Tutorial on Estimation and Multivariate Gaussians
 STAT 27725/CMSC 25400: Machine Learning

Shubhendu Trivedi - shubhendu@uchicago.edu

Toyota Technological Institute

October 2015

- Things we will look at today
- Maximum Likelihood Estimation
- ML for Bernoulli Random Variables
- Maximizing a Multinomial Likelihood: Lagrange Multipliers
- Multivariate Gaussians
- Properties of Multivariate Gaussians
- Maximum Likelihood for Multivariate Gaussians
- (Time permitting) Mixture Models

The Principle of Maximum Likelihood

- Suppose we have N data points $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ (or $\left.\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}\right)$
- Suppose we know the probability distribution function that describes the data $p(x ; \theta)($ or $p(y \mid x ; \theta))$
- Suppose we want to determine the parameter(s) θ
- Pick θ so as to explain your data best
- What does this mean?
- Suppose we had two parameter values (or vectors) θ_{1} and θ_{2}.
- Now suppose you were to pretend that θ_{1} was really the true value parameterizing p. What would be the probability that you would get the dataset that you have? Call this $P 1$
- If $P 1$ is very small, it means that such a dataset is very unlikely to occur, thus perhaps θ_{1} was not a good guess

The Principle of Maximum Likelihood

- We want to pick $\theta_{M L}$ i.e. the best value of θ that explains the data you have
- The plausibility of given data is measured by the "likelihood function" $p(x ; \theta)$
- Maximum Likelihood principle thus suggests we pick θ that maximizes the likelihood function
- The procedure:
- Write the log likelihood function: $\log p(x ; \theta)$ (we'll see later why log)
- Want to maximize - So differentiate $\log p(x ; \theta)$ w.r.t θ and set to zero
- Solve for θ that satisfies the equation. This is $\theta_{M L}$

The Principle of Maximum Likelihood

- As an aside: Sometimes we have an initial guess for θ BEFORE seeing the data
- We then use the data to refine our guess of θ using Bayes Theorem
- This is called MAP (Maximum a posteriori) estimation (we'll see an example)
- Advantages of ML Estimation:
- Cookbook, "turn the crank" method
- "Optimal" for large data sizes
- Disadvantages of ML Estimation
- Not optimal for small sample sizes
- Can be computationally challenging (numerical methods)

A Gentle Introduction: Coin Tossing

Problem: estimating bias in coin toss

- A single coin toss produces H or T.
- A sequence of n coin tosses produces a sequence of values; $n=4$
T, H, T, H
H, H, T, T
T, T, T, H
- A probabilistic model allows us to model the uncertainly inherent in the process (randomness in tossing a coin), as well as our uncertainty about the properties of the source (fairness of the coin).

Probabilistic model

- First, for convenience, convert $H \rightarrow 1, T \rightarrow 0$.
- We have a random variable X taking values in $\{0,1\}$
- Bernoulli distribution with parameter μ :

$$
\operatorname{Pr}(X=1 ; \mu)=\mu
$$

- We will write for simplicity $p(x)$ or $p(x ; \mu)$ instead of $\operatorname{Pr}(X=x ; \mu)$
- The parameter $\mu \in[0,1]$ specifies the bias of the coin
- Coin is fair if $\mu=\frac{1}{2}$

Reminder: probability distributions

- Discrete random variable X taking values in set $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots\right\}$
- Probability mass function $p: \mathcal{X} \rightarrow[0,1]$ satisfies the law of total probability:

$$
\sum_{x \in \mathcal{X}} p(X=x)=1
$$

- Hence, for Bernoulli distribution we know

$$
p(0)=1-p(1 ; \mu)=1-\mu
$$

Sequence probability

- Now consider two tosses of the same coin, $\left\langle X_{1}, X_{2}\right\rangle$
- We can consider a number of probability distributions:

Joint distribution $p\left(X_{1}, X_{2}\right)$
Conditional distributions $p\left(X_{1} \mid X_{2}\right), p\left(X_{2} \mid X_{1}\right)$,
Marginal distributions $p\left(X_{1}\right), p\left(X_{2}\right)$

- We already know the marginal distributions:
$p\left(X_{1}=1 ; \mu\right) \equiv p\left(X_{2}=1 ; \mu\right)=\mu$
- What about the conditional?

Sequence probability (contd)

- We will assume the sequence is i.i.d. - independently identically distributed.
- Independence, by definition, means

$$
p\left(X_{1} \mid X_{2}\right)=p\left(X_{1}\right), \quad p\left(X_{2} \mid X_{1}\right)=p\left(X_{2}\right)
$$

i.e., the conditional is the same as marginal - knowing that X_{2} was H does not tell us anything about X_{1}.

