Koopman Operators and Dynamic Mode Decomposition

Shubhendu Trivedi

The University of Chicago Toyota Technological Institute Chicago, IL - 60637

Shubhendu Trivedi (TTI-C)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Intro to dynamical systems and Poincairé's geometric picture

- Intro to dynamical systems and Poincairé's geometric picture
- Definitions: Fixed points, Limit cycles, Invariant sets, Attractors, Bifurcations

- Intro to dynamical systems and Poincairé's geometric picture
- Definitions: Fixed points, Limit cycles, Invariant sets, Attractors, Bifurcations
- Two results: Poincairé's recurrence theorem and Bendixson's criterion

- Intro to dynamical systems and Poincairé's geometric picture
- Definitions: Fixed points, Limit cycles, Invariant sets, Attractors, Bifurcations
- Two results: Poincairé's recurrence theorem and Bendixson's criterion
- Problems with the geometric picture

A (10) A (10)

- Intro to dynamical systems and Poincairé's geometric picture
- Definitions: Fixed points, Limit cycles, Invariant sets, Attractors, Bifurcations
- Two results: Poincairé's recurrence theorem and Bendixson's criterion
- Problems with the geometric picture
- Alternative picture: Dynamics of observables

A (10) A (10)

- Intro to dynamical systems and Poincairé's geometric picture
- Definitions: Fixed points, Limit cycles, Invariant sets, Attractors, Bifurcations
- Two results: Poincairé's recurrence theorem and Bendixson's criterion
- Problems with the geometric picture
- Alternative picture: Dynamics of observables
- Two dual operators in the "dynamics of observables" picture: Perron-Frobenius operator and Koopman Operator

- Intro to dynamical systems and Poincairé's geometric picture
- Definitions: Fixed points, Limit cycles, Invariant sets, Attractors, Bifurcations
- Two results: Poincairé's recurrence theorem and Bendixson's criterion
- Problems with the geometric picture
- Alternative picture: Dynamics of observables
- Two dual operators in the "dynamics of observables" picture: Perron-Frobenius operator and Koopman Operator
- Next: Koopman Operator

Dynamical Systems

• Denote the state space by M

・ロト ・ 四ト ・ ヨト ・ ヨト

Dynamical Systems

- Denote the state space by M
- *M* can be an arbitrary set with no structure

- Denote the state space by M
- M can be an arbitrary set with no structure
- The dynamics on M are specified by an iterated map $T: M \to M$

- Denote the state space by M
- M can be an arbitrary set with no structure
- The dynamics on M are specified by an iterated map $T: M \to M$
- The abstract dynamical system is specified by the pair (M,T)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• M is a measurable space with a σ -algebra \mathfrak{B}

- M is a measurable space with a σ -algebra \mathfrak{B}
- T is B measurable

- M is a measurable space with a σ -algebra \mathfrak{B}
- T is B measurable
- T is measure preserving:

- M is a measurable space with a σ -algebra \mathfrak{B}
- T is B measurable
- *T* is measure preserving:
 - \exists an invariant measure μ , such that for any $S \in \mathfrak{B}$

A I > A = A A

- M is a measurable space with a σ -algebra $\mathfrak B$
- T is B measurable
- *T* is measure preserving:
 ∃ an invariant measure μ, such that for any *S* ∈ 𝔅

$$\mu(S) = \mu(T^{-1}S)$$

A I > A = A A

• Want to study the behaviour of observables on the state space

Want to study the behaviour of observables on the state space
Observable: Some *f* : *M* → C

- Want to study the behaviour of observables on the state space
- Observable: Some $f: M \to \mathbb{C}$
- $f \in \mathcal{F}$ (\mathcal{F} is a function space, of unspecified structure)

- Want to study the behaviour of observables on the state space
- Observable: Some $f: M \to \mathbb{C}$
- $f \in \mathcal{F}$ (\mathcal{F} is a function space, of unspecified structure)
- Concrete interpretation: Sensor probe for the dynamical system

- Want to study the behaviour of observables on the state space
- Observable: Some $f: M \to \mathbb{C}$
- $f \in \mathcal{F}$ (\mathcal{F} is a function space, of unspecified structure)
- Concrete interpretation: Sensor probe for the dynamical system
- Instead of tracking $p \to T(p) \to T^2(p) \to T(p^3) \dots$

- Want to study the behaviour of observables on the state space
- Observable: Some $f: M \to \mathbb{C}$
- $f \in \mathcal{F}$ (\mathcal{F} is a function space, of unspecified structure)
- Concrete interpretation: Sensor probe for the dynamical system
- Instead of tracking $p \to T(p) \to T^2(p) \to T(p^3) \dots$
- Track: $f(p) \to f(T(p)) \to f(T^2(p)) \to f(T(p^3)) \dots$

- Want to study the behaviour of observables on the state space
- Observable: Some $f: M \to \mathbb{C}$
- $f \in \mathcal{F}$ (\mathcal{F} is a function space, of unspecified structure)
- Concrete interpretation: Sensor probe for the dynamical system
- Instead of tracking $p \to T(p) \to T^2(p) \to T(p^3) \dots$
- Track: $f(p) \to f(T(p)) \to f(T^2(p)) \to f(T(p^3)) \dots$
- Can describe the dynamics as:

$$p_{n+1} = T(p_n)$$
 and $v_n = f(p_n)$

• Discrete time Koopman Operator $U_T : \mathcal{F} \to \mathcal{F}$ $[U_T f](p) = f(T(p))$

э

イロン イ理 とく ヨン イヨン

- Discrete time Koopman Operator $U_T: \mathcal{F} \to \mathcal{F}$ $[U_T f](p) = f(T(p))$
- Is a composition: $U_T f = f \circ T$

э

イロト イヨト イヨト イヨト

- Discrete time Koopman Operator $U_T : \mathcal{F} \to \mathcal{F}$ $[U_T f](p) = f(T(p))$
- Is a composition: $U_T f = f \circ T$
- When \mathcal{F} is a vector space, U_T is a linear operator

3

イロト 不得 トイヨト イヨト

• Discrete time Koopman Operator $U_T: \mathcal{F} \to \mathcal{F}$

 $[U_T f](p) = f(T(p))$

- Is a composition: $U_T f = f \circ T$
- When \mathcal{F} is a vector space, U_T is a linear operator
- M is a finite set $\implies U$ is finite dimensional, represented by a matrix

3

イロト 不得 トイヨト イヨト

• Discrete time Koopman Operator $U_T: \mathcal{F} \to \mathcal{F}$

 $[U_T f](p) = f(T(p))$

- Is a composition: $U_T f = f \circ T$
- When \mathcal{F} is a vector space, U_T is a linear operator
- M is a finite set $\implies U$ is finite dimensional, represented by a matrix
- Generally U is infinite-dimensional

3

イロン イ団と イヨン 一

Usually only have access to a collection of observables

$$\{f_1,\ldots,f_K\}\subset\mathcal{F}$$

Usually only have access to a collection of observables

 $\{f_1,\ldots,f_K\}\subset\mathcal{F}$

• f_1, \ldots, f_K could be physically relevant observables or part of the function basis for \mathcal{F}

(日)

Can extend the Koopman operator to this larger space

- Can extend the Koopman operator to this larger space
- Denote $F = (f_1, \ldots, f_K)^T \in \mathcal{F}^K$

