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On White Board (fill later)

Intro to dynamical systems and Poincairé’s geometric picture

Definitions: Fixed points, Limit cycles, Invariant sets, Attractors,
Bifurcations
Two results: Poincairé’s recurrence theorem and Bendixson’s
criterion
Problems with the geometric picture
Alternative picture: Dynamics of observables
Two dual operators in the ”dynamics of observables” picture:
Perron-Frobenius operator and Koopman Operator
Next: Koopman Operator
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Dynamical Systems

Denote the state space by M

M can be an arbitrary set with no structure
The dynamics on M are specified by an iterated map T : M →M

The abstract dynamical system is specified by the pair (M,T )
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Measure Preserving Dynamical Systems

M is a measurable space with a σ-algebra B

T is B measurable
T is measure preserving:
∃ an invariant measure µ, such that for any S ∈ B

µ(S) = µ(T−1S)

Shubhendu Trivedi (TTI-C) Koopman Operators 4 / 50



Measure Preserving Dynamical Systems

M is a measurable space with a σ-algebra B

T is B measurable

T is measure preserving:
∃ an invariant measure µ, such that for any S ∈ B

µ(S) = µ(T−1S)

Shubhendu Trivedi (TTI-C) Koopman Operators 4 / 50



Measure Preserving Dynamical Systems

M is a measurable space with a σ-algebra B

T is B measurable
T is measure preserving:

∃ an invariant measure µ, such that for any S ∈ B

µ(S) = µ(T−1S)

Shubhendu Trivedi (TTI-C) Koopman Operators 4 / 50



Measure Preserving Dynamical Systems

M is a measurable space with a σ-algebra B

T is B measurable
T is measure preserving:
∃ an invariant measure µ, such that for any S ∈ B

µ(S) = µ(T−1S)

Shubhendu Trivedi (TTI-C) Koopman Operators 4 / 50



Measure Preserving Dynamical Systems

M is a measurable space with a σ-algebra B

T is B measurable
T is measure preserving:
∃ an invariant measure µ, such that for any S ∈ B

µ(S) = µ(T−1S)

Shubhendu Trivedi (TTI-C) Koopman Operators 4 / 50



Observables on State Space

Want to study the behaviour of observables on the state space

Observable: Some f : M → C
f ∈ F (F is a function space, of unspecified structure)
Concrete interpretation: Sensor probe for the dynamical system
Instead of tracking p→ T (p)→ T 2(p)→ T (p3) . . .

Track: f(p)→ f(T (p))→ f(T 2(p))→ f(T (p3)) . . .

Can describe the dynamics as:

pn+1 = T (pn) and vn = f(pn)
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Koopman Operator

Discrete time Koopman Operator UT : F → F

[UT f ](p) = f(T (p))

Is a composition: UT f = f ◦ T
When F is a vector space, UT is a linear operator
M is a finite set =⇒ U is finite dimensional, represented by a
matrix
Generally U is infinite-dimensional

Shubhendu Trivedi (TTI-C) Koopman Operators 6 / 50



Koopman Operator

Discrete time Koopman Operator UT : F → F

[UT f ](p) = f(T (p))

Is a composition: UT f = f ◦ T

When F is a vector space, UT is a linear operator
M is a finite set =⇒ U is finite dimensional, represented by a
matrix
Generally U is infinite-dimensional

Shubhendu Trivedi (TTI-C) Koopman Operators 6 / 50



Koopman Operator

Discrete time Koopman Operator UT : F → F

[UT f ](p) = f(T (p))

Is a composition: UT f = f ◦ T
When F is a vector space, UT is a linear operator

M is a finite set =⇒ U is finite dimensional, represented by a
matrix
Generally U is infinite-dimensional

Shubhendu Trivedi (TTI-C) Koopman Operators 6 / 50



Koopman Operator

Discrete time Koopman Operator UT : F → F

[UT f ](p) = f(T (p))

Is a composition: UT f = f ◦ T
When F is a vector space, UT is a linear operator
M is a finite set =⇒ U is finite dimensional, represented by a
matrix

Generally U is infinite-dimensional

Shubhendu Trivedi (TTI-C) Koopman Operators 6 / 50



Koopman Operator

Discrete time Koopman Operator UT : F → F

[UT f ](p) = f(T (p))