- Finally, we can compute the joint distribution, using chain rule of probability:

$$
p\left(X_{1}, X_{2}\right)=p\left(X_{1}\right) p\left(X_{2} \mid X_{1}\right)=p\left(X_{1}\right) p\left(X_{2}\right)
$$

Sequence probability (contd)

$$
p\left(X_{1}, X_{2}\right)=p\left(X_{1}\right) p\left(X_{2} \mid X_{1}\right)=p\left(X_{1}\right) p\left(X_{2}\right)
$$

- More generally, for i.i.d. sequence of n tosses,

$$
p\left(x_{1}, \ldots, x_{n} ; \mu\right)=\prod_{i=1}^{n} p\left(x_{i} ; \mu\right)
$$

- Example: $\mu=\frac{1}{3}$. Then,

$$
p(H, T, H ; \mu)=p(H ; \mu)^{2} p(T ; \mu)=\left(\frac{1}{3}\right)^{2} \cdot \frac{2}{3}=\frac{2}{27}
$$

Note: the order of outcomes does not matter, only the number of $H \mathrm{~s}$ and $T \mathrm{~s}$.

The parameter estimation problem

- Given a sequence of n coin tosses $x_{1}, \ldots, x_{n} \in\{0,1\}^{n}$, we want to estimate the bias μ.
- Consider two coins, each tossed 6 times:
coin $1 \quad H, H, T, H, H, H$
coin $2 T, H, T, T, H, H$
- What do you believe about μ_{1} vs. μ_{2} ?
- Need to convert this intuition into a precise procedure

Maximum Likelihood estimator

- We have considered $p(x ; \mu)$ as a function of x, parametrized by μ.
- We can also view it as a function of μ. This is called the likelihood function.
- Idea for estimator: choose a value of μ that maximizes the likelihood given the observed data.

ML for Bernoulli

- Likelihood of an i.i.d. sequence $\mathbf{X}=\left[x_{1}, \ldots, x_{n}\right]$:

$$
L(\mu)=p(\mathbf{X} ; \mu)=\prod_{i=1}^{n} p\left(x_{i} ; \mu\right)=\prod_{i=1}^{n} \mu^{x_{i}}(1-\mu)^{1-x_{i}}
$$

- log-likelihood:

$$
l(\mu)=\log p(\mathbf{X} ; \mu)=\sum_{i=1}^{n}\left[x_{i} \log \mu+\left(1-x_{i}\right) \log (1-\mu)\right]
$$

- Due to monotonicity of log, we have

$$
\underset{\mu}{\operatorname{argmax}} p(\mathbf{X} ; \mu)=\underset{\mu}{\operatorname{argmax}} \log p(\mathbf{X} ; \mu)
$$

- We will usually work with log-likelihood (why?)

ML for Bernoulli (contd)

- ML estimate is

$$
\widehat{\mu}_{M L}=\operatorname{argmax}_{\mu}\left\{\sum_{i=1}^{n}\left[x_{i} \log \mu+\left(1-x_{i}\right) \log (1-\mu)\right]\right\}
$$

- To find it, set the derivative to zero:

$$
\begin{aligned}
\frac{\partial}{\partial \mu} \log p(\mathbf{X} ; \mu) & =\frac{1}{\mu} \sum_{i=1}^{n} x_{i}-\frac{1}{1-\mu} \sum_{j=1}^{n}\left(1-x_{j}\right)=0 \\
\frac{1-\mu}{\mu} & =\frac{\sum_{j=1}^{n}\left(1-x_{j}\right)}{\sum_{i=1}^{n} x_{i}} \\
\widehat{\mu}_{M L} & =\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

- ML estimate is simply the fraction of times that H came up.

Are we done?

$$
\widehat{\mu}_{M L}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- Example: $H, T, H, T \rightarrow \widehat{\mu}_{M L}=\frac{1}{2}$
- How about: $H H H H$? $\rightarrow \widehat{\mu}_{M L}=1$

Does this make sense?

- Suppose we record a very large number of 4-toss sequences for a coin with true $\mu=\frac{1}{2}$.
We can expect to see H, H, H, H about $1 / 16$ of all sequences!
- A more extreme case: consider a single toss. $\widehat{\mu}_{M L}$ will be either 0 or 1 .

Bayes rule

- To proceed, we will need to use Bayes rule
- We can write the joint probability of two RV in two ways, using chain rule:

$$
p(X, Y)=p(X) p(Y \mid X)=p(Y) p(X \mid Y)
$$

- From here we get the Bayes rule:

$$
p(X \mid Y)=\frac{p(X) p(Y \mid X)}{p(Y)}
$$

Bayes rule and estimation

- Now consider μ to be a RV. We have

$$
p(\mu \mid \mathbf{X})=\frac{p(\mathbf{X} \mid \mu) p(\mu)}{p(\mathbf{X})}
$$

- Bayes rule converts prior probability $p(\mu)$ (our belief about μ prior to seeing any data) to posterior $p(\mu \mid \mathbf{X})$, using the likelihood $p(\mathbf{X} \mid \mu)$.