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Can extend the Koopman operator to this larger space
- Denote $F = (f_1, \ldots, f_K)^T \in \mathcal{F}^K$
- Then $U_K : \mathcal{F}^K \to \mathcal{F}^K$

$$[U_K F](p) := \begin{bmatrix} [Uf_1](p) \\ \vdots \\ [Uf_K](p) \end{bmatrix}$$

イロト 不得 トイヨト イヨト

- Can extend the Koopman operator to this larger space
- Denote $F = (f_1, \ldots, f_K)^T \in \mathcal{F}^K$
- Then $U_K : \mathcal{F}^K \to \mathcal{F}^K$

$$[U_K F](p) := \begin{bmatrix} [Uf_1](p) \\ \vdots \\ [Uf_K](p) \end{bmatrix}$$

• Then
$$U_K = \bigotimes_{1}^{K} U$$

イロト 不得 トイヨト イヨト

- Can extend the Koopman operator to this larger space
- Denote $F = (f_1, \ldots, f_K)^T \in \mathcal{F}^K$
- Then $U_K : \mathcal{F}^K \to \mathcal{F}^K$

$$[U_K F](p) := \begin{bmatrix} [Uf_1](p) \\ \vdots \\ [Uf_K](p) \end{bmatrix}$$

• Then $U_K = \bigotimes_{1}^{K} U$

• \mathcal{F}^{K} is the space of \mathbb{C}^{K} -valued observables on the state space M

・ロト ・四ト ・ヨト ・ヨト
Extended Koopman Operator

- Can extend the Koopman operator to this larger space
- Denote $F = (f_1, \ldots, f_K)^T \in \mathcal{F}^K$
- Then $U_K : \mathcal{F}^K \to \mathcal{F}^K$

$$[U_K F](p) := \begin{bmatrix} [Uf_1](p) \\ \vdots \\ [Uf_K](p) \end{bmatrix}$$

• Then $U_K = \bigotimes_{1}^{K} U$

- \mathcal{F}^K is the space of $\mathbb{C}^K\text{-valued}$ observables on the state space M
- More generally: $F: M \to V$ where V is a vector space

・ロト ・四ト ・ヨト ・ヨト

Koopman Operators in Continuous Time D.S.

• Consider the continuous time dynamical system

$$\dot{p} = T(p)$$

Э.

<ロ> <問> <問> < 回> < 回> 、

• Reminder: Group that can be obtained by a single generator

Reminder: Group that can be obtained by a single generator
Let M = {e, a, a²} be a cyclic group of order 3

- Reminder: Group that can be obtained by a single generator
- Let $M = \{e, a, a^2\}$ be a cyclic group of order 3
- Define $T: M \to M$ as T(p) = a \cdot p

- Reminder: Group that can be obtained by a single generator
- Let $M = \{e, a, a^2\}$ be a cyclic group of order 3
- Define $T: M \to M$ as $T(p) = a \cdot p$
- Entire state space is a periodic orbit with period 3

- Reminder: Group that can be obtained by a single generator
- Let $M = \{e, a, a^2\}$ be a cyclic group of order 3
- Define $T: M \to M$ as $T(p) = a \cdot p$
- Entire state space is a periodic orbit with period 3
- Let \mathcal{F} be \mathbb{C} -valued functions on M

A I > A = A A

- Reminder: Group that can be obtained by a single generator
- Let $M = \{e, a, a^2\}$ be a cyclic group of order 3
- Define $T: M \to M$ as $T(p) = a \cdot p$
- Entire state space is a periodic orbit with period 3
- Let \mathcal{F} be \mathbb{C} -valued functions on M
- Space of observables is \mathbb{C}^3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Let f_1, f_2, f_3 be indicator functions on e, a, a^2 :

$$f_1(p) = \begin{cases} 1 & \text{if } p = e \\ 0 & \text{if } p \neq e \end{cases}$$
$$f_2(p) = \begin{cases} 1 & \text{if } p = a \\ 0 & \text{if } p \neq a \end{cases}$$
$$f_3(p) = \begin{cases} 1 & \text{if } p = a^2 \\ 0 & \text{if } p \neq a^2 \end{cases}$$

Shubhendu Trivedi (TTI-C)

æ

<ロ> <問> <問> < 回> < 回> 、

• Let f_1, f_2, f_3 be indicator functions on e, a, a^2 :

$$f_1(p) = \begin{cases} 1 & \text{if } p = e \\ 0 & \text{if } p \neq e \end{cases}$$
$$f_2(p) = \begin{cases} 1 & \text{if } p = a \\ 0 & \text{if } p \neq a \end{cases}$$
$$f_3(p) = \begin{cases} 1 & \text{if } p = a^2 \\ 0 & \text{if } p \neq a^2 \end{cases}$$

• Form a basis for ${\cal F}$

3

・ロト ・聞 ト ・ ヨト ・ ヨト

• Action of the Koopman operator on this basis:

$$[Uf_1](p) = f_1(a \cdot p) = f_3(p)$$
$$[Uf_2](p) = f_2(a \cdot p) = f_1(p)$$
$$[Uf_3](p) = f_3(a \cdot p) = f_2(p)$$

イロト イポト イヨト イヨト

• Action of the Koopman operator on this basis:

$$[Uf_1](p) = f_1(a \cdot p) = f_3(p)$$
$$[Uf_2](p) = f_2(a \cdot p) = f_1(p)$$
$$[Uf_3](p) = f_3(a \cdot p) = f_2(p)$$

• Consider arbitrary observable $f \in \mathcal{F}$ i.e. $f = c_1 f_1 + c_2 f_2 + c_3 f_3$

э

• Action of the Koopman operator on this basis:

$$[Uf_1](p) = f_1(a \cdot p) = f_3(p)$$
$$[Uf_2](p) = f_2(a \cdot p) = f_1(p)$$
$$[Uf_3](p) = f_3(a \cdot p) = f_2(p)$$

Consider arbitrary observable *f* ∈ *F* i.e. *f* = c₁*f*₁ + c₂*f*₂ + c₃*f*₃
Consider the action of the Koopman operator on *f*:

$$Uf = U(c_1f_1 + c_2f_2 + c_3f_3) = c_1f_3 + c_2f_1 + c_3f_2$$

Shubhendu Trivedi (TTI-C)

< □ > < 同 > < 回 > < 回 > .

• Matrix representation of the Koopman operator U in the $\{f_1, f_2, f_3\}$ basis:

$$U\begin{bmatrix} c_1\\ c_2\\ c_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} c_1\\ c_2\\ c_3 \end{bmatrix}$$

イロト イポト イヨト イヨト

æ

$$(T(x))_i = \mu_i x_i$$

æ

イロト イヨト イヨト イヨト

$$(T(x))_i = \mu_i x_i$$

•
$$x = (x_1, \ldots, x_d)^T \in M$$
 and $\mu_i \in \mathbb{R}$

æ

イロト イヨト イヨト イヨト

$$(T(x))_i = \mu_i x_i$$

•
$$x = (x_1, \ldots, x_d)^T \in M$$
 and $\mu_i \in \mathbb{R}$

• Let ${\mathcal F}$ denote space of functions ${\mathbb R}^d \to {\mathbb C}$

Shubhendu Trivedi (TTI-C)

イロト イポト イヨト イヨト

$$(T(x))_i = \mu_i x_i$$

•
$$x = (x_1, \dots, x_d)^T \in M$$
 and $\mu_i \in \mathbb{R}$

- Let ${\mathcal F}$ denote space of functions ${\mathbb R}^d \to {\mathbb C}$
- Let $\{\mathbf{b}_1, \dots, \mathbf{b}_d\} \subset M$ be a basis for M; define $f_i(x) = \langle \mathbf{b}_i, x \rangle$

• The action of the Koopman operator $U : \mathcal{F} \to \mathcal{F}$ on f_i is

$$[Uf_i](x) = \langle b_i, T(x) \rangle = \begin{bmatrix} b_{i,1} & \dots & b_{i,d} \end{bmatrix} \begin{bmatrix} \mu_1 x_1 \\ \vdots \\ \mu_d x_d \end{bmatrix}$$

(日)

• The action of the Koopman operator $U : \mathcal{F} \to \mathcal{F}$ on f_i is

$$[Uf_i](x) = \langle b_i, T(x) \rangle = \begin{bmatrix} b_{i,1} & \dots & b_{i,d} \end{bmatrix} \begin{bmatrix} \mu_1 x_1 \\ \vdots \\ \mu_d x_d \end{bmatrix}$$

$$[Uf_i](x) = \begin{bmatrix} b_{i,1} & \dots & b_{i,d} \end{bmatrix} \begin{bmatrix} \mu_1 & 0 & \dots & 0 \\ 0 & \mu_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mu_d \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

