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Background

Things you should have seen before

• Events, Event Spaces
• Probability as limit of frequency
• Compound Events
• Joint and Conditional Probability
• Random Variables
• Expectation, variance and covariance
• Independence and Conditional Independence
• Estimation

This refresher WILL revise these topics.
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Three types of Probability

Frequency of repeated trials: if an experiment is repeated
infinitely many times, 0 ≤ p(A) ≤ 1 is the fraction of times
that the outcome will be A.

Typical example: number of
times that a coin comes up heads. Frequentist probability.

Degree of belief: A quantity obeying the same laws as the
above, describing how likely we think a (possibly deterministic)
event is. Typical example: the probability that the Earth will
warmer by more than 5◦F by 2100. Bayesian probability.

Subjective probability: “I’m 110% sure that I’ll go out to
dinner with you tonight.”

Mixing these three notions is a source of lots of trouble. We will
start with the frequentist interpretation and then discuss the
Bayesian one.
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Why do we need Probability in Machine
Learning

To analyze, understand and predict the performance of
learning algorithms (Vapnik Chervonenkis Theory, PAC model,
etc.)

To build flexible and intuitive probabilistic models.
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Basic Notions
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Sample space

Random Experiment: An experiment whose outcome cannot
be determined in advance, but is nonetheless subject to
analysis

1 Tossing a coin
2 Selecting a group of 100 people and observing the

number of left handers

There are three main ingredients in the model of a random
experiment

We can’t predict the outcome of a random experiment with
certainty, but can specify a set of possible outcomes

Sample Space: The sample space Ω of a random experiment
is the set of all possible outcomes of the experiment

1 {H, T}
2 {1, 2, ..., 100 }

Refresher on Discrete Probability STAT 27725/CMSC 25400



Sample space

Random Experiment: An experiment whose outcome cannot
be determined in advance, but is nonetheless subject to
analysis

1 Tossing a coin
2 Selecting a group of 100 people and observing the

number of left handers

There are three main ingredients in the model of a random
experiment

We can’t predict the outcome of a random experiment with
certainty, but can specify a set of possible outcomes

Sample Space: The sample space Ω of a random experiment
is the set of all possible outcomes of the experiment

1 {H, T}
2 {1, 2, ..., 100 }

Refresher on Discrete Probability STAT 27725/CMSC 25400



Sample space

Random Experiment: An experiment whose outcome cannot
be determined in advance, but is nonetheless subject to
analysis

1 Tossing a coin
2 Selecting a group of 100 people and observing the

number of left handers

There are three main ingredients in the model of a random
experiment

We can’t predict the outcome of a random experiment with
certainty, but can specify a set of possible outcomes

Sample Space: The sample space Ω of a random experiment
is the set of all possible outcomes of the experiment

1 {H, T}
2 {1, 2, ..., 100 }

Refresher on Discrete Probability STAT 27725/CMSC 25400



Sample space

Random Experiment: An experiment whose outcome cannot
be determined in advance, but is nonetheless subject to
analysis

1 Tossing a coin
2 Selecting a group of 100 people and observing the

number of left handers

There are three main ingredients in the model of a random
experiment

We can’t predict the outcome of a random experiment with
certainty, but can specify a set of possible outcomes

Sample Space: The sample space Ω of a random experiment
is the set of all possible outcomes of the experiment

1 {H, T}
2 {1, 2, ..., 100 }

Refresher on Discrete Probability STAT 27725/CMSC 25400



Events

We are often not interested in a single outcome, but in
whether or not one of a group of outcomes occurs.
Such subsets of the sample space are called events
Events are sets, can apply the usual set operations to them:

1 A ∪B: Event that A or B or both occur
2 A ∩B: Event that A and B both occur
3 Ac: Event that A does not occur
4 A ⊂ B: event A will imply event B
5 A ∩B = ∅: Disjoint events.
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Axioms of Probability

The third ingredient in the model for a random experiment is
the specification of the probability of events