MAP estimation

$$
p(\mu \mid \mathbf{X})=\frac{p(\mathbf{X} \mid \mu) p(\mu)}{p(\mathbf{X})}
$$

- The maximum a-posteriori (MAP) estimate is defined as

$$
\widehat{\mu}_{M A P}=\underset{\mu}{\operatorname{argmax}} p(\mu \mid \mathbf{X})
$$

- Note: $p(\mathbf{X})$ does not depend on μ, so if we only care about finding the MAP estimate, we can write

$$
p(\mu \mid \mathbf{X}) \propto p(\mathbf{X} \mid \mu) p(\mu)
$$

- What's $p(\mu)$?

Choice of prior

- Bayesian approach: try to reflect our belief about μ
- Utilitarian approach: choose a prior which is computationally convenient
- Later in class: regularization - choose a prior that leads to better prediction performance
- One possibility: uniform $p(\mu) \equiv 1$ for all $\mu \in[0,1]$. "Uninformative" prior: MAP is the same as ML estimate

Constrained Optimization: A Multinomial Likelihood

Problem: estimating biases in Dice

- A dice is rolled n times: A single roll produces one of $\{1,2,3,4,5,6\}$
- Let $n_{1}, n_{2}, \ldots n_{6}$ count the outcomes for each value
- This is a multinomial distribution with parameters $\theta_{1}, \theta_{2}, \ldots, \theta_{6}$
- The joint distribution for $n_{1}, n_{2}, \ldots, n_{6}$ is given by

$$
p\left(n_{1}, n_{2}, \ldots, n_{6} ; n, \theta_{1}, \theta_{2}, \ldots, \theta_{6}\right)=\left(\frac{n!}{n_{1}!n_{2}!n_{3}!n_{4}!n_{5}!n_{6}!}\right) \prod_{i=1}^{6} \theta_{i}^{n_{i}}
$$

- Subject to $\sum_{i} \theta_{i}=1$ and $\sum_{i} n_{i}=n$

A False Start

- The likelihood is

$$
L\left(\theta_{1}, \theta_{2}, \ldots, \theta_{6}\right)=\left(\frac{n!}{n_{1}!n_{2}!n_{3}!n_{4}!n_{5}!n_{6}!}\right) \prod_{i=1}^{6} \theta_{i}^{n_{i}}
$$

- The Log-Likelihood is

$$
l\left(\theta_{1}, \theta_{2}, \ldots, \theta_{6}\right)=\left(\log \frac{n!}{n_{1}!n_{2}!n_{3}!n_{4}!n_{5}!n_{6}!}\right)+\sum_{i=1}^{6} n_{i} \log \theta_{i}
$$

- Optimize by taking derivative and setting to zero:

$$
\frac{\partial l}{\partial \theta_{1}}=\frac{n_{1}}{\theta_{1}}=0
$$

- Therefore: $\theta_{1}=\infty$
- What went wrong?

A Possible Solution

- We forgot that $\sum_{i=1}^{6} \theta_{i}=1$
- We could use this constraint to eliminate one of the variables:

$$
\theta_{6}=1-\sum_{i=1}^{5} \theta_{i}
$$

- and then solve the equations

$$
\frac{\partial l}{\partial \theta_{i}}=\frac{n_{1}}{\theta_{i}}-\frac{n_{6}}{1-\sum_{i=1}^{5} \theta_{i}}=0
$$

- Gets messy

A More Elegant Solution: Lagrange Multipliers

- General constrained optimization problem:

$$
\max _{\theta} f(\theta) \text { subject to } g(\theta)-c=0
$$

- We can then define the Lagrangian

$$
\mathcal{L}(\theta, \lambda)=f(\theta)-\lambda(g(\theta)-c)
$$

- Is equal to f when the constraint is satisfied
- Now do unconstrained optimization over θ and λ :
- Optimizing the Lagrange multiplier λ enforces constraint
- More constraints, more multipliers

Back to Rolling Dice

- Recall

$$
l\left(\theta_{1}, \theta_{2}, \ldots, \theta_{6}\right)=\left(\log \frac{n!}{n_{1}!n_{2}!n_{3}!n_{4}!n_{5}!n_{6}!}\right)+\sum_{i=1}^{6} n_{i} \log \theta_{i}
$$

- The Lagrangian may be defined as:

$$
\mathcal{L}=\log \frac{n!}{\prod_{i} n_{i}!}+\sum_{i=1}^{6} n_{i} \log \theta_{i}-\lambda\left(\sum_{i=1}^{6} \theta_{i}-1\right)
$$