(日)

• Recall
$$\mathcal{F}^d = \bigotimes_1^d \mathcal{F}$$
, define U_d as earlier, then for $F = (f_1, \dots, f_d)^T$

- Recall $\mathcal{F}^d = \bigotimes_{1}^{d} \mathcal{F}$, define U_d as earlier, then for $F = (f_1, \dots, f_d)^T$
- Then the action of the extended Koopman operator

イロト 不得 トイヨト イヨト

- Recall $\mathcal{F}^d = \bigotimes_{1}^{d} \mathcal{F}$, define U_d as earlier, then for $F = (f_1, \dots, f_d)^T$
- Then the action of the extended Koopman operator

$$[U_d F](x) = \begin{bmatrix} b_{1,1} & \dots & b_{1,d} \\ \vdots & \ddots & \vdots \\ b_{d,1} & \dots & b_{d,d} \end{bmatrix} \begin{bmatrix} \mu_1 & 0 & \dots & 0 \\ 0 & \mu_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mu_d \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

イロト 不得 トイヨト イヨト

- Recall $\mathcal{F}^d = \bigotimes_{1}^{d} \mathcal{F}$, define U_d as earlier, then for $F = (f_1, \dots, f_d)^T$
- Then the action of the extended Koopman operator

$$[U_d F](x) = \begin{bmatrix} b_{1,1} & \dots & b_{1,d} \\ \vdots & \ddots & \vdots \\ b_{d,1} & \dots & b_{d,d} \end{bmatrix} \begin{bmatrix} \mu_1 & 0 & \dots & 0 \\ 0 & \mu_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mu_d \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

• This is the action of the Koopman operator on the particular observable *F*, not the entire observable space *F*

Shubhendu Trivedi (TTI-C)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Example: Heat equation with periodic boundary conditions

Shubhendu Trivedi (TTI-C)

크

Mode Analysis

æ

<ロ> <問> <問> < 同> < 同> 、

• We have put no structure on \mathcal{F} so far

- We have put no structure on ${\mathcal F}$ so far
- $\bullet\,$ When ${\cal F}$ is a vector space, the Koopman operator is linear

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We have put no structure on \mathcal{F} so far
- $\bullet\,$ When ${\cal F}$ is a vector space, the Koopman operator is linear
- Interest: Study spectral properties of the Koopman Operator to probe into the dynamics of the system

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We have put no structure on \mathcal{F} so far
- When \mathcal{F} is a vector space, the Koopman operator is linear
- Interest: Study spectral properties of the Koopman Operator to probe into the dynamics of the system
- Assume: \mathcal{F} is a Banach space

< ロ > < 同 > < 回 > < 回 > < 回 >

- We have put no structure on *F* so far
- When \mathcal{F} is a vector space, the Koopman operator is linear
- Interest: Study spectral properties of the Koopman Operator to probe into the dynamics of the system
- Assume: \mathcal{F} is a Banach space
- Assume: U is a bounded, continuous operator on \mathcal{F}

• • • • • • • • • • • •

• Let $\{\phi_1, \ldots, \phi_n\}$ be a set of eigenfunctions of U, where $n = 1, 2, ..., \infty$

3

イロン イ理 とく ヨン イヨン

- Let $\{\phi_1, \ldots, \phi_n\}$ be a set of eigenfunctions of U, where $n = 1, 2, ..., \infty$
- For the discrete case:

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Let $\{\phi_1, \ldots, \phi_n\}$ be a set of eigenfunctions of U, where $n = 1, 2, ..., \infty$
- For the discrete case:

$$[U\phi_i](p) = \lambda_i \phi_i(p)$$

3

< 日 > < 同 > < 回 > < 回 > < 回 > <
Eigenfunctions and Koopman Modes

- Let $\{\phi_1, \ldots, \phi_n\}$ be a set of eigenfunctions of U, where $n = 1, 2, ..., \infty$
- For the discrete case:

$$[U\phi_i](p) = \lambda_i \phi_i(p)$$

• For the continuous case:

Eigenfunctions and Koopman Modes

- Let $\{\phi_1, \ldots, \phi_n\}$ be a set of eigenfunctions of U, where $n = 1, 2, ..., \infty$
- For the discrete case:

$$[U\phi_i](p) = \lambda_i \phi_i(p)$$

• For the continuous case:

$$[U^t \phi_i](p) = e^{\lambda_i t} \phi_i(p)$$

Shubhendu Trivedi (TTI-C)

Eigenfunctions and Koopman Modes

- Let $\{\phi_1, \ldots, \phi_n\}$ be a set of eigenfunctions of U, where $n = 1, 2, ..., \infty$
- For the discrete case:

$$[U\phi_i](p) = \lambda_i \phi_i(p)$$

• For the continuous case:

$$[U^t \phi_i](p) = e^{\lambda_i t} \phi_i(p)$$

• λ 's are the eigenvalues of the generator U, and $\{e^{\lambda_i}\}$ of the Koopman semi-group

Shubhendu Trivedi (TTI-C)

(日)

• Assume that ${\mathcal F}$ is a subset of all ${\mathbb C}$ valued functions on M

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Assume that \mathcal{F} is a subset of all \mathbb{C} valued functions on M
- Also assume that it forms a vector space that is closed under pointwise products of functions

A (10) A (10)

- Assume that ${\mathcal F}$ is a subset of all ${\mathbb C}$ valued functions on M
- Also assume that it forms a vector space that is closed under pointwise products of functions
- ⇒ set of eigenfunctions forms an abelian semigroup under pointwise products of functions

A (10) A (10)

- Assume that ${\mathcal F}$ is a subset of all ${\mathbb C}$ valued functions on M
- Also assume that it forms a vector space that is closed under pointwise products of functions
- ⇒ set of eigenfunctions forms an abelian semigroup under pointwise products of functions
- Concretely: If $\phi_1, \phi_2 \in \mathcal{F}$ are eigenfunctions of U with eigenvalues λ_1 and λ_2 , then $\phi_1\phi_2$ is an eigenfunction of U with eignevalue $\lambda_1\lambda_2$

• If p > 0 and ϕ is an eigenfunction with eigenvalue λ , then ϕ^p is an eigenfunction with eigenvalue λ^p

- If p > 0 and ϕ is an eigenfunction with eigenvalue λ , then ϕ^p is an eigenfunction with eigenvalue λ^p
- If ϕ is an eigenfunction that vanishes nowhere and $r \in \mathbb{R}$, then ϕ^r is an eigenfunction with eigenvalue λ^r

- If p > 0 and ϕ is an eigenfunction with eigenvalue λ , then ϕ^p is an eigenfunction with eigenvalue λ^p
- If ϕ is an eigenfunction that vanishes nowhere and $r \in \mathbb{R}$, then ϕ^r is an eigenfunction with eigenvalue λ^r
- Eigenfunctions that vanish nowhere form an Abelian group

< □ > < 同 > < 回 > < 回 > .