The probability of some event A, denoted by P(A), is defined
such that P(A) satisfies the following axioms

1 P(A) ≥ 0
2 P(Ω) = 1
3 For any sequence A1, A2, . . . of disjoint events we have:

P
(
∪i Ai

)
=
∑
i

P(Ai)

Kolmogorov showed that these three axioms lead to the rules
of probability theory

de Finetti, Cox and Carnap have also provided compelling
reasons for these axioms
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Some Consequences

Probability of the Empty set: P(∅) = 0

Monotonicity: if A ⊆ B then P(A) ≤ P(B)

Numeric Bound: 0 ≤ P(A) ≤ 1 ∀A ∈ S
Addition Law: P(A ∪B) = P(A) + P(B)− P(A ∩B)

P(Ac) = P(S \A) = 1− P(A)

Axioms of probability are the only system with this property:
If you gamble using them you can’t be be unfairly exploited by
an opponent using some other system (di Finetti, 1931)
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Discrete Sample Spaces

For now, we focus on the case when the sample space is
countable Ω = {ω1, ω2, . . . , ωn}

The probability P on a discrete sample space can be specified
by first specifying the probability pi of each elementary
event ωi and then defining:

P(A) =
∑
i:ωi∈A

pi ∀A ⊂ Ω
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Discrete Sample Spaces

P(A) =
∑
i:ωi∈A

pi ∀A ⊂ Ω

In many applications, each elementary event is equally likely.
Probability of an elementary event: 1 divided by total number
of elements in Ω
Equally likely principle:If Ω has a finite number of outcomes,
and all ar equally likely, then the possibility of each event A is
defined as

P(A) =
|A|
|Ω|

Finding P(A) reduces to counting
What is the probability of getting a full house in poker?

13
(
4
3

)
· 12
(
4
2

)(
52
5

) ≈ 0.14
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Counting

Counting is not easy! Fortunately, many counting problems
can be cast into the framework of drawing balls from an urn

with replacement without replacement

ordered

not ordered
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Choosing k of n distinguishable objects

with replacement without replacement

ordered nk n(n− 1) . . . (n− k + 1)

not ordered
(
n+k−1
n−1

) (
n
k

)

−→ usually goes in the denominator
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Indistinguishable Objects

If we choose k balls from an urn with n1 red balls and n2 green
balls, what is the probability of getting a particular sequence of x
red balls and k − x green ones?
What is the probability of any such sequence? How many ways can
this happen? (this goes in the numerator)

with replacement without replacement

ordered nx1n
k−x
2 n1 . . . (n1 − x+ 1) · n2 . . . (n2 − k + x+ 1)

not ordered
(
k
x

)
nx1n

k−x
2 k!

(
n1

x

)(
n2

k−x
)
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Joint and conditional probability

Joint:
P(A,B) = P(A ∩B)

Conditional:

P(A|B) =
P(A ∩B)

P(B)

AI is all about conditional probabilities.
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Conditional Probability

P(A|B) = fraction of worlds in which B is true that also have
A true

H = ”Have a headache”, F = ”Have flu”.

P(H) = 1
10 ,P(F ) = 1

40 ,P(H|F ) = 1
2

”Headaches are rare and flu is rarer, but if you are coming
down wih flu, there is a 50-50 chance you’ll have a headache.”
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Conditional Probability

P(H|F ) : Fraction of flu-inflicted worlds in which you have a
headache

P(H|F ) = Number of worlds with flu and headache
Number of worlds with flu

P(H|F ) = Area of H and F region
Area of F region = P(H∩F )

P(F )

Conditional Probability: P(A|B) = P(A∩B)
P(B)

Corollary: The Chain Rule P(A ∩B) = P(A|B)P(B)
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Probabilistic Inference

H = ”Have a headache”, F = ”Have flu”.