Back to Rolling Dice

- Taking derivative with respect to θ_{i} and setting to 0

$$
\frac{\partial \mathcal{L}}{\partial \theta_{i}}=0
$$

- Let optimal $\theta_{i}=\theta_{i}^{*}$

$$
\begin{gathered}
\frac{n_{i}}{\theta_{i}^{*}}-\lambda^{*}=0 \Longrightarrow \frac{n_{i}}{\lambda^{*}}=\theta_{i}^{*} \\
\sum_{i=1}^{6} \frac{n_{i}}{\lambda^{*}}=\sum_{i=1}^{6} \theta_{i}^{*}=1 \\
\lambda^{*}=\sum_{i=1}^{6} n_{i} \Longrightarrow \theta_{i}^{*}=\frac{n_{i}}{\sum_{i=1}^{6} n_{i}}
\end{gathered}
$$

Multivariate Gaussians

Quick Review: Discrete/Continuous Random Variables

- A Random Variable is a function $X: \Omega \mapsto \mathbb{R}$
- The set of all possible values a random variable X can take is called its range
- Discrete random variables can only take isolated values (probability of a random variable taking a particular value reduces to counting)
- Discrete Example: Sum of two fair dice

- Continuous Example: Speed of a car

Discrete Distributions

- Assume X is a discrete random variable. We would like to specify probabilities of events $\{X=x\}$
- If we can specify the probabilities involving X, we can say that we have specified the probability distribution of X
- For a countable set of values $x_{1}, x_{2}, \ldots x_{n}$, we have $\mathbb{P}\left(X=x_{i}\right)>0, i=1,2, \ldots, n$ and $\sum_{i} \mathbb{P}\left(X=x_{i}\right)=1$
- We can then define the probability mass function f of X by $f(X)=\mathbb{P}(X=x)$
- Sometimes write as f_{X}

Probability Mass Function

- Example: Toss a die and let X be its face value. X is discrete with range $\{1,2,3,4,5,6\}$. The pmf is

x	1	2	3	4	5	6	\sum
$f(x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	1

- Another example: Toss two dice and let X be the largest face value. The pmf is

x	1	2	3	4	5	6	\sum
$f(x)$	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$	1

Probability Density Functions

- A random variable X taking values in set \mathcal{X} is said to have a continuous distribution if $\mathbb{P}(X=x)=0$ for all $x \in \mathcal{X}$
- The probability density function of a continuous random variable X satisfies
- $f(x) \geq \forall x$
- $\int_{-\infty}^{\infty} f(x) d x=1$
- $\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f(x) d x \forall a, b$
- Probabilities correspond to areas under the curve $f(x)$
- Reminder: No longer need to have $\mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f(x) d x \leq 1$ but must have $\int_{-\infty}^{\infty} f(x) d x=1$

Why Gaussians?

- Gaussian distributions are widely used in machine learning:
- Central Limit Theorem!

$$
\begin{gathered}
\bar{X}_{n}=X_{1}+X_{2}+\cdots+X_{n} \\
\sqrt{n} \bar{X}_{n} \xrightarrow{d} \mathcal{N}\left(x ; \mu, \sigma^{2}\right)
\end{gathered}
$$

- Actually, there are a set of "Central Limit Theorems" (e.g. corresponding to p-Stable Distributions)

Why Gaussians?

Why Gaussians?

- Gaussian distributions are widely used in machine learning:
- Central Limit Theorem!
- Gaussians are convenient computationally;
- Mixtures of Gaussians (just covered in class) are sufficient to approximate a wide range of distributions;
- Closely related to squared loss (have seen earlier in class), an important error measure in statistics.

Reminder: univariate Gaussian distribution

$$
\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}
$$

- mean μ determines location
- variance σ^{2}; standard deviation $\sqrt{\sigma^{2}}$ determines the spread around μ

Moments

- Reminder: expectation of a $\mathrm{RV} x$ is $E[x] \triangleq \int x p(x) d x$, so

$$
E[x]=\int_{-\infty}^{\infty} x \mathcal{N}\left(x ; \mu, \sigma^{2}\right) d x=\mu
$$

- Variance of x is $\operatorname{var} x \triangleq E\left[(x-E[x])^{2}\right]$, and

$$
\operatorname{var} x=\int_{-\infty}^{\infty}(x-\mu)^{2} \mathcal{N}\left(x ; \mu, \sigma^{2}\right) d x=\sigma^{2}
$$

Multivariate Gaussian

- Gaussian distribution of a random vector \mathbf{x} in \mathbb{R}^{d} :

$$
\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

- The $\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}}$ factor ensures it's a pdf (integrates to one).