Spectral Equivalence of Topologically Conjugate Systems

Proposition

Let $S: M \to M$ and $T: N \to N$ be topologically conjugate; i.e. \exists a homomorphism $h: N \to M$ such that $S \circ h = h \circ T$. If ϕ is an eigenfunction of U_S with eigenvalue λ , then $\phi \circ h$ is an eigenfunction of U_T at eigenvalue λ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Let
$$\mathbf{y}^{(k)} = (y_1^{(k)}, y_2^{(k)})^T$$
 ((k) indexes time)

・ロト ・ 四ト ・ ヨト ・ ヨト ・

• Let
$$\mathbf{y}^{(k)} = (y_1^{(k)}, y_2^{(k)})^T$$
 ((k) indexes time)
• Let $\mathbf{y}^{(k+1)} = T\mathbf{y}^{(k)}$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

- Let $\mathbf{y}^{(k)} = (y_1^{(k)}, y_2^{(k)})^T$ ((k) indexes time)
- Let $\mathbf{y}^{(k+1)} = T\mathbf{y}^{(k)}$
- T is a matrix with eigenvectors v_1, v_2 at eigenvalues λ_1, λ_2 with $v_i \neq e_j$

イロト 不得 トイヨト イヨト

• Let
$$\mathbf{y}^{(k)} = (y_1^{(k)}, y_2^{(k)})^T$$
 ((k) indexes time)

- Let $\mathbf{y}^{(k+1)} = T\mathbf{y}^{(k)}$
- T is a matrix with eigenvectors v_1, v_2 at eigenvalues λ_1, λ_2 with $v_i \neq e_j$
- If $V = [v_1v_2]$, then with new coordinates $\mathbf{x}^{(k)} = (x_1^k, x_2^{(k)})^T = V^{-1}\mathbf{y}^{(k)}$

< 日 > < 同 > < 回 > < 回 > < □ > <

• Let
$$\mathbf{y}^{(k)} = (y_1^{(k)}, y_2^{(k)})^T$$
 ((k) indexes time)

- Let $\mathbf{y}^{(k+1)} = T\mathbf{y}^{(k)}$
- T is a matrix with eigenvectors v_1, v_2 at eigenvalues λ_1, λ_2 with $v_i \neq e_j$
- If $V = [v_1v_2]$, then with new coordinates $\mathbf{x}^{(k)} = (x_1^k, x_2^{(k)})^T = V^{-1} \mathbf{y}^{(k)}$ $\begin{bmatrix} x_1^{(k+1)} \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \end{bmatrix} \begin{bmatrix} x_1^{(k)} \end{bmatrix} = \mathbf{A} \begin{bmatrix} x_1^{(k)} \end{bmatrix}$

$$\begin{bmatrix} x_1 \\ x_2^{(k+1)} \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2^{(k)} \end{bmatrix} := \Lambda \begin{bmatrix} x_1 \\ x_2^{(k)} \end{bmatrix}$$

3

イロト 不得 トイヨト イヨト

• Let
$$\mathbf{y}^{(k)} = (y_1^{(k)}, y_2^{(k)})^T$$
 ((k) indexes time)

- Let $\mathbf{y}^{(k+1)} = T\mathbf{y}^{(k)}$
- T is a matrix with eigenvectors v_1, v_2 at eigenvalues λ_1, λ_2 with $v_i \neq e_j$

• If
$$V = [v_1 v_2]$$
, then with new coordinates
 $\mathbf{x}^{(k)} = (x_1^k, x_2^{(k)})^T = V^{-1} \mathbf{y}^{(k)}$

$$\begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix} := \Lambda \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix}$$

• Maps Λ and T are topologically conjugate by $\Lambda V^{-1} = V^{-1}T$

3

イロト 不得 トイヨト イヨト

• Let
$$\mathbf{y}^{(k)} = (y_1^{(k)}, y_2^{(k)})^T$$
 ((k) indexes time)

- Let $y^{(k+1)} = Ty^{(k)}$
- T is a matrix with eigenvectors v_1, v_2 at eigenvalues λ_1, λ_2 with $v_i \neq e_j$
- If $V = [v_1 v_2]$, then with new coordinates $\mathbf{x}^{(k)} = (x_1^k, x_2^{(k)})^T = V^{-1} \mathbf{y}^{(k)}$ $\begin{bmatrix} x_1^{(k+1)} \\ x_2^{(k+1)} \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix} := \Lambda \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \end{bmatrix}$
- Maps Λ and T are topologically conjugate by ΛV⁻¹ = V⁻¹T
 V⁻¹ is now the h from the proposition

イロト 不得 トイヨト イヨト ヨー ろくの

Assume f ∈ F is an observable in the linear span of a set of eigenfunctions {φ_i}ⁿ₁, then for c_i(f) ∈ C:

Assume f ∈ F is an observable in the linear span of a set of eigenfunctions {φ_i}ⁿ₁, then for c_i(f) ∈ C:

$$f(p) = \sum_{i=1}^{n} c_i(f)\phi_i(p)$$

Assume f ∈ F is an observable in the linear span of a set of eigenfunctions {φ_i}ⁿ₁, then for c_i(f) ∈ C:

$$f(p) = \sum_{i=1}^{n} c_i(f)\phi_i(p)$$

• Dynamics of *f* have a simple form:

$$[Uf](p) = f(T(p)) = \sum_{i=1}^{n} c_i(f)\phi_i(T(p)) = \sum_{i=1}^{n} c_i(f)[U\phi_i](p)$$

Assume f ∈ F is an observable in the linear span of a set of eigenfunctions {φ_i}ⁿ₁, then for c_i(f) ∈ C:

$$f(p) = \sum_{i=1}^{n} c_i(f)\phi_i(p)$$

• Dynamics of *f* have a simple form:

$$[Uf](p) = f(T(p)) = \sum_{i=1}^{n} c_i(f)\phi_i(T(p)) = \sum_{i=1}^{n} c_i(f)[U\phi_i](p)$$

$$[Uf](p) = f(T(p)) = \sum_{i=1}^{n} \lambda_i c_i(f) \phi_i(p)$$

• Dynamics of *f* have a simple form:

$$[Uf](p) = f(T(p)) = \sum_{i=1}^{n} c_i(f)\phi_i(T(p)) = \sum_{i=1}^{n} c_i(f)[U\phi_i](p)$$

æ

・ロ・・ (日・・ モ・・ ・ 日・・

• Dynamics of *f* have a simple form:

$$[Uf](p) = f(T(p)) = \sum_{i=1}^{n} c_i(f)\phi_i(T(p)) = \sum_{i=1}^{n} c_i(f)[U\phi_i](p)$$

$$[Uf](p) = f(T(p)) = \sum_{i=1} \lambda_i c_i(f) \phi_i(p)$$

크

・ロト ・ 四ト ・ ヨト ・ ヨト ・

• Dynamics of *f* have a simple form:

$$[Uf](p) = f(T(p)) = \sum_{i=1}^{n} c_i(f)\phi_i(T(p)) = \sum_{i=1}^{n} c_i(f)[U\phi_i](p)$$

$$[Uf](p) = f(T(p)) = \sum_{i=1}^{n} \lambda_i c_i(f) \phi_i(p)$$

Likewise

$$[U^m f](p) = \sum_{i=1}^n \lambda_i^m c_i(f)\phi_i(p)$$

æ

• Extension to vector valued observables $F = (f_1, \ldots, f_K)^T$, with each f_i in the closed linear span of eigenfunctions:

• Extension to vector valued observables $F = (f_1, \ldots, f_K)^T$, with each f_i in the closed linear span of eigenfunctions:

$$[U^k F](p) = \sum_{i=1}^n \lambda_i^m \phi_i(p) \begin{bmatrix} c_i(f_1) \\ \vdots \\ c_i(f_K) \end{bmatrix}$$

• Extension to vector valued observables $F = (f_1, ..., f_K)^T$, with each f_i in the closed linear span of eigenfunctions:

$$[U^k F](p) = \sum_{i=1}^n \lambda_i^m \phi_i(p) \begin{bmatrix} c_i(f_1) \\ \vdots \\ c_i(f_K) \end{bmatrix}$$

• Written compactly:

< □ > < 同 > < 回 > < 回 > .

• Extension to vector valued observables $F = (f_1, \ldots, f_K)^T$, with each f_i in the closed linear span of eigenfunctions:

$$[U^k F](p) = \sum_{i=1}^n \lambda_i^m \phi_i(p) \begin{bmatrix} c_i(f_1) \\ \vdots \\ c_i(f_K) \end{bmatrix}$$

• Written compactly:

$$[U^k F](p) = \sum_{i=1}^n \lambda_i^m \phi_i C_i(F)$$

Shubhendu Trivedi (TTI-C)

< □ > < 同 > < 回 > < 回 > .