P(H) = 1
10 , P(F ) 1

40 , P(H|F ) = 1
2

Suppose you wake up one day with a headache and think: ”50
% of flus are associated with headaches so I must have a
50-50 chance of coming down with flu”

Is this reasoning good?
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Bayes Rule: Relates P(A|B) to P(A|B)
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Sensitivity and Specificity

TRUE FALSE

predict + true + false +
predict − false − true −

Sensitivity = P(+|disease)

FNR = P(−|T ) = 1− sensitivity

Specificity = P(−|healthy)

FPR = P(+|F ) = 1− specificity
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Mammography

Sensitivity of screening mammogram P(+|cancer) ≈ 90%

Specificity of screening mammogram P(−|no cancer) ≈ 91%

Probability that a woman age 40 has breast cancer ≈ 1% If a
previously unscreened 40 year old woman’s mammogram is
positive, what is the probability that she has breast cancer?

P(cancer|+) =
P(cancer,+)

P(+)
=

P(+|cancer)P(cancer)

P(+)
=

0.01× .9
0.01× .9 + 0.99× 0.09

≈ 0.009

0.009 + 0.09
≈ 0.009

0.1
≈ 9%

Message: P(A|B) 6= P(B|A).
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Bayes’ rule

P(B|A) =
P(A|B)P(B)

P(A)

(Bayes, Thomas (1763) An Essay
towards solving a problem in the
doctrine of chances. Philosophi-
cal Transactions of the Royal So-
ciety of London)

Rev. Thomas Bayes (1701–1761)
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Prosecutor’s fallacy: Sally Clark

Sally Clark (1964–2007)

Two kids died with no
explanation.

Sir Roy Meadow testified that
chance of this happening due to
SIDS is
(1/8500)2 ≈ (73× 106)−1.

Sally Clark found guilty and
imprisoned.

Later verdict overturned and
Meadow struck off medical
register.

Fallacy: P(SIDS|2 deaths) 6= P(SIDS, 2 deaths)
P(guilty|+) = 1− P(not guilty|+) 6= 1− P(+|not guilty)
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Independence

Two events A and B are independent, denoted A ⊥ Bif

P(A,B) = P(A)P(B).

P(A|B) =
P(A,B)

P(B)
=

P(A)P(B)

P(B)
= P(A)

P(Ac|B) =
P(B)− P(A,B)

P(B)
=

P(B)(1− P(A))

P(B)
= P(Ac)
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Independence

A collection of events A are mutually independent if for any
{i1, i2, . . . , in} ⊆ A

P
( n⋂
i=1

Ai
)

=

n∏
i=1

P(Ai)

If A is independent of B and C, that does not necessarily mean
that it is independent of (B,C) (example).
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Conditional independence

A is conditionally independent of B given C, denoted

A ⊥ B |C

if
P(A,B|C) = P(A|C)P(B|C).

A ⊥ B |C does not imply and is not implied by A ⊥ B.
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Common cause

p(xA, xB, xC) = p(xC) p(xA|xC) p(xB|xC)

XA 6⊥ XB but XA ⊥ XB |XC

Example: Lung cancer ⊥ Yellow teeth | Smoking

Refresher on Discrete Probability STAT 27725/CMSC 25400



Common cause

p(xA, xB, xC) = p(xC) p(xA|xC) p(xB|xC)

XA 6⊥ XB but XA ⊥ XB |XC

Example: Lung cancer ⊥ Yellow teeth | Smoking

Refresher on Discrete Probability STAT 27725/CMSC 25400



Common cause

p(xA, xB, xC) = p(xC) p(xA|xC) p(xB|xC)

XA 6⊥ XB but XA ⊥ XB |XC

Example: Lung cancer ⊥ Yellow teeth | Smoking

Refresher on Discrete Probability STAT 27725/CMSC 25400



Explaining away

p(xA, xB, xC) = p(xA) p(xB) p(xC |xA, xB)

XA ⊥ XB but XA 6⊥ XB |XC

Example: Burglary 6⊥ Earthquake | Alarm Even if two variables
are independent, they can become dependent when we observe an
effect that they can both influence
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Bayesian Networks