Matrix notation

$$
\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

- Boldfaced lowercase vectors \mathbf{x}, uppercase matrices $\boldsymbol{\Sigma}$.
- Determinant $|\boldsymbol{\Sigma}|$
- Matrix inverse $\boldsymbol{\Sigma}^{-1}$
- Transpose $\mathbf{x}^{T}, \boldsymbol{\Sigma}^{T}$

Mean of the Gaussian

- By definition,

$$
E[\mathbf{x}]=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \mathbf{x} \mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}) d x_{1} \ldots d x_{d}
$$

- Solving this we indeed get

$$
E[\mathbf{x}]=\boldsymbol{\mu}
$$

Covariance

- Variance of a RV x with mean $\mu: \sigma_{x}^{2}=E\left[(x-\mu)^{2}\right]$
- Generalization to two variables: covariance

$$
\operatorname{Cov}_{x_{1}, x_{2}} \triangleq E\left[\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)\right]
$$

- Measures how the two variables deviate together from their means ("co-vary").
- Note: $\operatorname{Cov}_{x, x} \equiv \operatorname{var}(x)=\sigma_{x}^{2}$

Correlation vs. covariance

- Correlation:

$$
\operatorname{cor}(a, b) \triangleq \frac{\operatorname{Cov}_{a, b}}{\sigma_{a} \sigma_{b}} .
$$

cor ≈ 1

$$
-1<\text { cor }<0
$$

cor ≈ 0

- $\operatorname{cor}(a, b)$ measures the linear relationship between a and b.
- $-1 \leq \operatorname{cor}(a, b) \leq+1 ;+1$ or -1 means a is a linear function of b.

Covariance matrix

- For a random vector $\mathbf{x}=\left[x_{1}, \ldots, x_{d}\right]^{T}$ with mean $\boldsymbol{\mu}$,

$$
\operatorname{Cov}_{\mathbf{x}} \triangleq\left[\begin{array}{cccc}
\sigma_{x_{1}}^{2} & \operatorname{Cov}_{x_{1}, x_{2}} & \ldots \ldots . & \operatorname{Cov}_{x_{1}, x_{d}} \\
\operatorname{Cov}_{x_{2}, x_{1}} & \sigma_{x_{2}}^{2} & \ldots \ldots & \operatorname{Cov}_{x_{2}, x_{d}} \\
\ddots & & \ddots & \ddots \\
\operatorname{Cov}_{x_{d}, x_{1}} & \operatorname{Cov}_{x_{d}, x_{2}} & \cdots \cdots & \sigma_{x_{d}}^{2}
\end{array}\right] .
$$

- Square, symmetric, non-negative main diagonal-why? variances ≥ 0, and $\operatorname{Cov}(x, y)=\operatorname{Cov}(y, x)$ by definition
- One can show (directly from definition):

$$
\operatorname{Cov}_{\mathbf{x}}=E\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{T}\right]
$$

i.e. expectation of the outer product of $\mathbf{x}-E[\mathbf{x}]$ with itself.

- Note: so far nothing Gaussian-specific!

Covariance of the Gaussian

- We need to calculate $E\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{T}\right]$
- With a bit of algebra, we get

$$
E\left[\mathbf{x x}^{T}\right]=\boldsymbol{\mu} \boldsymbol{\mu}^{T}+\boldsymbol{\Sigma}
$$

- Now, we already have $E[\mathbf{x}]=\boldsymbol{\mu}$, and

$$
\begin{aligned}
E\left[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{T}\right] & =E\left[\mathbf{x x}^{T}-\boldsymbol{\mu} \mathbf{x}^{T}-\mathbf{x} \boldsymbol{\mu}^{T}+\boldsymbol{\mu} \boldsymbol{\mu}^{T}\right] \\
& =E\left[\mathbf{x} \mathbf{x}^{T}\right]-\underbrace{\left\{\boldsymbol{\mu}(E[\mathbf{x}])^{T}+E[\mathbf{x}] \boldsymbol{\mu}^{T}-\boldsymbol{\mu} \boldsymbol{\mu}^{T}\right)}_{=\boldsymbol{\mu} \boldsymbol{\mu}^{T}} \\
& =E\left[\mathbf{x x}^{T}\right]-\boldsymbol{\mu} \boldsymbol{\mu}^{T}=\mathbf{\Sigma}
\end{aligned}
$$

Properties of the covariance

- Consider the eigenvector equation: $\mathbf{\Sigma u}=\lambda \mathbf{u}$
- As a covariance matrix, $\boldsymbol{\Sigma}$ is symmetric $d \times d$ matrix. Therefore, we have d solutions $\left\{\lambda_{i}, \mathbf{u}_{i}\right\}_{i=1}^{d}$ where the eigenvalues λ_{i} are real, and the eigenvectors \mathbf{u}_{i} are orthonormal, i.e., inner product

$$
\mathbf{u}_{j}^{T} \mathbf{u}_{i}= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

- The covariance matrix Σ then may be written as:
$\Sigma=\sum_{i} \lambda_{i} u_{i} u_{i}^{T}$
- Thus, the inverse covariance may be written as:

$$
\Sigma^{-1}=\sum_{i} \frac{1}{\lambda_{i}} u_{i} u_{i}^{T}
$$

Continued..