Definition

Let ϕ_i be an eigenfunction for the Koopman operator corresponding to eigenvalue λ_i . For a vector valued observable $F: M \to V$, the Koopman mode $C_i(F)$, corresponding to ϕ_i is the vector of coefficients of the projection of F onto $span\{\phi_i\}$

Computation of Koopman Modes: Theory

Shubhendu Trivedi (TTI-C)

æ

<ロ> <問> <問> < 回> < 回> 、

Theorem (Yosida)

Let \mathcal{F} be a Banach space and $U : \mathcal{F} \to \mathcal{F}$. Assume $||U|| \le 1$. Let λ be an eigenvalue of U such that $|\lambda| = 1$. Let $\tilde{U} = \lambda^{-1}U$, and define:

$$A_K(\tilde{U}) = \frac{1}{K} \sum_{k=0}^{K-1} \tilde{U}^k$$

Then A_K converges in the strong operator topology to the projection operator on the subspace of *U*-invariant function; i.e. onto the eigenspace E_{λ} corresponding to λ . That is, for all $f \in \mathcal{F}$,

$$\lim_{K \to \infty} A_K f = \lim_{K \to \infty} \frac{1}{K} \sum_{k=0}^{K-1} \tilde{U}^k f = P_{\lambda} f$$

where $P_{\lambda} : \mathcal{F} \to E_{\lambda}$ is a projection operator.

• Consider the case when the eigenvalues are simple and $|\lambda_1| = \cdots = |\lambda_\ell| = 1$ and $|\lambda_n| < 1$ for $n > \ell$

3

イロン イ団 とく ヨン ・ ヨン …

- Consider the case when the eigenvalues are simple and $|\lambda_1| = \cdots = |\lambda_\ell| = 1$ and $|\lambda_n| < 1$ for $n > \ell$
- Then, $\lambda_j = e^{i2\pi\omega_j}$ for some real ω_j , when $j \leq \ell$

3

イロト 不得 トイヨト イヨト

- Consider the case when the eigenvalues are simple and $|\lambda_1| = \cdots = |\lambda_\ell| = 1$ and $|\lambda_n| < 1$ for $n > \ell$
- Then, $\lambda_j = e^{i2\pi\omega_j}$ for some real ω_j , when $j \leq \ell$
- For vector valued observables, the projections take the form:

- Consider the case when the eigenvalues are simple and $|\lambda_1| = \cdots = |\lambda_\ell| = 1$ and $|\lambda_n| < 1$ for $n > \ell$
- Then, $\lambda_j = e^{i2\pi\omega_j}$ for some real ω_j , when $j \leq \ell$
- For vector valued observables, the projections take the form:

$$\phi_j C_j(F) = \lim_{K \to \infty} \frac{1}{K} \sum_{k=0}^{K-1} e^{i2\pi\omega_j k} [U^k F]$$

for $j = 1, \ldots, \ell$
Special Case

- Consider the case when the eigenvalues are simple and $|\lambda_1| = \cdots = |\lambda_\ell| = 1$ and $|\lambda_n| < 1$ for $n > \ell$
- Then, $\lambda_j = e^{i2\pi\omega_j}$ for some real ω_j , when $j \leq \ell$
- For vector valued observables, the projections take the form:

$$\phi_j C_j(F) = \lim_{K \to \infty} \frac{1}{K} \sum_{k=0}^{K-1} e^{i2\pi\omega_j k} [U^k F]$$

for $j = 1, \ldots, \ell$

 Previous theorem reduces to Fourier analysis for those eigenvalues on the unit circle.

< □ > < 同 > < 回 > < 回 > .

Special Case

- Consider the case when the eigenvalues are simple and $|\lambda_1| = \cdots = |\lambda_\ell| = 1$ and $|\lambda_n| < 1$ for $n > \ell$
- Then, $\lambda_j = e^{i2\pi\omega_j}$ for some real ω_j , when $j \leq \ell$
- For vector valued observables, the projections take the form:

$$\phi_j C_j(F) = \lim_{K \to \infty} \frac{1}{K} \sum_{k=0}^{K-1} e^{i2\pi\omega_j k} [U^k F]$$

for $j = 1, \ldots, \ell$

- Previous theorem reduces to Fourier analysis for those eigenvalues on the unit circle.
- When an observable is a linear combination of a finite collection of eigenfunctions corresponding to simple eigenvalues, we have an extension of the previous theorem

< 日 > < 同 > < 回 > < 回 > < 回 > <

Theorem (Generalized Laplace Analysis)

Let $\{\lambda_1, \ldots, \lambda_m\}$ be a finite set of simple eigenvalues for U, ordered so that $|\lambda_1| \ge \cdots \ge |\lambda_m|$ and let ϕ_i be an eigenfunction corresponding to λ_i . For each $n \in \{1, \ldots, N\}$, assume $f_n : M \to \mathbb{C}$ and $f_n \in span\{\phi_1, \ldots, \phi_m\}$. Define the vector-valued observable $F = (f_1, \ldots, f_N)^T$. Then the Koopman modes can be computed via:

$$\phi_j C_j(F) = \lim_{K \to \infty} \frac{1}{K} \sum_{k=0}^{K-1} \lambda_j^{-k} \left[U^k F - \sum_{i=1}^{j-1} \lambda_i^k \phi_i C_i(F) \right]$$

A simple consequence of the theorem of Yosida

ヘロア 人間 アイヨア・

A Numerical Algorithm: Dynamic Mode Decomposition

æ

 Problem: Don't usually have access to an explicit representation of the Koopman operator

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Problem: Don't usually have access to an explicit representation of the Koopman operator
- Can only understand its behaviour by looking at its action on an observable at only a finite number of initial conditions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Problem: Don't usually have access to an explicit representation of the Koopman operator
- Can only understand its behaviour by looking at its action on an observable at only a finite number of initial conditions
- Data driven approach: Have a sequence of observations of a vector-valued observable along a trajectory $\{T^k p\}$

< 回 > < 三 > < 三 >

- Problem: Don't usually have access to an explicit representation of the Koopman operator
- Can only understand its behaviour by looking at its action on an observable at only a finite number of initial conditions
- Data driven approach: Have a sequence of observations of a vector-valued observable along a trajectory $\{T^k p\}$
- Dynamic mode decomposition: Data driven approach to approximate the modes and eigenvalues of the Koopman operator without numerically implementing a laplace transform

 Main idea: Find the best approximation of U on some finite-dimensional subspace and compute the eigenfunctions of this finite-dimensional operator

- Main idea: Find the best approximation of U on some finite-dimensional subspace and compute the eigenfunctions of this finite-dimensional operator
- How do we define best?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Fix observable $F: M \to \mathbb{C}^m$ and consider the cyclic subspace $\mathcal{K}_{\infty} = span\{U^kF\}_{k=0}^{\infty}$

3

- Fix observable $F: M \to \mathbb{C}^m$ and consider the cyclic subspace $\mathcal{K}_{\infty} = span\{U^kF\}_{k=0}^{\infty}$
- Fix $r < \infty$ and consider the Krylov subspace $\mathcal{K}_r = span\{U^k F\}_{k=0}^{r-1}$

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Fix observable $F: M \to \mathbb{C}^m$ and consider the cyclic subspace $\mathcal{K}_{\infty} = span\{U^kF\}_{k=0}^{\infty}$
- Fix $r < \infty$ and consider the Krylov subspace $\mathcal{K}_r = span\{U^k F\}_{k=0}^{r-1}$
- Assume $\{U^kF\}_{k=0}^{r-1}$ is a linearly independent set, and forms a basis for \mathcal{K}_r

< 日 > < 同 > < 回 > < 回 > < □ > <

- Fix observable $F: M \to \mathbb{C}^m$ and consider the cyclic subspace $\mathcal{K}_{\infty} = span\{U^kF\}_{k=0}^{\infty}$
- Fix $r < \infty$ and consider the Krylov subspace $\mathcal{K}_r = span\{U^k F\}_{k=0}^{r-1}$
- Assume $\{U^kF\}_{k=0}^{r-1}$ is a linearly independent set, and forms a basis for \mathcal{K}_r
- Let $P_r : \mathcal{F}^m \to \mathcal{K}_r$ be a projection of observations onto \mathcal{K}_r

