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Things we will look at today

• Regularization in Neural Networks
• Drop Out
• Sequence to Sequence Learning using Recurrent Neural

Networks
• Generative Neural Methods
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A Short Primer on Regularization: Empirical
Risk

Assume that the data are sampled from an unknown
distribution p(x, y)

Next we choose the loss function L, and a parametric model
family f(x;w)

Ideally, our goal is to minimize the expected loss, called the
risk

R(w) = E(x0,y0)∼p(x,y)[L(f(x0;w), y0)]

The true distribution is unknown. So, we instead work with a
proxy that is measurable: Empirical loss on the training set

L(w, X, y) =
1

N

N∑
i=1

L(f(xi;w), yi)
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Model Complexity and Overfitting

Consider data drawn from a 3rd order model:
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How to avoid overfitting?

If a model overfits (is too sensitive to the data), it would be
unstable and will not generalize well.

Intuitively, the complexity of the model can be measured by
the number of ”degrees of freedom” (independent
parameters) (previous example?)

Idea: Directly penalize by the number of parameters (called
the Akaike Information criterion): minimize

N∑
i=1

L(f(xi;w), yi) + #params
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Description Length

Intuition: Should not penalize the parameters, but the number
of bits needed to encode the parameters

With a finite set of parameter values, these are equivalent.
With an infinite set, we can limit the effective number of
degrees of freedom by restricting the value of the parameters.

Then we can have Regularized Risk minimization:

N∑
i=1

L(f(xi;w), yi) + Ω(w)

We can measure ”size” in different ways: L1, L2 norms

Regularization is basically a way to implement Occam’s Razor
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Regularization in Neural Networks

We have infact already looked at one method (for vision tasks)

How is this a form of regularization?
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Regularization in Neural Networks

Weight decay: Penalize ‖W l‖2 or ‖W l‖1 in every layer

Why is it called Weight decay?

Parameter sharing (CNNs, RNNs)

Dataset Augmentation ImageNet 2012, discussed last time
was won by significant dataset augmentation
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Regularization in Neural Networks

Early Stoppping:
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Dropout

A more exotic regularization technique. Introduced in 2012
and one of the factors in the recent Neural Net successes

Every sample is processed by a decimated neural network

But, they all do the same job, and share weights

Dropout: A simple way to prevent neural networks from overfitting, N Srivastava, G Hinton, A Krizhevsky, I

Sutskever, R Salakhutdinov, JMLR 2014
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Dropout: Feedforward Operation

Without dropout: z
(l+1)
i = w

(l+1)
i yl + b

(l+1)
i , and yl+1

i = f(z
(l+1)
i )

With dropout:

r
(l)
j = Bernoulli(p)

ỹ(l) = r(l) ∗ y(l)

z
(l+1)
i = w

(l+1)
i ỹl + b

(l+1)
i

yl+1
i = f(z

(l+1)
i )
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Dropout: At Test time

Use a single neural net with weights scaled down

By doing this scaling, 2n networks with shared weights can be
combined into a single neural network to be used at test time

Extreme form of bagging
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Dropout: Performance

These architectures have 2 to 4 hidden layers with 1024 to 2048
hidden units

Artificial Neural Networks II STAT 27725/CMSC 25400



Dropout: Performance

Dropout: A simple way to prevent neural networks from overfitting, N Srivastava, G Hinton, A Krizhevsky, I
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Dropout: Effect on Sparsity

Dropout: A simple way to prevent neural networks from overfitting, N Srivastava, G Hinton, A Krizhevsky, I

Sutskever, R Salakhutdinov, JMLR 2014
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Dropout for Linear Regression

Objective: ‖y −Xw‖22

When input is dropped out such that any input dimension is
retained with probability p. The input can be expressed as
R ∗X where R ∈ {0, 1}N×D is a random matrix with
Rij ∼ Bernoulli(p)

Marginalizing the noise, the objective becomes:

min
w

ER∼ Bernoulli(p)‖y − (R ∗X)w‖22

This is the same as:

min
w
‖y−pXw‖22+p(1−p)‖Γw‖22 where Γ = (diag(XTX))1/2

Thus, dropout with linear regression is equivalent, in
expectation to ridge regression with a particular form of Γ
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Why does this make sense?

