensor probe for the dynamical system
@ Instead of tracking p — T'(p) — T?(p) — T(p%)...

Shubhendu Trivedi (TTI-C) Koopman Operators 5/50



Observables on State Space

@ Want to study the behaviour of observables on the state space
@ Observable: Some f: M — C

@ f € F (F is afunction space, of unspecified structure)

@ Concrete interpretation: Sensor probe for the dynamical system
@ Instead of tracking p — T'(p) — T?(p) — T(p%)...

e Track: f(p) = f(T(p)) = f(T*(p)) = F(T(P*))...

Shubhendu Trivedi (TTI-C) Koopman Operators 5/50



Observables on State Space

@ Want to study the behaviour of observables on the state space
@ Observable: Some f: M — C

@ f € F (F is afunction space, of unspecified structure)

@ Concrete interpretation: Sensor probe for the dynamical system
@ Instead of tracking p — T'(p) — T?(p) — T(p%)...

e Track: f(p) = f(T(p)) = f(T%(p)) = F(T(P")) ...
@ Can describe the dynamics as:

pnt1 = T(pn) and v, = f(pn)
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Koopman Operator

@ Discrete time Koopman Operator Uy : F — F

[Ur fl(p) = f(T'(p))
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Koopman Operator

Discrete time Koopman Operator Uy : F — F

[Ur fl(p) = f(T'(p))

Is a composition: Urf = foT
When F is a vector space, Ur is a linear operator

M is afinite set = U is finite dimensional, represented by a
matrix

Generally U is infinite-dimensional
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Koopman Operator

@ Usually only have access to a collection of observables

{fla-"7fK}CF
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Koopman Operator

@ Usually only have access to a collection of observables

{fi,....fxk} C F

@ f1,..., fik could be physically relevant observables or part of the
function basis for 7
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Extended Koopman Operator

@ Can extend the Koopman operator to this larger space
@ Denote F = (f1,..., fx) e FK
@ Then Uy : F& — FK

[Uf1](p)
Uk Fl(p) := :
[Ufkl(p)
K

@ Then Ux = (XU
1

o FK is the space of C*-valued observables on the state space M
@ More generally: F': M — V where V is a vector space
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Koopman Operators in Continuous Time D.S.

@ Consider the continuous time dynamical system

p="T(p)
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Example: Cyclic Group
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Setup

Reminder: Group that can be obtained by a single generator
Let M = {e,a,a*} be a cyclic group of order 3
DefineT: M — M asT(p)=a-p

Entire state space is a periodic orbit with period 3

Let F be C-valued functions on M

Space of observables is C?
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Setup

@ Let f1, fo, f3 be indicator functions on e, a, a*:

filp) = {1 fp=e

0 ifp#e

)1 ifp=a
fz(p)—{o itp £ a
)1 if p = a?
f3(p)_{0 ifp#aQ
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Setup

@ Let f1, fo, f3 be indicator functions on e, a, a*:

filp) = {1 fp=e

0 ifp#e

)1 ifp=a
fz(p)—{o itp £ a
)1 if p = a?
f3(p)_{0 ifp#aQ

@ Form a basis for F
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Example: Cyclic Group

@ Action of the Koopman operator on this basis:

[Ufil(p) = fi(a-p) = f3(p)
[U fol(p) = fa(a-p) = fi(p)
[U f3](p) = f3(a-p) = fa(p)

Shubhendu Trivedi (TTI-C) Koopman Operators 13/50



|
Example: Cyclic Group

@ Action of the Koopman operator on this basis:

[Ufil(p) = fi(a-p) = f3(p)
[U fol(p) = fa(a-p) = fi(p)
[U f3](p) = f3(a-p) = fa(p)

@ Consider arbitrary observable f € Fi.e. f =ci1f1 + cofa + c3fs

Shubhendu Trivedi (TTI-C) Koopman Operators 13/50



|
Example: Cyclic Group

@ Action of the Koopman operator on this basis:

[Ufil(p) = fi(a-p) = f3(p)
[U fol(p) = fa(a-p) = fi(p)
[U f3](p) = f3(a-p) = fa(p)

@ Consider arbitrary observable f € Fi.e. f = c1fi +cafo+c3fs3
@ Consider the action of the Koopman operator on f:

Uf=Ulcifi +cafe +eafs) =cifs+cafi +cafo
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Example: Cyclic Group

@ Matrix representation of the Koopman operator U in the

{f1, f2, f3} basis:

C1 0 1 O C1
Ulcal =10 0 1| |e2
C3 1 00 C3
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Example: Linear Diagonalizable Systems
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|
Setup

@ Let M =R and define T: M — M as:

(T'(w)); = pizi

@ 2= (r1,...,29)7 € Mand u; €R
@ Let F denote space of functions R — C
@ Let{b;...,by} C M be a basis for M; define f;(z) = (b;, z)
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Example: Linear Diagonalizable Systems

@ The action of the Koopman operator U : F — F on f; is

H1T1
[Ufl] (ZL') = <bl,T($)> = [bi,l . bi,d] :
[dTd
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Example: Linear Diagonalizable Systems

@ The action of the Koopman operator U : F — F on f; is

H1T1
[Ufil(z) = (b, T(x)) = [bix ... bia| | :
[dTd
0 p2 ... O e
[Ufil(x) = [bi71 e bz‘,d] : .
0 0 pa) L7
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Example: Linear Diagonalizable Systems

d
o Recall 74 = (X) F, define U, as earlier, then for F = (fi,..., fa)"
1

@ Then the action of the extended Koopman operator

0o ... 0
b171 - bl,d /61 1
2 0
[UaF|(x) = : S
bd,l . bd,d 0 0 . " xq
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Example: Linear Diagonalizable Systems

d
o Recall 74 = (X) F, define U, as earlier, then for F = (fi,..., fa)"
1

@ Then the action of the extended Koopman operator

0o ... 0
bii ... big] [M 1
0 2 0
[UaF](x) = Co SRR I
bd71 e bd,d 0 0 o [ Td

@ This is the action of the Koopman operator on the particular
observable F', not the entire observable space F
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Example: Heat equation with periodic boundary conditions
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Mode Analysis
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Eigenfunctions and Koopman Modes

@ We have put no structure on F so far
@ When F is a vector space, the Koopman operator is linear

@ Interest: Study spectral properties of the Koopman Operator to
probe into the dynamics of the system

@ Assume: F is a Banach space
@ Assume: U is a bounded, continuous operator on F
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Eigenfunctions and Koopman Modes

@ Let {¢1,...,¢,} be a set of eigenfunctions of U, where
n=12,.,00
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Eigenfunctions and Koopman Modes

@ Let {¢1,...,¢,} be a set of eigenfunctions of U, where
n=12,.,00
@ For the discrete case:

[Udi](p) = Nigi(p)

@ For the continuous case:

[U'il(p) = €X' i(p)

@ \’s are the eigenvalues of the generator U, and {¢*i} of the
Koopman semi-group
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Algebraic Structure of Eigenfunctions

@ Assume that F is a subset of all C valued functions on M
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Algebraic Structure of Eigenfunctions

@ Assume that F is a subset of all C valued functions on M

@ Also assume that it forms a vector space that is closed under
pointwise products of functions

@ — set of eigenfunctions forms an abelian semigroup under
pointwise products of functions

@ Concretely: If ¢1, o € F are eigenfunctions of U with eigenvalues
A1 and Ao, then ¢1¢- is an eigenfunction of U with eignevalue A\ A,
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Algebraic Structure of Eigenfunctions

@ If p > 0 and ¢ is an eigenfunction with eigenvalue ), then ¢? is an
eigenfunction with eigenvalue \?
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@ If p > 0 and ¢ is an eigenfunction with eigenvalue ), then ¢? is an
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-]
Algebraic Structure of Eigenfunctions

@ If p > 0 and ¢ is an eigenfunction with eigenvalue ), then ¢? is an
eigenfunction with eigenvalue \?