- Fix observable $F: M \to \mathbb{C}^m$ and consider the cyclic subspace $\mathcal{K}_{\infty} = span\{U^kF\}_{k=0}^{\infty}$
- Fix $r < \infty$ and consider the Krylov subspace $\mathcal{K}_r = span\{U^k F\}_{k=0}^{r-1}$
- Assume $\{U^kF\}_{k=0}^{r-1}$ is a linearly independent set, and forms a basis for \mathcal{K}_r
- Let $P_r : \mathcal{F}^m \to \mathcal{K}_r$ be a projection of observations onto \mathcal{K}_r
- Then $P_r U|_{\mathcal{K}_r} : \mathcal{K}_r \to \mathcal{K}_r$ is a finite dimensional linear operator

• $P_r U|_{\mathcal{K}_r}$ has a matrix representation $A_r : \mathbb{C}^r \to \mathbb{C}^r$ in the $\{U^k F\}_{k=1}^{r-1}$ basis

3

<ロ> <問> <問> < 回> < 回> 、

- $P_r U|_{\mathcal{K}_r}$ has a matrix representation $A_r : \mathbb{C}^r \to \mathbb{C}^r$ in the $\{U^k F\}_{k=1}^{r-1}$ basis
- The matrix A_r depends on:

- $P_r U|_{\mathcal{K}_r}$ has a matrix representation $A_r : \mathbb{C}^r \to \mathbb{C}^r$ in the $\{U^k F\}_{k=1}^{r-1}$ basis
- The matrix A_r depends on:
 - The observable (vector valued)

- $P_r U|_{\mathcal{K}_r}$ has a matrix representation $A_r : \mathbb{C}^r \to \mathbb{C}^r$ in the $\{U^k F\}_{k=1}^{r-1}$ basis
- The matrix A_r depends on:
 - The observable (vector valued)
 - Dimension of the Krylov subspace r

- $P_r U|_{\mathcal{K}_r}$ has a matrix representation $A_r : \mathbb{C}^r \to \mathbb{C}^r$ in the $\{U^k F\}_{k=1}^{r-1}$ basis
- The matrix A_r depends on:
 - The observable (vector valued)
 - Dimension of the Krylov subspace r
 - The projection operator P_r

- $P_r U|_{\mathcal{K}_r}$ has a matrix representation $A_r : \mathbb{C}^r \to \mathbb{C}^r$ in the $\{U^k F\}_{k=1}^{r-1}$ basis
- The matrix A_r depends on:
 - The observable (vector valued)
 - Dimension of the Krylov subspace r
 - The projection operator P_r

• If (λ, \mathbf{v}) is an eigenpair for A_r with \mathbf{v} , then $\phi = \sum_{j=0}^{r-1} v_j [U^j F]$ is an eigenfunction of $P_r U|_{\mathcal{K}_r}$

- $P_r U|_{\mathcal{K}_r}$ has a matrix representation $A_r: \mathbb{C}^r \to \mathbb{C}^r$ in the $\{U^k F\}_{k=1}^{r-1}$ basis
- The matrix A_r depends on:
 - The observable (vector valued)
 - Dimension of the Krylov subspace r
 - The projection operator P_r

• If (λ, \mathbf{v}) is an eigenpair for A_r with \mathbf{v} , then $\phi = \sum v_j [U^j F]$ is an

- eigenfunction of $P_r U|_{\mathcal{K}_m}$
- Restricting our attention on a fixed observable F and a Krylov subspace, the problem of finding eigenvalues and Koopman modes is reduced to finding eigenvalues and eigenvectors for matrix A_r

< 日 > < 同 > < 回 > < 回 > < 回 > <

• If we had A_r , we could just use the Arnoldi algorithm

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- If we had A_r , we could just use the Arnoldi algorithm
- Given $A \in \mathbb{C}^{m \times m}$, want to compute eigenvectors and eigenvalues

- If we had A_r , we could just use the Arnoldi algorithm
- Given $A \in \mathbb{C}^{m \times m}$, want to compute eigenvectors and eigenvalues

Procedure:

• Consider random $\mathbf{b} \in \mathbb{C}^m$ with $\|\mathbf{b}\| = 1$

- If we had A_r, we could just use the Arnoldi algorithm
- Given $A \in \mathbb{C}^{m \times m}$, want to compute eigenvectors and eigenvalues

• Procedure:

- Consider random $\mathbf{b} \in \mathbb{C}^m$ with $\|\mathbf{b}\| = 1$
- Form the Krylov subspace $\mathcal{K}_r = \{\mathbf{b}, A\mathbf{b}, A^2\mathbf{b}, \dots, A^{r-1}\mathbf{b}\}$

- If we had A_r , we could just use the Arnoldi algorithm
- Given $A \in \mathbb{C}^{m \times m}$, want to compute eigenvectors and eigenvalues

Procedure:

- Consider random $\mathbf{b} \in \mathbb{C}^m$ with $\|\mathbf{b}\| = 1$
- Form the Krylov subspace $\mathcal{K}_r = \{\mathbf{b}, A\mathbf{b}, A^2\mathbf{b}, \dots, A^{r-1}\mathbf{b}\}$
- Apply Gram-Schmidt to $\{A^j\mathbf{b}\}_{j=0}^{j=r-1}$ to obtain orthonormal basis $\{qj\}_{j=1}^r$, arranged into an orthonormal matrix Q_r

- If we had A_r, we could just use the Arnoldi algorithm
- Given $A \in \mathbb{C}^{m \times m}$, want to compute eigenvectors and eigenvalues

Procedure:

- Consider random $\mathbf{b} \in \mathbb{C}^m$ with $\|\mathbf{b}\| = 1$
- Form the Krylov subspace $\mathcal{K}_r = \{\mathbf{b}, A\mathbf{b}, A^2\mathbf{b}, \dots, A^{r-1}\mathbf{b}\}$
- Apply Gram-Schmidt to $\{A^j\mathbf{b}\}_{j=0}^{j=r-1}$ to obtain orthonormal basis $\{qj\}_{j=1}^r$, arranged into an orthonormal matrix Q_r
- Normalize and orthonormalize at every step j

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

- If we had A_r, we could just use the Arnoldi algorithm
- Given $A \in \mathbb{C}^{m \times m}$, want to compute eigenvectors and eigenvalues

Procedure:

- Consider random $\mathbf{b} \in \mathbb{C}^m$ with $\|\mathbf{b}\| = 1$
- Form the Krylov subspace $\mathcal{K}_r = \{\mathbf{b}, A\mathbf{b}, A^2\mathbf{b}, \dots, A^{r-1}\mathbf{b}\}$
- Apply Gram-Schmidt to $\{A^j\mathbf{b}\}_{j=0}^{j=r-1}$ to obtain orthonormal basis $\{qj\}_{j=1}^r$, arranged into an orthonormal matrix Q_r
- Normalize and orthonormalize at every step j
- $H_r = Q_r^* A Q_r$ is the orthonormal projection of A onto \mathcal{K}_r

- If we had A_r, we could just use the Arnoldi algorithm
- Given $A \in \mathbb{C}^{m \times m}$, want to compute eigenvectors and eigenvalues

Procedure:

- Consider random $\mathbf{b} \in \mathbb{C}^m$ with $\|\mathbf{b}\| = 1$
- Form the Krylov subspace $\mathcal{K}_r = \{\mathbf{b}, A\mathbf{b}, A^2\mathbf{b}, \dots, A^{r-1}\mathbf{b}\}$
- Apply Gram-Schmidt to $\{A^j\mathbf{b}\}_{j=0}^{j=r-1}$ to obtain orthonormal basis $\{qj\}_{j=1}^r$, arranged into an orthonormal matrix Q_r
- Normalize and orthonormalize at every step j
- $H_r = Q_r^* A Q_r$ is the orthonormal projection of A onto \mathcal{K}_r
- The top r eigenvalues of H_r approximate that of A_r

• By using Arnoldi we have an implicit assumption

- By using Arnoldi we have an implicit assumption
- \exists matrix A, whose evolution $A^k \mathbf{b} \in \mathbb{C}^m$, matches that of $[U^k F](p) \in \mathbb{C}^m$

- By using Arnoldi we have an implicit assumption
- \exists matrix A, whose evolution $A^k \mathbf{b} \in \mathbb{C}^m$, matches that of $[U^k F](p) \in \mathbb{C}^m$
- Don't have an explicit representation of the Koopman operator, so can't use standard Arnoldi

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- By using Arnoldi we have an implicit assumption
- \exists matrix A, whose evolution $A^k \mathbf{b} \in \mathbb{C}^m$, matches that of $[U^k F](p) \in \mathbb{C}^m$
- Don't have an explicit representation of the Koopman operator, so can't use standard Arnoldi
- Why?