- The quadratic form $(x-\mu)^{T} \Sigma^{-1}(x-\mu)$ becomes:

$$
\sum_{i} \frac{y_{i}^{2}}{\lambda_{i}}
$$

where $y_{i}=u_{i}^{T}(x-\mu)$

- $\left\{y_{i}\right\}$ may be interpreted as a new coordinate system defined by the orthonormal vectors u_{i} that are shifted and rotated with respect to the original coordinate system
- Stack the d transposed orthonormal eigenvectors of $\boldsymbol{\Sigma}$ into $\mathbf{U}=\left[\begin{array}{c}\mathbf{u}_{1}^{T} \\ \cdots \\ \mathbf{u}_{d}^{T}\end{array}\right]$. Then, $\mathbf{y}=\mathbf{U}(\mathbf{x}-\boldsymbol{\mu})$ defines rotation (and possibly reflection) of \mathbf{x}, shifted so that $\boldsymbol{\mu}$ becomes origin.

Geometry of the Gaussian

-

Geometry Continued

- The determinant of the covariance matrix may be written as the product of its eigenvalues i.e. $|\Sigma|^{\frac{1}{2}}=\prod_{j} \lambda_{j}^{\frac{1}{2}}$
- Thus, in the y_{i} coordinate system, the Gaussian distribution takes the form:

$$
p(y)=\prod_{j} \frac{1}{\left(2 \pi \lambda_{j}\right)^{\frac{1}{2}}} \exp \left(-\frac{y_{j}^{2}}{2 \lambda_{j}}\right)
$$

- which is the product of d independent univariate Gaussians
- The eigenvectors thus define a new set of shifted and rotated coordinates w.r.t which the joint probability distribution factorizes into a product of independent distributions

Density contours

- What are the constant density contours?

$$
\begin{aligned}
\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) & =\text { const } \\
(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) & =\text { const }
\end{aligned}
$$

- This is a quadratic form, whose solution is an ellipsoid (in 2D, simply an ellipse)

Density Contours are Ellipsoids

- We saw that: $(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})=$ const 2
- Recall that $\Sigma^{-1}=\sum_{i} \frac{1}{\lambda_{i}} u_{i} u_{i}^{T}$
- Thus we have:

$$
\sum_{i} \frac{y_{i}^{2}}{\lambda_{i}}=\text { const }^{2}
$$

where $y_{i}=u_{i}^{T}(x-\mu)$

- Recall the expression for an ellipse in $2 D:\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1$

Intuition so far

$$
\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

- Falls off exponentially as a function of (squared) Euclidean distance to the mean $\|\mathbf{x}-\boldsymbol{\mu}\|^{2}$;
- the covariance matrix $\boldsymbol{\Sigma}$ determines the shape of the density;

- Determinant $|\boldsymbol{\Sigma}|$ measures the "spread" (analogous to σ^{2}).
- \mathcal{N} is the joint density of coordinates x_{1}, \ldots, x_{d}.

Linear functions of a Gaussian RV

- For any RV x, and for any \mathbf{A} and \mathbf{b},

$$
E[\mathbf{A} \mathbf{x}+\mathbf{b}]=\mathbf{A} E[\mathbf{x}]+\mathbf{b}, \quad \operatorname{Cov}(\mathbf{A} \mathbf{x}+\mathbf{b})=\mathbf{A} \operatorname{Cov}(\mathbf{x}) \mathbf{A}^{T} .
$$

- Let $\mathbf{x} \sim \mathcal{N}(\cdot ; \boldsymbol{\mu}, \boldsymbol{\Sigma})$; then $p(\mathbf{z})=\mathcal{N}\left(\mathbf{z} ; \mathbf{A} \boldsymbol{\mu}+\mathbf{b}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{T}\right)$.
- Consider a row vector \mathbf{a}^{T} that "selects" a single component from \mathbf{x}, i.e., $a_{k}=1$ and $a_{j}=0$ if $j \neq k$. Then, $z=\mathbf{a}^{T} \mathbf{x}$ is simply the coordinate x_{k}.
- We have: $E[z]=\mathbf{a}^{T} \boldsymbol{\mu}=\mu_{k}$, and $\operatorname{Cov}(z)=\operatorname{var}(z)=\boldsymbol{\Sigma}_{k, k}$. i.e., marginal of a Gaussian is also a Gaussian

Conditional and marginal

- Marginal ("projection" of the Gaussian on a subset of coordinates) is Gaussian
- Conditional ("slice" through Gaussian at fixed values for a subset of coordinates) is Gaussian

Log-likelihood

$$
\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{(2 \pi)^{d / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

- Take the log, for a single example \mathbf{x} :

$$
\log \mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=-\frac{d}{2} \log 2 \pi-\frac{1}{2} \log |\boldsymbol{\Sigma}|-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})
$$

- Can ignore terms independent of parameters:

$$
\log \mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=-\frac{1}{2} \log |\boldsymbol{\Sigma}|-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})+\text { const }
$$

Log-likelihood (contd)

$$
\log \mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=-\frac{1}{2} \log |\boldsymbol{\Sigma}|-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})+\text { const }
$$

- Given a set \mathbf{X} of n i.i.d. vectors, we have

$$
\log \mathcal{N}(\mathbf{X} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=-\frac{n}{2} \log |\boldsymbol{\Sigma}|-\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)+\text { const }
$$

- We are now ready to compute ML estimates for $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$.