@ If ¢ is an eigenfunction that vanishes nowhere and r € R, then ¢"
is an eigenfunction with eigenvalue \"

@ Eigenfunctions that vanish nowhere form an Abelian group
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Spectral Equivalence of Topologically Conjugate
Systems

Proposition

LetS: M — M andT : N — N be topologically conjugate; i.e. 3 a
homomorphism h : N — M suchthatSoh=hoT. If ¢ is an
eigenfunction of Ug with eigenvalue \, then ¢ o h is an eigenfunction of
Ur at eigenvalue A
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Example: Linear Diagonalizable Systems

o Lety® = (4 yINT (k) indexes time)
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Example: Linear Diagonalizable Systems

o Lety® = (4 yINT (k) indexes time)

o Let yth =y

@ T is a matrix with eigenvectors v1, vy at eigenvalues \q, Ay with
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@ If V = [v1v9], then with new coordinates
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Example: Linear Diagonalizable Systems

o Lety® = (4 yINT (k) indexes time)

o Let yth =y

@ T is a matrix with eigenvectors v1, vy at eigenvalues \q, Ay with
vi # €j

@ If V = [v1v9], then with new coordinates
<*) — (:Elf?mgf))T _ V—ly(lc)

xgk—i-l) :[)\1 O] xgk) .:A
xngrl) 0 Ao xgk)
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Example: Linear Diagonalizable Systems

o Lety® = (4 yINT (k) indexes time)

o Let y*1) = 7y(®)

@ T is a matrix with eigenvectors v1, vy at eigenvalues \q, Ay with
vi # €j

@ If V = [v1v9], then with new coordinates
<*) — (:Ellc7xgk))T _ V—ly(k)

o )\1 0 Qj‘gk)
10 X xgk)

@ Maps A and T are topologically conjugate by AV~ = V1T

xgk+1)

x;kJrl)
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Example: Linear Diagonalizable Systems

o Lety® = (4 yINT (k) indexes time)

o Let yth =y

@ T is a matrix with eigenvectors v1, vy at eigenvalues \q, Ay with
vi # €j

@ If V = [v1v9], then with new coordinates
<*) — (:Ellc7xgk))T _ V—ly(k)

o )\1 0 Qj‘gk)
10 X xgk)

@ Maps A and T are topologically conjugate by AV~ = V1T
@ V~lis now the h from the proposition

xgk+1)

x;kJrl)
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Koopman Modes

@ Assume f € F is an observable in the linear span of a set of
eigenfunctions {¢;}7, then for ¢;(f) € C:
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Koopman Modes

@ Assume f € F is an observable in the linear span of a set of
eigenfunctions {¢;}7, then for ¢;(f) € C:
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Koopman Modes

@ Assume f € F is an observable in the linear span of a set of
eigenfunctions {¢;}7, then for ¢;(f) € C:

n

fp) = _cil£)ilp)
=1
@ Dynamics of f have a simple form:
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UAp) = FT) =S elf = (AU

=1 =1
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Koopman Modes

@ Assume f € F is an observable in the linear span of a set of
eigenfunctions {¢;}7, then for ¢;(f) € C:

n

fp) = _cil£)ilp)

i=1

@ Dynamics of f have a simple form:

n n

UAp) = FT) =S elf = > anUsle

=1
[Ufl(p) = F(T(p) = Xici(f)ei(p)
i=1
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Koopman Modes

@ Dynamics of f have a simple form:

VA1) = FTE) = > alNoT) = 3 a(HUsp)
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Koopman Modes
@ Dynamics of f have a simple form:
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Koopman Modes

@ Dynamics of f have a simple form:

U f1(p) Z Z Uil (p

=1
[Uf)(p) = £(T()) = Nici(f)$i(p)
=1
@ Likewise

U™ f1(p Z e f
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Koopman Modes

@ Extension to vector valued observables F = (fi,..., fK)T, with
each f; in the closed linear span of eigenfunctions:
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@ Extension to vector valued observables F = (fi,..., fK)T, with
each f; in the closed linear span of eigenfunctions:

n ci(f1)
[UFFl(p) => A'¢i(p) |
=1 ci(fx)

@ Written compactly:
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Koopman Modes

@ Extension to vector valued observables F = (fi,..., fK)T, with
each f; in the closed linear span of eigenfunctions:

n ci(f1)
[UFFl(p) => A'¢i(p) |
=1 ci(fx)

@ Written compactly:

n

[UFFl(p) = > AiCi(F)

i=1
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Koopman Mode

Definition

Let ¢; be an eigenfunction for the Koopman operator corresponding to
eigenvalue \;. For a vector valued observable F' : M — V, the
Koopman mode C;(F'), corresponding to ¢; is the vector of coefficients
of the projection of F onto span{¢;}
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Computation of Koopman Modes: Theory
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Theorem (Yosida)

Let 7 be a Banach space and U : F — F. Assume ||U|| < 1. Let X be
an eigenvalue of U such that |\| = 1. LetU = \~'U, and define:
K-1

~ 1

k=

0

Then Ak converges in the strong operator topology to the projection
operator on the subspace of U-invariant function; i.e. onto the
eigenspace E) corresponding to . That is, for all f € F,

. ol ke
i Af = Jim 5 2 U = P

where P, : F — E) is a projection operator.
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Special Case

@ Consider the case when the eigenvalues are simple and
Ail=---=|N|=1and |\,| <1forn >/¢
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Special Case

@ Consider the case when the eigenvalues are simple and
Ail=---=|N|=1and |\,| <1forn >/¢

@ Then, \; = ¢"*™i for some real w;, when j < ¢

@ For vector valued observables, the projections take the form:

K-1

$;C5(F) = lim —

Jim ? ei?ﬂ'wj'k‘[UkF]
k=

0

forj=1,...,¢
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Special Case

@ Consider the case when the eigenvalues are simple and
Ail=---=|N|=1and |\,| <1forn >/¢

@ Then, \; = ¢"*™i for some real w;, when j < ¢

@ For vector valued observables, the projections take the form:

K-1
1 1 2rwikirrk
¢;C;(F) = lim — > ek Ut R
k=0
forj=1,...,¢
@ Previous theorem reduces to Fourier analysis for those
eigenvalues on the unit circle.
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Special Case

@ Consider the case when the eigenvalues are simple and
Ail=---=|N|=1and |\,| <1forn >/¢
@ Then, \; = ¢"*™i for some real w;, when j < ¢
@ For vector valued observables, the projections take the form:
1 K-1 ‘
$;C5(F) = lim — " e?™kUrF)

K—oo K
k=0

forj=1,...,¢

@ Previous theorem reduces to Fourier analysis for those
eigenvalues on the unit circle.

@ When an observable is a linear combination of a finite collection of
eigenfunctions corresponding to simple eigenvalues, we have an
extension of the previous theorem
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Theorem (Generalized Laplace Analysis)

Let{\1,...,\n} be a finite set of simple eigenvalues for U, ordered so
that |\1| > --- > |\m| and let ¢; be an eigenfunction corresponding to
\i. Foreachn € {1,...,N}, assume f,, : M — C and

fn € span{é1,...,on}. Define the vector-valued observable

= (f1,...,f~)L. Then the Koopman modes can be computed via:
1 K-1 J—1
¢;Cj(F) = lim_ Z UFF = N ¢:iCi(F)
k:O =1

@ A simple consequence of the theorem of Yosida
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A Numerical Algorithm: Dynamic Mode Decomposition
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Introduction

@ Problem: Don’t usually have access to an explicit representation
of the Koopman operator
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@ Data driven approach: Have a sequence of observations of a
vector-valued observable along a trajectory {T*p}
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Introduction

@ Problem: Don’t usually have access to an explicit representation
of the Koopman operator