Simple case: POS Tagging. Want to predict an output vector
y = {y0, y1, . . . , yT } of random variables given an observed feature
vector x (Hidden Markov Model)
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Random Variables
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Random Variables

A Random Variable is a function X : Ω 7→ R

Example: Sum of two fair dice

The set of all possible values a random variable X can take is
called its range

Discrete random variables can only take isolated values
(probability of a random variable taking a particular value
reduces to counting)
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Discrete Distributions

Assume X is a discrete random variable. We would like to
specify probabilities of events {X = x}

If we can specify the probabilities involving X, we can say
that we have specified the probability distribution of X

For a countable set of values x1, x2, . . . xn, we have
P(X = xi) > 0, i = 1, 2, . . . , n and

∑
i P(X = xi) = 1

We can then define the probability mass function f of X by
f(X) = P(X = x)

Sometimes write as fX
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Discrete Distributions

Example: Toss a die and let X be its face value. X is discrete
with range {1, 2, 3, 4, 5, 6}. The pmf is

Another example: Toss two dice and let X be the largest face
value. The pmf is
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Expectation

Assume X is a discrete random variable with pmf f .

The expectation of X, E[X] is defined by:

E[X] =
∑
x

xP(X = x) =
∑
x

xf(x)

Sometimes written as µX . Is sort of a ”weighted average” of
the values that X can take (another interpretation is as a
center of mass).

Example: Expected outcome of toss of a fair die - 7
2
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Expectation

If X is a random variable, then a function of X, such as X2 is also
a random variable. The following statement is easy to prove:

Theorem
If X is discrete with pmf f , then for any real-valued function g,

Eg(X) =
∑
x

g(x)f(x)

Example: E[X2] when X is outcome of the toss of a fair die, is 91
6
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Linearity of Expectation

A consequence of the obvious theorem from earlier is that
Expectation is linear i.e. has the following two properties for
a, b ∈ R and functions g, h

E(aX + b) = aEX + b
(Proof: Suppose X has pmf f . Then the above follows from
E(aX + b) =

∑
x(ax+ b)f(x) = a

∑
x f(x) + b

∑
x f(x) =

aEX + b)

E(g(X) + h(X)) = Eg(X) + Eh(X)
(Proof: E(g(X) + h(X) =

∑
x(g(x) + h(x))f(x) =∑

x g(x)f(x) +
∑

x h(x)f(x) = Eg(X) + Eh(X))
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Variance

Variance of a random variable X, denoted by V ar(X) is
defined as:

V ar(X) = E(X − EX)2

Is a measure of dispersion

The following two properties follow easily from the definitions
of expectation and variance:

1 V ar(X) = EX2 − (EX)2

(Proof: Write EX = µ. Expanding
V ar(X) = E(x− µ)2 = E(X2 − 2µX + µ2). Using
linearity of expectation yields E(X2)− µ2)

2 V ar(aX + b) = a2V ar(X)
(Proof: V ar(aX + b) = E(aX + b− (aµ+ b))2 =
E(a2(X − µ)2) = a2V ar(X))
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linearity of expectation yields E(X2)− µ2)

2 V ar(aX + b) = a2V ar(X)
(Proof: V ar(aX + b) = E(aX + b− (aµ+ b))2 =
E(a2(X − µ)2) = a2V ar(X))
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Joint Distributions

Let X1, . . . , Xn be discrete random variables. The function f
defined by f(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn) is
called the joint probability mass function of X1, . . . , Xn

X1, . . . , Xn are independent if and only if
P(X1 = x1, . . . , Xn = x) = P(X1 = x1) . . .P(Xn = xn) for
all x1, x2, . . . , xn

IfX1, . . . , Xn are independent, then
EX1, X2, . . . , Xn = EX1EX2, . . . ,EXn (Also: If X and Y
are independent, then V ar(X + Y ) = V ar(X) + V ar(Y ))