Bagging is always good if models are diverse enough

Motivation 1: Ten conspiracies each involving five people is
probably a better way to wreak havoc than a conspiracy
involving 50 people. If conditions don’t change (stationary)
and plenty of time for rehearsal, a big conspiracy can work
well, but otherwise will ”overfit”
Motivation 2: Comes from a theory for the superiority of
sexual reproduction in evolution (Livnat, Papadimitriou,
PNAS, 2010).
Seems plausible that asexual reproduction should be a better
way to optimize for individual fitness (in sexual reproduction if
a good combination is found, it’s split again)
Criterion for natural selection may not be individual fitness
but mixability. Thus role of sexual reproduction is not just to
allow useful new genes to propagate but also to ensure that
complex coadaptations between genes are broken
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Sequence Learning with Neural Networks
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Problems with MLPs for Sequence Tasks

The ”API” is too limited. They only accept an input of a
fixed dimensionality and map it to an output that is again of a
fixed dimensionality

This is great when working (for example) with images, and
the output is an encoding of the category

This is bad when if we are interested in Machine Translation
or Speech Recognition

Traditional Neural Networks treat every example
independently. Imagine the task is to classify events at every
fixed point in the movie. A plain vanilla neural network would
not be able to use its knowledge about the previous events to
help in classifying the current.

Recurrent Neural Networks address this issue by having loops.
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Some Sequence Tasks

Figure credit: Andrej Karpathy
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Recurrent Neural Networks

The loops in them allow the information to persist

For some input xi, we pass it through a hidden state A and
then output a value hi. The loop allows information to be
passed from one time step to another

A RNN can be thought of as multiple copies of the same
network, each of which passes a message to its successor
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Recurrent Neural Networks

More generally, a RNN can be thought of as arranging hidden
state vectors hlt in a 2-D grid, with t = 1, . . . , T being time
and l = 1, . . . , L being the depth

h0t = xt and hLt is used to predict the output vector yt. All
intermediate vectors hlt are computed as a function of hlt−1

hl−1
t

RNN is a recurrence of the form:

hlt = tanhW l

(
hl−1
t

hlt−1

)
Illustration credit: Chris Olah
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Recurrent Neural Networks

The chain like structure enables sequence modeling

W varies between layers but is shared through time

Basically the inputs from the layer below and before in time
are transformed by a non-linearity after an additive interaction
(weak coupling)

The plain vanilla RNN described is infact Turing Complete
with the right size and weight matrix

”If training vanilla neural nets is optimization over functions,
training recurrent nets is optimization over programs”
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Recurrent Neural Networks

Training RNNs might seem daunting.

Infact, we can simply adopt the backpropagation algorithm
after unrolling the RNN

If we have to look at sequences of size s, we unroll each loop
into s steps, and treat it as a normal neural network to train
using backpropagation

This is called Backpropagation through time

But weights are shared across different time stamps? How is
this constraint enforced?

Train the network as if there were no constraints, obtain
weights at different time stamps, average them
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Problems

Recurrent Neural Networks have trouble learning long term
dependencies (Hochreiter and Schmidhuber, 1991 and Bengio
et al, 1994)

Consider a language model in which the task is to predict the
next word based on the previous

Sometimes the context can be clear immediately: ”The clouds
are in the sky”

Sometimes the dependency is more long term: ”We are
basically from Transylvania, although I grew up in Spain, but I
can still speak fluent Romanian.”

In principle, RNNs should be able to learn long term
dependencies with the right parameter choices, but learning
those parameters is hard.

The Long Short Term Memory was proposed to solve this
problem (Hochreiter and Schmidhuber, 1997)
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Long Short Term Memory Networks

Vanilla RNN: Error propagation is blocked by a non-linearity Illustration

credit: Chris Olah
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Long Short Term Memory Networks
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Long Short Term Memory

One of the main points about LSTM is the cell state Ct,
which runs across time and can travel unchanged only with
minor linear interactions

The LSTM regulates the cell state by various gates, which
gives the ability to remove or add information to the cell state.