@ Can only understand its behaviour by looking at its action on an
observable at only a finite number of initial conditions

@ Data driven approach: Have a sequence of observations of a
vector-valued observable along a trajectory {T*p}

@ Dynamic mode decomposition: Data driven approach to
approximate the modes and eigenvalues of the Koopman operator
without numerically implementing a laplace transform
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Introduction

@ Main idea: Find the best approximation of U on some
finite-dimensional subspace and compute the eigenfunctions of
this finite-dimensional operator
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Introduction

@ Main idea: Find the best approximation of U on some
finite-dimensional subspace and compute the eigenfunctions of
this finite-dimensional operator

@ How do we define best?
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Introduction

@ Fix observable F': M — C™ and consider the cyclic subspace
Koo = span{UFF}22
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@ Fix observable F': M — C™ and consider the cyclic subspace
Koo = span{UFF}22
@ Fix r < oo and consider the Krylov subspace K, = span{UkF}Z;[l)

@ Assume {U’“F}Z;é is a linearly independent set, and forms a
basis for I,

@ Let P.: F™ — K, be a projection of observations onto /C,.

Shubhendu Trivedi (TTI-C) Koopman Operators 38/50



Introduction

@ Fix observable F': M — C™ and consider the cyclic subspace
Koo = span{UFF}22
@ Fix r < oo and consider the Krylov subspace K, = span{U’“F}Z;%)

@ Assume {U’“F}Z;é is a linearly independent set, and forms a
basis for I,

@ Let P.: F™ — K, be a projection of observations onto /C,.
@ Then P.U|k, : K, — K, is afinite dimensional linear operator
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Introduction

@ P.U|k, has a matrix representation A, : C" — C" in the {U’“F};;{
basis
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Introduction

@ P,Ul|x, has a matrix representation A, : C" — C” in the {U"F};_}
basis
@ The matrix A, depends on:
e The observable (vector valued)
e Dimension of the Krylov subspace r
e The projection operator P,
r—1
@ If (A, v) is an eigenpair for A, with v, then ¢ = > v;[U7F] is an
§=0
eigenfunction of P.U]|.,.
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Introduction

@ P.U|k, has a matrix representation A, : C" — C" in the {U’“F}z;ﬁ
basis

@ The matrix A, depends on:

e The observable (vector valued)
e Dimension of the Krylov subspace r
e The projection operator P,
r—1
@ If (A, v) is an eigenpair for A, with v, then ¢ = > v;[U7F] is an
=0
eigenfunction of P.U]|.,.

@ Restricting our attention on a fixed observable F' and a Krylov
subspace, the problem of finding eigenvalues and Koopman
modes is reduced to finding eigenvalues and eigenvectors for
matrix A,
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|
Arnoldi Recap

@ If we had A,, we could just use the Arnoldi algorithm
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@ Given A € C"™*™, want to compute eigenvectors and eigenvalues
@ Procedure:
e Consider random b € C™ with ||b|| =1
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@ Given A € C"™*™, want to compute eigenvectors and eigenvalues
@ Procedure:
e Consider random b € C™ with ||b|| =1
e Form the Krylov subspace K, = {b, Ab, A’b,..., A" 'b}
o Apply Gram-Schmidt to {Ajb}gig’1 to obtain orthonormal basis
{qj};zl, arranged into an orthonormal matrix Q.
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e Form the Krylov subspace K, = {b, Ab, A’b,..., A" 'b}
o Apply Gram-Schmidt to {Ajb}gig’1 to obtain orthonormal basis
{qj};zl, arranged into an orthonormal matrix Q.
e Normalize and orthonormalize at every step j
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|
Arnoldi Recap

@ If we had A,, we could just use the Arnoldi algorithm

@ Given A € C"™*™, want to compute eigenvectors and eigenvalues
@ Procedure:

e Consider random b € C™ with ||b|| =1

e Form the Krylov subspace K, = {b, Ab, A’b,..., A" 'b}

o Apply Gram-Schmidt to {Ajb}gig’1 to obtain orthonormal basis
{qj};zl, arranged into an orthonormal matrix Q.