Covariance: The covariance of two random variables X and Y
is defined as the number Cov(X,Y ) = E(X − EX)(Y − EY )

It is a measure for the amount of linear dependency between
the variables

If X and Y are independent, the covariance is zero
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Some Important Discrete Distributions
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Bernoulli Distribution: Coin Tossing

We say X has a Bernoulli Distribution with success probability
p if X can only take values 0 and 1 with probabilities

P(X = 1) = p = 1− P(X = 0)

Expectation: EX = 0P(X = 0) + 1P(X = 1)p

Variance:
V ar(X) = EX2 − (EX)2 = EX − (EX)2 = p(1− p)
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Binomial Distribution

Consider a sequence of n coin tosses. Suppose X counts the
total number of heads. If the probability of ”heads” is p, then
we say X has a binomial distribution with parameters n and p
and write X ∼ Bin(n, p)

The pmf is

f(x) = P(X = x) =

(
n

x

)
px(1− p)n−x, with x = 0, 1, . . . , n

Expectation: EX = np. Could evaluate the sum, but that is
messy. Use linearity of expectation instead (X can be viewed
as a sum X = X1 +X2, . . . , Xn of n independent Bernoulli
random variables).

Variance: V ar(X) = np(1− p) (showed in a similar way to
the expectation)
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Binomial Distribution
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Geometric Distribution

Again look at coin tosses, but count a different thing:
Number of tosses before the first head

P(X = x) = (1− p)x−1p, for x = 1, 2, 3.... X is said to have
a geometric distribution with parameter p, X ∼ G(p)

Expectation: EX = 1
p

Variance: V ar(X) = 1−p
p2
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Poisson Distribution

A random variable X for which:

P(X = x) =
λx

x!
exp−λ, x = 0, 1, 2, ...

for fixed λ > 0

We write X ∼ Poi(λ)

Can be seen as a limiting distribution of Bin(n, λn)
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Law of Large Numbers

To discuss the law or large numbers, we will first prove
Chebyshev Inequality

Theorem (Chebyshev Inequality)

Let X be a discrete random variable with EX = µ, and let ε > 0
be any positive real number. Then

P(|X − µ| ≥ ε) ≤ V ar(X)

ε2

Basically states that the probability of deviation from the
mean of more than k standard deviations is ≤ 1

k2
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Law of Large Numbers

Proof.
Let f(x) denote the pmf for X. Then the probability that X differs
from µ by ateast ε is given by P(|X − µ| ≥ ε) =

∑
|X−µ|≥ε f(x)

We know that V ar(X) =
∑

x(x− µ)2f(x), and this is at least as
large as

∑
|x−µ|≥ε(x− µ)2f(x) since all the summands are positive

and we have restricted the range of summation. But this last sum
is at least∑

|x−µ|≥ε

ε2f(x) = ε2
∑
|x−µ|≥ε

f(x) = ε2P(|x− µ| ≥ ε)

So,

P(|X − µ| ≥ ε) ≤ V ar(X)

ε2
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Law of Large Numbers(Weak Form)

Theorem (Law of Large Numbers)

Let X1, X2, . . . , Xn be an independent trials process, with finite
expected value µ = EXj and finite variance σ2 = V ar(Xj). Let
Sn = X1 +X2 + · · ·+Xn, then for any ε > 0

P
(
|Sn
n
− µ| ≥ ε

)
→ 0

as n→∞ and equivalently

P
(
|Sn
n
− µ| < ε

)
→ 1

as n→∞
Sample average converges in probability towards expected value.
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Proof.
Since X1, X2, . . . , Xn are independent and have the same
distribution, we have V ar(Sn) = nσ2 and V ar(Sn

n ) = σ2

den .

We

also know that ESn
n = µ. By Chebyshev’s inequality, for any ε > 0

P
(
|Sn
n
− µ| ≥ ε

)
≤ σ2

nε2

Thus for fixed ε, n→∞ implies the statement.
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Roadmap

Today: Discrete Probability

Next time: Continuous Probability
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