ML for parameters

$\log \mathcal{N}(\mathbf{X} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=-\frac{n}{2} \log |\boldsymbol{\Sigma}|-\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)+$ const

- To find ML estimate, we use the rule

$$
\frac{\partial}{\partial \mathbf{a}} \mathbf{a}^{T} \mathbf{b}=\frac{\partial}{\partial \mathbf{a}} \mathbf{b}^{T} \mathbf{a}=\mathbf{b}
$$

and set derivative w.r.t. $\boldsymbol{\mu}$ to zero:

$$
\frac{\partial}{\partial \boldsymbol{\mu}} \log \mathcal{N}(\mathbf{X} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\sum_{i=1}^{n} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)=0
$$

which yields $\widehat{\boldsymbol{\mu}}_{M L}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$.

ML for parameters (contd)

- A somewhat lengthier derivation produces ML estimate for the covariance:

$$
\widehat{\boldsymbol{\Sigma}}_{M L}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{T} .
$$

- Note: the $\boldsymbol{\mu}$ above is the ML estimate $\widehat{\boldsymbol{\mu}}_{M L}$.
- Thus ML estimates for the mean is the sample mean of the data, and ML estimate for the covariance is the sample covariance of the data.

Mixture Models and Expected Log Likelihood

Mixture Models

- Assumptions:
- k underlying types (clusters/components)
- y_{i} is the identity of the component " responsible" for x_{i}
- y_{i} is a hidden (latent) variable: never observed
- A mixture model:

$$
p(x ; \pi)=\sum_{c=1}^{k} p(y=c) p(x \mid y=c)
$$

- π_{c} are called mixing probabilities
- The component densities $p(x \mid y=c)$ needs to be parameterized

Parametric Mixtures

- Suppose the parameters of the c-th component are θ_{c}. Then we can denote $\theta=\left[\theta_{1}, \ldots, \theta_{k}\right]$ and write

$$
p(x ; \theta, \pi)=\sum_{c=1}^{k} \pi_{c} p\left(x, \theta_{c}\right)
$$

- Any valid setting of θ and π, such that $\sum_{c=1}^{k} \pi_{c}=1$ produces a valid pdf
- Example: Mixture of Gaussians

Generative Model for a Mixture

- The generative process with a k-component mixture:
- The parameters θ_{c} for each component are fixed
- Draw $y_{i} \sim\left[\pi_{1}, \ldots, \pi_{k}\right]$
- Given y_{i}, draw $x_{i} \sim p\left(x \mid y_{i} ; \theta_{y_{i}}\right)$
- The entire generative model for x and y

$$
p(x, y ; \theta, \pi)=p(y ; \pi) p\left(x \mid y ; \theta_{y}\right)
$$

- What does this mean? Any data point x_{i} could have been generated in k ways
- If the c-th component is Gaussian i.e.

$$
\begin{aligned}
& p(x \mid y=c)=\mathcal{N}\left(x ; \mu_{c}, \Sigma_{c}\right) \\
& \quad p(x ; \theta, \pi)=\sum_{c=1}^{k} \pi_{c} \mathcal{N}\left(x ; \mu_{c}, \Sigma_{c}\right)
\end{aligned}
$$

where $\theta=\left[\mu_{1}, \ldots, \mu_{k}, \Sigma_{1}, \ldots, \Sigma_{k}\right]$

Likelihood of a Mixture Model

- Usual Idea: Estimate set of parameters that maximize likelihood given observed data
- The log-likelihood of π, θ for $X=\left\{x_{1}, \ldots, x_{N}\right\}$:

$$
\log p(X ; \pi, \theta)=\sum_{i=1}^{N} \log \sum_{c=1}^{k} \pi_{c} \mathcal{N}\left(x_{i} ; \mu_{c}, \Sigma_{c}\right)
$$

- No closed form solution because of sum inside log
- How will we estimate parameters?