e Normalize and orthonormalize at every step j

@ H, = Q;AQ, is the orthonormal projection of A onto I,
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|
Arnoldi Recap

@ If we had A,, we could just use the Arnoldi algorithm

@ Given A € C"™*™, want to compute eigenvectors and eigenvalues
@ Procedure:

e Consider random b € C™ with ||b|| =1

e Form the Krylov subspace K, = {b, Ab, A’b,..., A" 'b}

o Apply Gram-Schmidt to {Ajb}gig’1 to obtain orthonormal basis
{qj};zl, arranged into an orthonormal matrix Q.

e Normalize and orthonormalize at every step j

@ H, = Q;AQ, is the orthonormal projection of A onto I,
@ The top r eigenvalues of H, approximate that of A,
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Relevance to Koopman Modes?

@ By using Arnoldi we have an implicit assumption
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Relevance to Koopman Modes?

@ By using Arnoldi we have an implicit assumption

@ I matrix A, whose evolution A*b € C™, matches that of
[U*F](p) € C™

@ Don’t have an explicit representation of the Koopman operator, so
can’t use standard Arnoldi

@ Why?

@ Need to normalize and orthonormalize at each step = need to
change observables F' at each time step p
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Relevance to Koopman Modes?

@ By using Arnoldi we have an implicit assumption

@ I matrix A, whose evolution A*b € C™, matches that of
[U*F](p) € C™

@ Don’t have an explicit representation of the Koopman operator, so
can’t use standard Arnoldi

@ Why?

@ Need to normalize and orthonormalize at each step = need to
change observables F' at each time step p

@ Another interpretation: ?
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Dynamic Mode Decomposition

@ Only require a sequence of vectors {b}}_g
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Dynamic Mode Decomposition

@ Only require a sequence of vectors {b}}_g

@ Where b, := U*F(p) € C™

@ This is for some fixed F': M — C™ and fixed p € M
o Let K, = [by,by,...,b,_1]
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Dynamic Mode Decomposition

@ Only require a sequence of vectors {b}}_g

@ Where b, := U*F(p) € C™

@ This is for some fixed F': M — C™ and fixed p € M
o Let K, = [by,by,...,b,_1]

@ Think of them as point evaluations of the {U*F'} basis for the
Krylov subspace K, at pointp € M
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Dynamic Mode Decomposition

@ b, will not be in the span of columns of K,
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r—1

@ Letb, = chbj + N
§=0
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Dynamic Mode Decomposition

@ b, will not be in the span of columns of K,
r—1
@ Letb, = chbj + N
§=0
@ The ¢;’s are chosen to minimize the residual 7,
@ — choosing projection P.U"F of U"F at point p € M

I[U"F)(p) — P [U"F](p)llcm = ||b, chb llem
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Dynamic Mode Decomposition

@ b, will not be in the span of columns of K,
r—1
@ Letb, = chbj + N
§=0
@ The ¢;’s are chosen to minimize the residual 7,
@ — choosing projection P.U"F of U"F at point p € M

U F](p) = B[U"Fl(p)llcm = by chb lem
@ Minimize over c;
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Dynamic Mode Decomposition

@ Since b, = K,c + n,, we have:
UKT’ = [b17 s 7b7’] = [b17 s 7bT‘—17 K’I‘c =+ 777’]
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Dynamic Mode Decomposition

@ Since b, = K,c + n,, we have:
UKT’ = [b17 s 7b7’] = [b17 s 7bT‘—17 K’I‘c =+ 777’]

UK, = K, A, +ne’

@ Withe=(0,...,0,1)7 ¢ C™ and

0 0 0 co

1 0 . 0

Ar — 0o 1 . 0 C2
_0 0 1 Cr—l_
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Dynamic Mode Decomposition

@ Since b, = K,c + n,, we have:
UKr - [b17---7br] == [b17"'7b7"—17K7'c+177’]