Is a composition: UT f = f ◦ T
When F is a vector space, UT is a linear operator
M is a finite set =⇒ U is finite dimensional, represented by a
matrix
Generally U is infinite-dimensional

Shubhendu Trivedi (TTI-C) Koopman Operators 6 / 50



Koopman Operator

Usually only have access to a collection of observables

{f1, . . . , fK} ⊂ F

f1, . . . , fK could be physically relevant observables or part of the
function basis for F
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Extended Koopman Operator

Can extend the Koopman operator to this larger space

Denote F = (f1, . . . , fK)T ∈ FK

Then UK : FK → FK

[UKF ](p) :=

 [Uf1](p)
...

[UfK ](p)



Then UK =

K⊗
1

U

FK is the space of CK-valued observables on the state space M
More generally: F : M → V where V is a vector space
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Koopman Operators in Continuous Time D.S.

Consider the continuous time dynamical system

ṗ = T (p)
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Example: Cyclic Group
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Setup

Reminder: Group that can be obtained by a single generator

Let M = {e, a, a2} be a cyclic group of order 3
Define T : M →M as T(p) = a · p
Entire state space is a periodic orbit with period 3
Let F be C-valued functions on M
Space of observables is C3
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Setup

Let f1, f2, f3 be indicator functions on e, a, a2:

f1(p) =

{
1 if p = e

0 if p 6= e

f2(p) =

{
1 if p = a

0 if p 6= a

f3(p) =

{
1 if p = a2

0 if p 6= a2

Form a basis for F
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Example: Cyclic Group

Action of the Koopman operator on this basis:

[Uf1](p) = f1(a · p) = f3(p)

[Uf2](p) = f2(a · p) = f1(p)

[Uf3](p) = f3(a · p) = f2(p)

Consider arbitrary observable f ∈ F i.e. f = c1f1 + c2f2 + c3f3

Consider the action of the Koopman operator on f :

Uf = U(c1f1 + c2f2 + c3f3) = c1f3 + c2f1 + c3f2
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Example: Cyclic Group

Matrix representation of the Koopman operator U in the
{f1, f2, f3} basis:

U

c1c2
c3

 =

0 1 0
0 0 1
1 0 0

c1c2
c3



Shubhendu Trivedi (TTI-C) Koopman Operators 14 / 50



Example: Linear Diagonalizable Systems
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Setup

Let M = Rd, and define T : M →M as :

(T (x))i = µixi

x = (x1, . . . , xd)
T ∈M and µi ∈ R

Let F denote space of functions Rd → C
Let {b1 . . . ,bd} ⊂M be a basis for M ; define fi(x) = 〈bi, x〉
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Example: Linear Diagonalizable Systems

The action of the Koopman operator U : F → F on fi is

[Ufi](x) = 〈bi, T (x)〉 =
[
bi,1 . . . bi,d

] µ1x1...
µdxd



[Ufi](x) =
[
bi,1 . . . bi,d

]

µ1 0 . . . 0
0 µ2 . . . 0
...

...
. . .

...
0 0 . . . µd


x1...
xd


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Example: Linear Diagonalizable Systems

Recall Fd =

d⊗
1

F , define Ud as earlier, then for F = (f1, . . . , fd)
T

Then the action of the extended Koopman operator

[UdF ](x) =

b1,1 . . . b1,d
...

. . .
...

bd,1 . . . bd,d



µ1 0 . . . 0
0 µ2 . . . 0
...

...
. . .

...
0 0 . . . µd


x1...
xd


This is the action of the Koopman operator on the particular
observable F , not the entire observable space F
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Example: Heat equation with periodic boundary conditions
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Mode Analysis
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Eigenfunctions and Koopman Modes

We have put no structure on F so far

When F is a vector space, the Koopman operator is linear
Interest: Study spectral properties of the Koopman Operator to
probe into the dynamics of the system
Assume: F is a Banach space
Assume: U is a bounded, continuous operator on F
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Eigenfunctions and Koopman Modes

Let {φ1, . . . , φn} be a set of eigenfunctions of U , where
n = 1, 2, ..,∞

For the discrete case:

[Uφi](p) = λiφi(p)

For the continuous case:

[U tφi](p) = eλitφi(p)

λ’s are the eigenvalues of the generator U , and {eλi} of the
Koopman semi-group
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Algebraic Structure of Eigenfunctions

Assume that F is a subset of all C valued functions on M

Also assume that it forms a vector space that is closed under
pointwise products of functions
=⇒ set of eigenfunctions forms an abelian semigroup under
pointwise products of functions
Concretely: If φ1, φ2 ∈ F are eigenfunctions of U with eigenvalues
λ1 and λ2, then φ1φ2 is an eigenfunction of U with eignevalue λ1λ2
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Algebraic Structure of Eigenfunctions

If p > 0 and φ is an eigenfunction with eigenvalue λ, then φp is an
eigenfunction with eigenvalue λp

If φ is an eigenfunction that vanishes nowhere and r ∈ R, then φr

is an eigenfunction with eigenvalue λr

Eigenfunctions that vanish nowhere form an Abelian group

Shubhendu Trivedi (TTI-C) Koopman Operators 24 / 50



Algebraic Structure of Eigenfunctions

If p > 0 and φ is an eigenfunction with eigenvalue λ, then φp is an
eigenfunction with eigenvalue λp

If φ is an eigenfunction that vanishes nowhere and r ∈ R, then φr

is an eigenfunction with eigenvalue λr

Eigenfunctions that vanish nowhere form an Abelian group

Shubhendu Trivedi (TTI-C) Koopman Operators 24 / 50



Algebraic Structure of Eigenfunctions

If p > 0 and φ is an eigenfunction with eigenvalue λ, then φp is an
eigenfunction with eigenvalue λp

If φ is an eigenfunction that vanishes nowhere and r ∈ R, then φr

is an eigenfunction with eigenvalue λr

Eigenfunctions that vanish nowhere form an Abelian group

Shubhendu Trivedi (TTI-C) Koopman Operators 24 / 50



Spectral Equivalence of Topologically Conjugate
Systems

Proposition
Let S : M →M and T : N → N be topologically conjugate; i.e. ∃ a
homomorphism h : N →M such that S ◦ h = h ◦ T . If φ is an
eigenfunction of US with eigenvalue λ, then φ ◦ h is an eigenfunction of
UT at eigenvalue λ
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Example: Linear Diagonalizable Systems

Let y(k) = (y
(k)
1 , y

(k)
2 )T ((k) indexes time)

Let y(k+1) = Ty(k)

T is a matrix with eigenvectors v1, v2 at eigenvalues λ1, λ2 with
vi 6= ej

If V = [v1v2], then with new coordinates
x(k) = (xk1, x

(k)
2 )T = V −1y(k)[
x
(k+1)
1

x
(k+1)
2

]
=

[
λ1 0
0 λ2

][
x
(k)
1

x
(k)
2

]
:= Λ

[
x
(k)
1

x
(k)
2

]

Maps Λ and T are topologically conjugate by ΛV −1 = V −1T

V −1 is now the h from the proposition
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Koopman Modes

Assume f ∈ F is an observable in the linear span of a set of
eigenfunctions {φi}n1 , then for ci(f) ∈ C:

f(p) =

n∑
i=1

ci(f)φi(p)

Dynamics of f have a simple form:

[Uf ](p) = f(T (p)) =

n∑
i=1

ci(f)φi(T (p)) =

n∑
i=1

ci(f)[Uφi](p)

[Uf ](p) = f(T (p)) =

n∑
i=1

λici(f)φi(p)
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Koopman Modes

Extension to vector valued observables F = (f1, . . . , fK)T , with
each fi in the closed linear span of eigenfunctions:

[UkF ](p) =
n∑
i=1

λmi φi(p)

 ci(f1)...
ci(fK)


Written compactly:

[UkF ](p) =
n∑
i=1

λmi φiCi(F )
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Koopman Mode

Definition
Let φi be an eigenfunction for the Koopman operator corresponding to
eigenvalue λi. For a vector valued observable F : M → V , the
Koopman mode Ci(F ), corresponding to φi is the vector of coefficients
of the projection of F onto span{φi}
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Computation of Koopman Modes: Theory
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Theorem (Yosida)