Each of the gates are composed of a sigmoid non-linearity
followed by a pointwise multiplication

There are three types of gates in LSTM (e.g. forget gate
helps the LSTM to learn to forget)
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Long Short Term Memory

Precise form of the LSTM update is:
i
f
o

Ĉt

 =


sigm
sigm
sigm
tanh

W l

(
hl−1
t

hlt−1

)

clt = f � clt−1 + i� Ĉt, and hlt = o� tanh(clt)
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Some Applications: Caption Generation

Caption Generation (Karpathy and Li, 2014)
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RNN Shakespeare

Using a character level language model trained on all of
Shakespeare.
VIOLA: Why, Salisbury must find his flesh and thought That which
I am not aps, not a man and in fire, To show the reining of the
raven and the wars To grace my hand reproach within, and not a
fair are hand, That Caesar and my goodly father’s world; When I
was heaven of presence and our fleets, We spare with hours, but
cut thy council I am great, Murdered and by thy master’s ready
there My power to give thee but so much as hell: Some service in
the noble bondman here, Would show him to her wine.
KING LEAR: O, if you were a feeble sight, the courtesy of your
law, Your sight and several breath, will wear the gods With his
heads, and my hands are wonder’d at the deeds, So drop upon your
lordship’s head, and your opinion Shall be against your honour.
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Image Generation

(Also uses attention mechanism - not discussed) DRAW: A
Recurrent Neural Network For Image Generation (Gregor et al.,
2015)
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Applications

Acoustic Modeling

Natural Language Processing i.e. parsing etc

Machine Translation (e.g. Google Translate uses RNNs)

Voice Transcription

Video and Image understanding

list goes on
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Generative Neural Models
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Recap: Multilayered Neural Networks

Let layer k compute an output vector hk using the output
hk−1 of the previous layer.

Note that the input x = h0

hk = tanh(bk + W khk−1)

Top layer output hl is used for making a prediction. If the
target is given by y, then we define a loss L(hl, y) (convex in
bl + W lhl−1)

We might have the output layer return the following
non-linearity

hli =
eb

l
i+W l

ih
l−1∑

j e
blj+W l

jh
l−1

This is called the softmax and can be used as an estimator of
p(Y = i|x)
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Recap: Multilayered Neural Networks

One loss to be considered: L(hl, y) = − logP (Y = y|x)
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The Difficulty of Training Deep Networks

Until 2006, deep architectures were not used extensively in
Machine Learning

Poor training and generalization errors using the standard
random initialization (with the exception of convolutional
neural networks)

Difficult to propagate gradients to lower layers. Too many
connections in a deep architecture

Purely discriminative. No generative model for the raw input
features x (connections go upwards)
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Initial Breakthrough: Layer-wise Training

Unsupervised pre-training is possible in certain Deep
Generative Models (Hinton, 2006)

Idea: Greedily train one layer at a time using a simple model
(Restricted Boltzmann Machine)

Use the parameters learned to initialize a feedforward neural
network, and fine tune for classification
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Sigmoid Belief Networks, 1992

The generative model is decomposed as:

P (x, h1, . . . , hl) = P (hl)
( l−1∏

k=1

P (hk|hk+1)
)
P (x|h1)

Marginalization yields P (x). Intractable in practice except for
tiny models

R. Neal, Connectionist learning of belief networks, 1992

Dayan, P., Hinton, G. E., Neal, R., and Zemel, R. S. The Helmholtz Machine, 1995

L. Saul, T. Jaakkola, and M. Jordan, Mean field theory for sigmoid belief networks, 1996
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Deep Belief Networks, 2006

Similar to Sigmoid Belief Networks, except the top two layers

P (x, h1, . . . , hl) = P (hl−1, hl)
( l−2∏

k=1

P (hk|hk+1)
)
P (x|h1)

The joint distribution of the top two layers is a Restricted
Boltzmann Machine
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Energy Based Models

