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Abstract

Running notes on Asymmetric Similarity Learning

1 Introduction

Suppose we are given N training examples X = {x1, . . . ,xN} and their class labels y =
[y1, . . . , yn]>, where xi ∈ Rd and yi ∈ [R]. Let ∆(r, r′) ≥ 0 be the classification loss where
∆(r, r) = 0 for any r ∈ [R]. In the problem of Metric Learning as usually stated, we are interested
in the Mahalanobis Metrics:

DW(x,xi) = (x− xi)
TW(x− xi) (1)

The Mahalanobis metrics are characterized by d× d positive semidefinite matrices W. Since W is
psd, it can be factorized as W = LTL, and thus:

DW(x,xi) = (x− xi)
TLTL(x− xi) = (Lx− Lxi)

T (Lx− Lxi) = ‖L(x− xi)‖22 (2)

That is, the Mahalanobis Metrics are equivalent to learning a linear embedding x→ Lx of the data.
These are convenient as they allow access to a large set of methods that can be used for fast metric
search.

More generally, one might also consider non-linear embeddings x → φ(x;w), and consider the
distance in the embedded metric space:

D(x,xi) = ‖φ(x)− φ(xi)‖22 (3)

The mapping may be learned discriminatively to optimize for the k-NN performance in the embed-
ded space. This is usually done so as to satisfy pairwise, triplet, or more general ranking constraints
so as to improve kNN classification performance.

Another approach to this problem might be taken, which is arguably different in the sense that
all the points are not mapped to the same space. That is the query point and the database points
are (linearly)projected into different spaces, thus making the distance computation asymmetric (as
contrasted to 2).

DW(x,xi) = ‖Ux−Vxi‖22= (Ux−Vxi)
T (Ux−Vxi) (4)

The above may be rewritten as follows:

DW(x,xi) = [x xi]

[
UTU −UTV
−VTU VTV

] [
x
xi

]
(5)
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Thus, the problem of learning U and V as specified in the distance formulation of 4 is equivalent to
learning a matrix W ∈ R2d×2d such that W � 0

Given U,V ∈ Rd×d, for any h ∈ X, we can define the similarity between x and h as:

SU,V(x, h) = −
∑
xi∈h

(Ux−Vxi)
T (Ux−Vxi) (6)

Using the above measure of similarity we can define the following surrogate loss similar to [1]

L(x, y, {U,V}) = max
h

[SU,V(x, h) + ∆(y, h)]− max
h:∆(y,h)=0

SU,V(x, h) (7)

For capacity control we penalize for the Frobenius norm of the full matrix W. The objective be-
comes:

min
U,V
‖W‖F +C

∑
i

L(xi,yi, {U,V}) (8)

Next we write down the derivatives of the loss and the regularizer with respect to U (query gradient)
and V (database gradient):

∂SU,V(x, h)

∂U
= −2

(∑
xi∈h

U(xxT )− (Vxi)x
T

)
(9)

∂SU,V(x, h)

∂V
= −2

(∑
xi∈h

V(xix
T
i )− (Ux)xT

i

)
(10)

∂‖W‖F
∂U

= 2(UUT )U + 4(VVT )U (11)

∂‖W‖F
∂V

= 2(VVT )V + 4(UUT )V (12)

Other regularizers that might also be well motivated are ‖UTU‖F or ‖U‖F in the update equation
for U and ‖VTV‖F or ‖V‖F in the update equation for V,

2 Optimization

Each iteration t of the algorithm consists of three steps:

1. Targeted inference of h∗i for each sample xi:
h∗i = argmax

h:∆(yi,h)=0

SU(t),V(t)(xi, h) (13)

This can be done by algorithm 2 in [1].

2. Loss augmented inference of ĥi for each sample xi:

ĥi = argmax
h

[
SU(t),V(t)(xi, h) + ∆(yi, h)

]
(14)

3. Gradient updates for U and V.

U(t+1) = U(t) − η(t)

[
∂SU,V(x, ĥi)

∂U
− ∂SU,V(x, h∗i )

∂U
+ 2(UUT )U + 4(VVT )U

]

V(t+1) = V(t) − η(t)

[
∂SU,V(x, ĥi)

∂V
− ∂SU,V(x, h∗i )

∂V
+ 2(VVT )V + 4(UUT )V

]
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The above can also be done similarly for the case of different non-linear maps for database and
query points.
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