Let F be a Banach space and U : F → F . Assume ‖U‖ ≤ 1. Let λ be
an eigenvalue of U such that |λ| = 1. Let Ũ = λ−1U , and define:

AK(Ũ) =
1

K

K−1∑
k=0

Ũk

Then AK converges in the strong operator topology to the projection
operator on the subspace of U -invariant function; i.e. onto the
eigenspace Eλ corresponding to λ. That is, for all f ∈ F ,

lim
K→∞

AKf = lim
K→∞

1

K

K−1∑
k=0

Ũkf = Pλf

where Pλ : F → Eλ is a projection operator.
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Special Case

Consider the case when the eigenvalues are simple and
|λ1| = · · · = |λ`| = 1 and |λn| < 1 for n > `

Then, λj = ei2πωj for some real ωj , when j ≤ `
For vector valued observables, the projections take the form:

φjCj(F ) = lim
K→∞

1

K

K−1∑
k=0

ei2πωjk[UkF ]

for j = 1, . . . , `

Previous theorem reduces to Fourier analysis for those
eigenvalues on the unit circle.
When an observable is a linear combination of a finite collection of
eigenfunctions corresponding to simple eigenvalues, we have an
extension of the previous theorem
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Theorem (Generalized Laplace Analysis)

Let {λ1, . . . , λm} be a finite set of simple eigenvalues for U , ordered so
that |λ1| ≥ · · · ≥ |λm| and let φi be an eigenfunction corresponding to
λi. For each n ∈ {1, . . . , N}, assume fn : M → C and
fn ∈ span{φ1, . . . , φm}. Define the vector-valued observable
F = (f1, . . . , fN )T . Then the Koopman modes can be computed via:

φjCj(F ) = lim
K→∞

1

K

K−1∑
k=0

λ−kj

[
UkF −

j−1∑
i=1

λki φiCi(F )

]

A simple consequence of the theorem of Yosida

Shubhendu Trivedi (TTI-C) Koopman Operators 34 / 50



A Numerical Algorithm: Dynamic Mode Decomposition
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Introduction

Problem: Don’t usually have access to an explicit representation
of the Koopman operator

Can only understand its behaviour by looking at its action on an
observable at only a finite number of initial conditions
Data driven approach: Have a sequence of observations of a
vector-valued observable along a trajectory {T kp}
Dynamic mode decomposition: Data driven approach to
approximate the modes and eigenvalues of the Koopman operator
without numerically implementing a laplace transform
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Introduction

Main idea: Find the best approximation of U on some
finite-dimensional subspace and compute the eigenfunctions of
this finite-dimensional operator

How do we define best?
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Introduction

Fix observable F : M → Cm and consider the cyclic subspace
K∞ = span{UkF}∞k=0

Fix r <∞ and consider the Krylov subspace Kr = span{UkF}r−1k=0

Assume {UkF}r−1k=0 is a linearly independent set, and forms a
basis for Kr
Let Pr : Fm → Kr be a projection of observations onto Kr
Then PrU |Kr : Kr → Kr is a finite dimensional linear operator
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Introduction

PrU |Kr has a matrix representation Ar : Cr → Cr in the {UkF}r−1k=1

basis

The matrix Ar depends on:
The observable (vector valued)
Dimension of the Krylov subspace r
The projection operator Pr

If (λ,v) is an eigenpair for Ar with v, then φ =
r−1∑
j=0

vj [U
jF ] is an

eigenfunction of PrU |Kr

Restricting our attention on a fixed observable F and a Krylov
subspace, the problem of finding eigenvalues and Koopman
modes is reduced to finding eigenvalues and eigenvectors for
matrix Ar
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Arnoldi Recap

If we had Ar, we could just use the Arnoldi algorithm

Given A ∈ Cm×m, want to compute eigenvectors and eigenvalues
Procedure:

Consider random b ∈ Cm with ‖b‖ = 1
Form the Krylov subspace Kr = {b, Ab, A2b, . . . , Ar−1b}
Apply Gram-Schmidt to {Ajb}j=r−1

j=0 to obtain orthonormal basis
{qj}rj=1, arranged into an orthonormal matrix Qr

Normalize and orthonormalize at every step j

Hr = Q∗rAQr is the orthonormal projection of A onto Kr
The top r eigenvalues of Hr approximate that of Ar
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Relevance to Koopman Modes?