Before looking at RBMs, let’s look at the basics of Energy
based models

Such models assign a scalar energy to each configuration of
the variables of interest. Learning then corresponds to
modifying the energy function so that its shape has desirable
properties

P (x) =
e−Energy(x)

Z
where Z =

∑
x

e−Energy(x)

We only care about the marginal (since only x is observed)
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Energy Based Models

With hidden variables P (x, h) = e−Energy(x,h)

Z

We only care about the marginal (since only x is observed)

P (x) =
∑

h
e−Energy(x,h)

Z

We can introduce the notion of free-energy

P (x) =
e−FreeEnergy(x)

Z
, with Z =

∑
x

e−FreeEnergy(x)

Where
FreeEnergy(x) = − log

∑
h

e−Energy(x,h)

The data log-likelihood gradient has an interesting form
(details skipped)

Artificial Neural Networks II STAT 27725/CMSC 25400



Energy Based Models

With hidden variables P (x, h) = e−Energy(x,h)

Z

We only care about the marginal (since only x is observed)

P (x) =
∑

h
e−Energy(x,h)

Z

We can introduce the notion of free-energy

P (x) =
e−FreeEnergy(x)

Z
, with Z =

∑
x

e−FreeEnergy(x)

Where
FreeEnergy(x) = − log

∑
h

e−Energy(x,h)

The data log-likelihood gradient has an interesting form
(details skipped)

Artificial Neural Networks II STAT 27725/CMSC 25400



Energy Based Models

With hidden variables P (x, h) = e−Energy(x,h)

Z

We only care about the marginal (since only x is observed)

P (x) =
∑

h
e−Energy(x,h)

Z

We can introduce the notion of free-energy

P (x) =
e−FreeEnergy(x)

Z
, with Z =

∑
x

e−FreeEnergy(x)

Where
FreeEnergy(x) = − log

∑
h

e−Energy(x,h)

The data log-likelihood gradient has an interesting form
(details skipped)

Artificial Neural Networks II STAT 27725/CMSC 25400



Energy Based Models

With hidden variables P (x, h) = e−Energy(x,h)

Z

We only care about the marginal (since only x is observed)

P (x) =
∑

h
e−Energy(x,h)

Z

We can introduce the notion of free-energy

P (x) =
e−FreeEnergy(x)

Z
, with Z =

∑
x

e−FreeEnergy(x)

Where
FreeEnergy(x) = − log

∑
h

e−Energy(x,h)

The data log-likelihood gradient has an interesting form
(details skipped)

Artificial Neural Networks II STAT 27725/CMSC 25400



Energy Based Models

With hidden variables P (x, h) = e−Energy(x,h)

Z

We only care about the marginal (since only x is observed)

P (x) =
∑

h
e−Energy(x,h)

Z

We can introduce the notion of free-energy

P (x) =
e−FreeEnergy(x)

Z
, with Z =

∑
x

e−FreeEnergy(x)

Where
FreeEnergy(x) = − log

∑
h

e−Energy(x,h)

The data log-likelihood gradient has an interesting form
(details skipped)

Artificial Neural Networks II STAT 27725/CMSC 25400



Restricted Boltzmann Machines

x1 → h1 ∼ P (h|x1)→ x2 ∼ P (x|h1)→ h2 ∼ P (h|x2)→ . . .
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Back to Deep Belief Networks

Everything is completely unsupervised till now. We can treat
these weights learned as an initialization, treat the network as
a feedword network and fine tune using backpropagation
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Deep Belief Networks

G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 2006

G. E. Hinton, S Osindero, YW Teh, A fast learning algorithm for deep belief nets, Neural Computation, 2006
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Deep Belief Networks: Object Parts

Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. Honglak Lee,

Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng
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Effect of Unsupervised Pre-training
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Why does Unsupervised Pre-training work?

Regularization. Feature representations that are good for
P (x) are good for P (y|x)

Optimization: Unsupervised pre-training leads to better
regions of the space i.e. better than random initialization
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Autoencoders

Main idea

Sparse Autoencoders

Denoising Autoencoders

Pretraining using Autoencoders
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