- By using Arnoldi we have an implicit assumption
- \exists matrix A, whose evolution $A^k \mathbf{b} \in \mathbb{C}^m$, matches that of $[U^k F](p) \in \mathbb{C}^m$
- Don't have an explicit representation of the Koopman operator, so can't use standard Arnoldi
- Why?
- Need to normalize and orthonormalize at each step ⇒ need to change observables F at each time step p

< □ > < 同 > < 回 > < 回 > .

- By using Arnoldi we have an implicit assumption
- \exists matrix A, whose evolution $A^k \mathbf{b} \in \mathbb{C}^m$, matches that of $[U^k F](p) \in \mathbb{C}^m$
- Don't have an explicit representation of the Koopman operator, so can't use standard Arnoldi
- Why?
- Need to normalize and orthonormalize at each step

 —> need to
 change observables F at each time step p
- Another interpretation: ?

< □ > < 同 > < 回 > < 回 > .
• Only require a sequence of vectors $\{\mathbf{b}_k\}_{k=0}^r$

- Only require a sequence of vectors $\{\mathbf{b}_k\}_{k=0}^r$
- Where $\mathbf{b}_k := U^k F(p) \in \mathbb{C}^m$

- Only require a sequence of vectors $\{\mathbf{b}_k\}_{k=0}^r$
- Where $\mathbf{b}_k := U^k F(p) \in \mathbb{C}^m$
- This is for some fixed $F: M \to \mathbb{C}^m$ and fixed $p \in M$

- Only require a sequence of vectors $\{\mathbf{b}_k\}_{k=0}^r$
- Where $\mathbf{b}_k := U^k F(p) \in \mathbb{C}^m$
- This is for some fixed $F: M \to \mathbb{C}^m$ and fixed $p \in M$
- Let $K_r = [\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_{r-1}]$

- Only require a sequence of vectors $\{\mathbf{b}_k\}_{k=0}^r$
- Where $\mathbf{b}_k := U^k F(p) \in \mathbb{C}^m$
- This is for some fixed $F: M \to \mathbb{C}^m$ and fixed $p \in M$
- Let $K_r = [\mathbf{b}_0, \mathbf{b}_1, \dots, \mathbf{b}_{r-1}]$
- Think of them as point evaluations of the $\{U^k F\}$ basis for the Krylov subspace \mathcal{K}_r at point $p \in M$

ヘロト ヘ回ト ヘヨト ヘヨト

• \mathbf{b}_r will not be in the span of columns of K_r

• \mathbf{b}_r will not be in the span of columns of K_r

• Let
$$\mathbf{b}_r = \sum_{j=0}^{r-1} c_j \mathbf{b}_j + \eta_r$$

• \mathbf{b}_r will not be in the span of columns of K_r

• Let
$$\mathbf{b}_r = \sum_{j=0}^{r-1} c_j \mathbf{b}_j + \eta_r$$

• The c_j 's are chosen to minimize the residual η_r

• \mathbf{b}_r will not be in the span of columns of K_r

• Let
$$\mathbf{b}_r = \sum_{j=0}^{r-1} c_j \mathbf{b}_j + \eta_r$$

- The c_j 's are chosen to minimize the residual η_r
- \implies choosing projection $P_r U^r F$ of $U^r F$ at point $p \in M$

• \mathbf{b}_r will not be in the span of columns of K_r

• Let
$$\mathbf{b}_r = \sum_{j=0}^{r-1} c_j \mathbf{b}_j + \eta_r$$

- The c_j 's are chosen to minimize the residual η_r
- \implies choosing projection $P_r U^r F$ of $U^r F$ at point $p \in M$

$$\|[U^{r}F](p) - P_{r}[U^{r}F](p)\|_{\mathbb{C}^{m}} = \|\mathbf{b}_{r} - \sum_{j=0}^{r-1} c_{j}\mathbf{b}_{j}\|_{\mathbb{C}^{m}}$$

• \mathbf{b}_r will not be in the span of columns of K_r

• Let
$$\mathbf{b}_r = \sum_{j=0}^{r-1} c_j \mathbf{b}_j + \eta_r$$

- The c_j 's are chosen to minimize the residual η_r
- \implies choosing projection $P_r U^r F$ of $U^r F$ at point $p \in M$

$$\|[U^{r}F](p) - P_{r}[U^{r}F](p)\|_{\mathbb{C}^{m}} = \|\mathbf{b}_{r} - \sum_{j=0}^{r-1} c_{j}\mathbf{b}_{j}\|_{\mathbb{C}^{m}}$$

Minimize over c_j

• Since $\mathbf{b}_r = K_r \mathbf{c} + \eta_r$, we have: $UK_r = [\mathbf{b}_1, \dots, \mathbf{b}_r] = [\mathbf{b}_1, \dots, \mathbf{b}_{r-1}, K_r \mathbf{c} + \eta_r]$

イロト イヨト イヨト イヨト 三日

• Since
$$\mathbf{b}_r = K_r \mathbf{c} + \eta_r$$
, we have:
 $UK_r = [\mathbf{b}_1, \dots, \mathbf{b}_r] = [\mathbf{b}_1, \dots, \mathbf{b}_{r-1}, K_r \mathbf{c} + \eta_r]$
 $UK_r = K_r A_r + \eta_r \mathbf{e}^T$

크

・ロト ・ 四ト ・ ヨト ・ ヨト ・

• Since
$$\mathbf{b}_r = K_r \mathbf{c} + \eta_r$$
, we have:
 $UK_r = [\mathbf{b}_1, \dots, \mathbf{b}_r] = [\mathbf{b}_1, \dots, \mathbf{b}_{r-1}, K_r \mathbf{c} + \eta_r]$
 $UK_r = K_r A_r + \eta_r \mathbf{e}^T$
• With $\mathbf{e} = (0, \dots, 0, 1)^T \in \mathbb{C}^m$ and
 $A_r = \begin{bmatrix} 0 & 0 & \dots & 0 & c_0 \\ 1 & 0 & \dots & 0 & c_1 \\ 0 & 1 & \dots & 0 & c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & c_{r-1} \end{bmatrix}$

Shubhendu Trivedi (TTI-C)

Koopman Operators

44 / 50

æ

・ロト ・四ト ・ヨト ・ヨト

• Since
$$\mathbf{b}_r = K_r \mathbf{c} + \eta_r$$
, we have:
 $UK_r = [\mathbf{b}_1, \dots, \mathbf{b}_r] = [\mathbf{b}_1, \dots, \mathbf{b}_{r-1}, K_r \mathbf{c} + \eta_r]$
 $UK_r = K_r A_r + \eta_r \mathbf{e}^T$
• With $\mathbf{e} = (0, \dots, 0, 1)^T \in \mathbb{C}^m$ and
 $A_r = \begin{bmatrix} 0 & 0 & \dots & 0 & c_0 \\ 1 & 0 & \dots & 0 & c_1 \\ 0 & 1 & \dots & 0 & c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & c_{r-1} \end{bmatrix}$