By using Arnoldi we have an implicit assumption

∃ matrix A, whose evolution Akb ∈ Cm, matches that of
[UkF ](p) ∈ Cm

Don’t have an explicit representation of the Koopman operator, so
can’t use standard Arnoldi
Why?
Need to normalize and orthonormalize at each step =⇒ need to
change observables F at each time step p
Another interpretation: ?
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Dynamic Mode Decomposition

Only require a sequence of vectors {bk}rk=0

Where bk := UkF (p) ∈ Cm

This is for some fixed F : M → Cm and fixed p ∈M
Let Kr = [b0,b1, . . . ,br−1]

Think of them as point evaluations of the {UkF} basis for the
Krylov subspace Kr at point p ∈M
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Dynamic Mode Decomposition

br will not be in the span of columns of Kr

Let br =

r−1∑
j=0

cjbj + ηr

The cj ’s are chosen to minimize the residual ηr
=⇒ choosing projection PrU rF of U rF at point p ∈M

‖[U rF ](p)− Pr[U rF ](p)‖Cm = ‖br −
r−1∑
j=0

cjbj‖Cm

Minimize over cj
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Dynamic Mode Decomposition

Since br = Krc + ηr, we have:

UKr = [b1, . . . ,br] = [b1, . . . ,br−1,Krc + ηr]

UKr = KrAr + ηre
T

With e = (0, . . . , 0, 1)T ∈ Cm and

Ar =


0 0 . . . 0 c0
1 0 . . . 0 c1
0 1 . . . 0 c2
...

...
. . .

...
...

0 0 . . . 1 cr−1


Ar is the companion matrix ; a representation of PrU in the
{UkF}r−1k=0 basis
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UKr = [b1, . . . ,br] = [b1, . . . ,br−1,Krc + ηr]

UKr = KrAr + ηre
T

With e = (0, . . . , 0, 1)T ∈ Cm and

Ar =


0 0 . . . 0 c0
1 0 . . . 0 c1
0 1 . . . 0 c2
...

...
. . .

...
...

0 0 . . . 1 cr−1


Ar is the companion matrix ; a representation of PrU in the
{UkF}r−1k=0 basis
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Dynamic Mode Decomposition

Diagonalize Ar = V −1ΛV

Recall:
UKr = KrAr + ηre

T

Substitute for Ar and multiply with V −1

UKrV
−1 = KrV

−1Λ + ηre
TV −1

Define E := KrV
−1, to get UE = EΛ + ηre

TV −1
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Dynamic Mode Decomposition

For large m, we hope that ‖ηreTV −1‖ is small

Then UE ≈ EΛ, and columns of E approximate some
eigenvectors of U
Procedure described is tied to initialization
Different initial conditions will reveal different parts of the spectrum
If F /∈ span{φi} for some eigenfunction φi, then DMD will not
reveal that mode
The version described is numerically ill-conditioned (columns of
Kr can become linearly dependent)
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Standard DMD

Arrange data {b0, . . . ,br} into matrices

X = [b0, . . . ,br−1], Y = [b1, . . . ,br]

Compute SVD X = UΣV ∗

Define matrix Ã = U∗Y V Σ−1

Compute eigenvalues and eigenvectors of Ã; Ãw = λw

DMD mode corresponding to eigenvalue λ is Uw
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Exact DMD

Limitation of previous approach: Order of vectors is critical

Such that the vectors approximately satisfy zk+1 = Azk for
unknown A
Now we relax this constraint and restrict ourselves to data pairs
(x1,y1), . . . , (xm,ym)

Define X and Y as before
Define operator A = Y X†

The DMD modes and eigenvalues are eigenvalues and
eigenvectors of A
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Exact DMD

Arrange the data pairs in matrices X,Y as before

Compute the SVD of X, write X = UΣV ∗

Define matrix Ã = U∗Y V Σ−1

Computer eigenvalues and eigenvectors of Ã, writing Ãw = λw.
Every nonzero eigenvalue is a DMD eigenvalue
The DMD mode corresponding to λ is given as:

Φ =
1

λ
Y V Σ−1w
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Kernel Trick and Learning the Subspace

Kernels
Neural Networks
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