UK, = K, A, +ne’

@ Withe=(0,...,0,1)7 ¢ C™ and

0 0 . 0 co

1 0 . 0 C1
Ar — 0o 1 . 0 C2

_0 0 ... 1 Cr—1]

@ A, is the companion matrix ; a representation of P,.U in the
{U*F};Z basis
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Dynamic Mode Decomposition

@ Diagonalize A, = VAV
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UK, = K, A, +n.e’

@ Substitute for A, and multiply with v}

Shubhendu Trivedi (TTI-C) Koopman Operators 45/50



Dynamic Mode Decomposition

@ Diagonalize A, = VAV

@ Recall:
UK, = K, A, +n.e’

@ Substitute for A, and multiply with v}

UK, V' =K,V 'A+nelv1
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Dynamic Mode Decomposition

@ Diagonalize A, = VAV

@ Recall:
UK, = K, A, +n.e’

@ Substitute for A, and multiply with v}

UK, V' =K,V 'A+nelv1

@ Define E:= K,V ' toget UE = EA +n,el V!
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Dynamic Mode Decomposition

@ For large m, we hope that ||7,e? V! is small
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Dynamic Mode Decomposition

@ For large m, we hope that ||7,e? V! is small

@ Then UE =~ EA, and columns of E approximate some
eigenvectors of U

@ Procedure described is tied to initialization
@ Different initial conditions will reveal different parts of the spectrum

o If F' ¢ span{¢;} for some eigenfunction ¢;, then DMD will not
reveal that mode
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Dynamic Mode Decomposition

For large m, we hope that ||7,.e’ V1| is small

Then UE ~ EA, and columns of E approximate some
eigenvectors of U

Procedure described is tied to initialization

Different initial conditions will reveal different parts of the spectrum
If F ¢ span{¢;} for some eigenfunction ¢;, then DMD will not
reveal that mode

The version described is numerically ill-conditioned (columns of
K, can become linearly dependent)
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S
Standard DMD

@ Arrange data {by, ..., b,} into matrices
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S
Standard DMD

@ Arrange data {by, ..., b,} into matrices
X = [bg,...,b,_1],Y = [by,...,b,]

@ Compute SVD X = UXV™
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Standard DMD

@ Arrange data {by, ..., b,} into matrices
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S
Standard DMD

@ Arrange data {by, ..., b,} into matrices
X = [bg,...,b,_1],Y = [by,...,b,]

@ Compute SVD X = UXV™

@ Define matrix A = U*YVE~!

@ Compute eigenvalues and eigenvectors of A; Aw = \w
@ DMD mode corresponding to eigenvalue X is Uw
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I
Exact DMD

@ Limitation of previous approach: Order of vectors is critical
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I
Exact DMD

@ Limitation of previous approach: Order of vectors is critical

@ Such that the vectors approximately satisfy z,,, = Az for
unknown A

@ Now we relax this constraint and restrict ourselves to data pairs
(X17 YI)7 ey (Xm7 Ym>
@ Define X and Y as before

@ Define operator A = Y X7

@ The DMD modes and eigenvalues are eigenvalues and
eigenvectors of A
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I
Exact DMD

@ Arrange the data pairs in matrices X,Y as before
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@ Arrange the data pairs in matrices X,Y as before
@ Compute the SVD of X, write X = UXV™
@ Define matrix A = U*YVE~!

@ Computer eigenvalues and eigenvectors of A, writing Aw = Aw.
Every nonzero eigenvalue is a DMD eigenvalue
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I
Exact DMD

@ Arrange the data pairs in matrices X,Y as before
@ Compute the SVD of X, write X = UXV™
@ Define matrix A = U*YVy~!

@ Computer eigenvalues and eigenvectors of A, writing Aw = Aw.
Every nonzero eigenvalue is a DMD eigenvalue

@ The DMD mode corresponding to X is given as:

1
o= XYVZ_lw
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Kernel Trick and Learning the Subspace

@ Kernels
@ Neural Networks
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