Scenario 1: Known Labels. Mixture Density Estimation

- Suppose that we do observe $y_{i} \in\{1, \ldots, k\}$ for each $i=1, \ldots, N$
- Let us introduce a set of binary indicator variables $\mathbf{z}_{\mathbf{i}}=\left[z_{i 1}, \ldots, z_{i k}\right]$, where:

$$
z_{i c}= \begin{cases}1 & \text { if } y_{i}=c \\ 0 & \text { otherwise }\end{cases}
$$

- The count of examples from c-th component

$$
N_{c}=\sum_{i=1}^{N} z_{i c}
$$

Scenario 1: Known Labels. Mixture Density Estimation

- If we know z_{i}, the ML estimates of the Gaussian components are simply (as we have seen earlier)

$$
\begin{gathered}
\hat{\pi}_{c}=\frac{N_{c}}{N} \\
\hat{\mu}_{c}=\frac{1}{N_{c}} \sum_{i=1}^{N} z_{i c} x_{i}, \\
\hat{\Sigma}_{c}=\frac{1}{N_{c}} \sum_{i=1}^{N} z_{i c}\left(x_{i}-\hat{\mu}_{c}\right)\left(x_{i}-\hat{\mu}_{c}^{T}\right.
\end{gathered}
$$

Scenario 2: Credit Assignment

- When we don't know y, we face a credit assignment problem: Which component is responsible for x_{i} ?
- Suppose for a moment that we do know the component parameters $\theta=\left[\mu_{1}, \ldots, \mu_{k}, \Sigma_{1}, \ldots, \Sigma_{k}\right]$ and mixing probabilities $\pi=\left[\pi_{1}, \ldots, \pi_{k}\right]$
- Then, we can compute the posterior of each label using Bayes' theorem:

$$
\gamma_{i c}=\hat{p}(y=c \mid x ; \theta, \pi)=\frac{\pi_{c} p\left(x ; \mu_{c}, \Sigma_{c}\right)}{\sum_{l=1}^{k} \pi_{l} p\left(x ; \mu_{l}, \Sigma_{l}\right)}
$$

- We call $\gamma_{i c}$ the responsibility of the c-th component for x

Expected Likelihood

- The "complete data" likelihood (when \mathbf{z} are known):

$$
p(X, Z ; \pi, \theta)=\propto \prod_{i=1}^{N} \prod_{c=1}^{k}\left(\pi_{c} \mathcal{N}\left(x_{i} ; \mu_{c}, \Sigma_{c}\right)\right)^{z_{i c}}
$$

and the \log

$$
p(X, Z ; \pi, \theta)=\text { const }+\sum_{i=1}^{N} \sum_{c=1}^{k} z_{i c}\left(\log \pi_{c}+\log \mathcal{N}\left(x_{i} ; \mu_{c}, \Sigma_{c}\right)\right)
$$

- We can't compute it (why?), but can take the expectation w.r.t the posterior of z, which is just $\gamma_{i c}$ i.e. $\mathbb{E}\left[z_{i c}\right]=\gamma_{i c}$
- The expected likelihood of the data:

$$
\mathbb{E}[\log p(X, Z ; \pi, \theta)]=\mathrm{const}+\sum_{i=1}^{N} \sum_{c=1}^{k} \gamma_{i c}\left(\log \pi_{c}+\log \mathcal{N}\left(x_{i} ; \mu_{c}, \Sigma_{c}\right)\right)
$$

Expectation Maximization

- The expected likelihood of the data:

$$
\mathbb{E}[\log p(X, Z ; \pi, \theta)]=\text { const }+\sum_{i=1}^{N} \sum_{c=1}^{k} \gamma_{i c}\left(\log \pi_{c}+\log \mathcal{N}\left(x_{i} ; \mu_{c}, \Sigma_{c}\right)\right)
$$

- We can find π, θ that maximizes this expected likelihood - by setting derivatives to zero and for π, using Lagrange Multipliers to enforce $\sum_{c} \pi_{c}=1$

Expectation Maximization

- If we know the parameters and indicators (assignments) we are done
- If we know the indicators but not the parameters, we can do ML estimation of the parameters - and we are done
- If we know the parameters but not the indicators, we can compute the posteriors of the indicators. With known posteriors, we can estimate parameters that maximize the expected likelihood - and then we are done
- In reality, we know neither the parameters nor the indicators

Expectation Maximization for Mixture Models

- General Mixture Models: $p(x)=\sum_{c=1}^{k} \pi_{c} p\left(x ; \theta_{c}\right)$
- Initialize $\pi, \theta^{o l d}$, and iterate until convergence:
- E-Step: Compute responsibilities:

$$
\gamma_{i c}=\frac{\pi_{c}^{\text {old }} p\left(x_{i} ; \theta_{c}^{\text {old }}\right)}{\sum_{l=1}^{k} \pi_{l}^{\text {old }} p\left(x_{i} ; \theta^{\text {old }}\right)}
$$

- M-Step: Re-estimate mixture parameters:

$$
\pi^{\text {old }}, \theta^{\text {new }}=\arg \max _{\theta, \pi} \sum_{i=1}^{N} \sum_{c=1}^{k} \gamma_{i c}\left(\log \pi_{c}+\log p\left(x_{i} ; \theta_{c}\right)\right)
$$