• A_r is the companion matrix ; a representation of $P_r U$ in the $\{U^k F\}_{k=0}^{r-1}$ basis

Shubhendu Trivedi (TTI-C)

• Diagonalize
$$A_r = V^{-1}\Lambda V$$

크

・ロト ・ 四ト ・ ヨト ・ ヨト ・

• Diagonalize
$$A_r = V^{-1}\Lambda V$$

Recall:

$$UK_r = K_r A_r + \eta_r \mathbf{e}^T$$

크

・ロト ・ 四ト ・ ヨト ・ ヨト ・

• Diagonalize $A_r = V^{-1}\Lambda V$

Recall:

$$UK_r = K_r A_r + \eta_r \mathbf{e}^T$$

• Substitute for A_r and multiply with V^{-1}

• Diagonalize $A_r = V^{-1}\Lambda V$

Recall:

$$UK_r = K_r A_r + \eta_r \mathbf{e}^T$$

• Substitute for A_r and multiply with V^{-1}

$$UK_rV^{-1} = K_rV^{-1}\Lambda + \eta_r \mathbf{e}^T V^{-1}$$

Shubhendu Trivedi (TTI-C)

• Diagonalize $A_r = V^{-1}\Lambda V$

Recall:

$$UK_r = K_r A_r + \eta_r \mathbf{e}^T$$

• Substitute for A_r and multiply with V^{-1}

$$UK_rV^{-1} = K_rV^{-1}\Lambda + \eta_r \mathbf{e}^T V^{-1}$$

• Define
$$E := K_r V^{-1}$$
, to get $UE = E\Lambda + \eta_r \mathbf{e}^T V^{-1}$

Shubhendu Trivedi (TTI-C)

45 / 50

(日)

• For large *m*, we hope that $\|\eta_r \mathbf{e}^T V^{-1}\|$ is small

- For large m, we hope that $\|\eta_r \mathbf{e}^T V^{-1}\|$ is small
- Then $UE \approx E\Lambda$, and columns of E approximate some eigenvectors of U

- For large m, we hope that $\|\eta_r \mathbf{e}^T V^{-1}\|$ is small
- Then $UE \approx E\Lambda$, and columns of E approximate some eigenvectors of U
- Procedure described is tied to initialization

- For large *m*, we hope that $\|\eta_r \mathbf{e}^T V^{-1}\|$ is small
- Then $UE \approx E\Lambda$, and columns of E approximate some eigenvectors of U
- Procedure described is tied to initialization
- Different initial conditions will reveal different parts of the spectrum

- For large *m*, we hope that $\|\eta_r \mathbf{e}^T V^{-1}\|$ is small
- Then $UE \approx E\Lambda$, and columns of E approximate some eigenvectors of U
- Procedure described is tied to initialization
- Different initial conditions will reveal different parts of the spectrum
- If $F \notin span\{\phi_i\}$ for some eigenfunction ϕ_i , then DMD will not reveal that mode

- For large *m*, we hope that $\|\eta_r \mathbf{e}^T V^{-1}\|$ is small
- Then $UE \approx E\Lambda$, and columns of E approximate some eigenvectors of U
- Procedure described is tied to initialization
- Different initial conditions will reveal different parts of the spectrum
- If $F \notin span\{\phi_i\}$ for some eigenfunction ϕ_i , then DMD will not reveal that mode
- The version described is numerically ill-conditioned (columns of K_r can become linearly dependent)

< 日 > < 同 > < 回 > < 回 > < 回 > <

æ

<ロ> <問> <問> < 回> < 回> 、

$$X = [\mathbf{b}_0, \dots, \mathbf{b}_{r-1}], Y = [\mathbf{b}_1, \dots, \mathbf{b}_r]$$

• Compute SVD $X = U\Sigma V^*$

3

イロン イ理 とく ヨン イヨン

$$X = [\mathbf{b}_0, \dots, \mathbf{b}_{r-1}], Y = [\mathbf{b}_1, \dots, \mathbf{b}_r]$$

- Compute SVD $X = U\Sigma V^*$
- Define matrix $\tilde{A} = U^* Y V \Sigma^{-1}$

$$X = [\mathbf{b}_0, \dots, \mathbf{b}_{r-1}], Y = [\mathbf{b}_1, \dots, \mathbf{b}_r]$$

- Compute SVD $X = U\Sigma V^*$
- Define matrix $\tilde{A} = U^* Y V \Sigma^{-1}$
- Compute eigenvalues and eigenvectors of \tilde{A} ; $\tilde{A}w = \lambda w$

$$X = [\mathbf{b}_0, \dots, \mathbf{b}_{r-1}], Y = [\mathbf{b}_1, \dots, \mathbf{b}_r]$$

- Compute SVD $X = U\Sigma V^*$
- Define matrix $\tilde{A} = U^* Y V \Sigma^{-1}$
- Compute eigenvalues and eigenvectors of \tilde{A} ; $\tilde{A}w = \lambda w$
- DMD mode corresponding to eigenvalue λ is Uw

• Limitation of previous approach: Order of vectors is critical

・ロト ・ 四ト ・ ヨト ・ ヨト ・

- Limitation of previous approach: Order of vectors is critical
- Such that the vectors approximately satisfy $z_{k+1} = Az_k$ for unknown A

(日)

- Limitation of previous approach: Order of vectors is critical
- Such that the vectors approximately satisfy $z_{k+1} = A z_k$ for unknown A
- Now we relax this constraint and restrict ourselves to data pairs $(x_1, y_1), \dots, (x_m, y_m)$

- Limitation of previous approach: Order of vectors is critical
- Such that the vectors approximately satisfy $z_{k+1} = Az_k$ for unknown A
- Now we relax this constraint and restrict ourselves to data pairs $(x_1, y_1), \dots, (x_m, y_m)$
- Define X and Y as before

- Limitation of previous approach: Order of vectors is critical
- Such that the vectors approximately satisfy $z_{k+1} = Az_k$ for unknown A
- Now we relax this constraint and restrict ourselves to data pairs $(x_1, y_1), \dots, (x_m, y_m)$
- Define X and Y as before
- Define operator $A = YX^{\dagger}$

- Limitation of previous approach: Order of vectors is critical
- Such that the vectors approximately satisfy $z_{k+1} = Az_k$ for unknown A
- Now we relax this constraint and restrict ourselves to data pairs $(x_1, y_1), \ldots, (x_m, y_m)$
- Define X and Y as before
- Define operator $A = YX^{\dagger}$
- The DMD modes and eigenvalues are eigenvalues and eigenvectors of *A*

• Arrange the data pairs in matrices *X*, *Y* as before

・ロト ・聞 ト ・ ヨト ・ ヨト

- Arrange the data pairs in matrices *X*, *Y* as before
- Compute the SVD of X, write $X = U\Sigma V^*$

- Arrange the data pairs in matrices *X*, *Y* as before
- Compute the SVD of X, write $X = U\Sigma V^*$
- Define matrix $\tilde{A} = U^* Y V \Sigma^{-1}$

- Arrange the data pairs in matrices *X*, *Y* as before
- Compute the SVD of X, write $X = U\Sigma V^*$
- Define matrix $\tilde{A} = U^* Y V \Sigma^{-1}$
- Computer eigenvalues and eigenvectors of \tilde{A} , writing $\tilde{A}w = \lambda w$. Every nonzero eigenvalue is a DMD eigenvalue

- Arrange the data pairs in matrices *X*, *Y* as before
- Compute the SVD of X, write $X = U\Sigma V^*$
- Define matrix $\tilde{A} = U^* Y V \Sigma^{-1}$
- Computer eigenvalues and eigenvectors of \tilde{A} , writing $\tilde{A}w = \lambda w$. Every nonzero eigenvalue is a DMD eigenvalue
- The DMD mode corresponding to λ is given as:

$$\Phi = \frac{1}{\lambda} Y V \Sigma^{-1} w$$

A D A D A D A

Kernel Trick and Learning the Subspace

- Kernels
- Neural Networks

Shubhendu Trivedi (TTI-C)