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Two Scenarios

@ For CNNs on graphs, we have two distinct scenarios:

e Scenario 1: Each data point lives in R?, but the dataset
has an underlying graph structure
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Two Scenarios

@ For CNNs on graphs, we have two distinct scenarios:

e Scenario 1: Each data point lives in R?, but the dataset
has an underlying graph structure
» Each coordinate is a value associated with a vertex of
underlying graph
> For images: The underlying graph is always a grid of fixed
dimensions
e Scenario 2: Each data point is itself a graph (Example
regression task: Molecules as input, boiling points as
output)
» Each graph can be of different size
> Sub-problem: Given a graph G, find an embedding ¢ : G — R?
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Scenario 1

CNNs on data in irregular domains
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e
CNNs on Grids

@ So far we have defined CNNs on grids
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e
CNNs on Grids

@ So far we have defined CNNs on grids

o We model images and feature maps as functions on a
rectangular domain
f:7? - RE

o In general the grid can be Z¢

@ CNNs are able to exploit various structures that reduce
sample complexity
e Translation structure (allowing use of filters)
o Metric on the grid (allows compactly supported filters)
o Multiscale structure of the grid (allows subsampling)
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e
CNNs on Grids

Z3(i — o)

Z2(i)
@ The translation group acts on Z?

@ We are able to exploit this symmetry of the grid in CNNs
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e
CNNs on Grids

Z3(i — i)

Z*(i)
@ The translation group acts on Z?

@ We are able to exploit this symmetry of the grid in CNNs
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e
CNNs on Grids

LRI
0

o If we have n input pixels, a fully connected network with m
outputs has nm parameters, roughly O(n?)
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e
CNNs on Grids

LRI
0

o If we have n input pixels, a fully connected network with m
outputs has nm parameters, roughly O(n?)

e With k filters, each with support S we have O(kS)
(independent of n)

@ Using multiscale nature, we can pool, and reduce the number
of parameters further
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Data on lrregular Domains

@ Often we can have structured data defined over coordinates
that does not enjoy any of these properties

@ Example: 3-D mesh data (each coordinate might be surface
tension)
@ More: Social network data, protein interaction networks etc.
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Data on lrregular Domains

@ Often we can have structured data defined over coordinates
that does not enjoy any of these properties

@ Example: 3-D mesh data (each coordinate might be surface
tension)

@ More: Social network data, protein interaction networks etc.

@ In each case we again have n coordinates but which don’t live
on a regular grid

Figure source: Eurocom Face Modeling
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Functions on Graphs

@ We can think of a n dimensional image as a function defined
on the vertices of a graph G = (Q, E) with || =n
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Functions on Graphs

@ We can think of a n dimensional image as a function defined
on the vertices of a graph G = (2, E) with |Q] =n

@ G just happens to be a grid graph with strong local structure
which makes CNNs useful
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Functions on Graphs

@ We can think of a n dimensional image as a function defined
on the vertices of a graph G = (2, E) with |Q] =n

@ G just happens to be a grid graph with strong local structure
which makes CNNs useful

@ In general we can have signals defined over a general graph:

Lecture 10 CNNs on Graphs CMSC 35246



Functions on Graphs

@ () is the vertex set (input coordinates), W; ; the similarity
between any two coordinates ¢ and j
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Functions on Graphs

@ () is the vertex set (input coordinates), W; ; the similarity
between any two coordinates ¢ and j

o Note: W, ; is similarity between coordinates, not datapoints
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Functions on Graphs

o If the underlying graph structure is known, W; ; will be
available
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Functions on Graphs

o If the underlying graph structure is known, W; ; will be
available

@ If unknown: Need to estimate it from training data
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Spatial Construction

Locally Connected Networks
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Spatial Construction

So we replace a grid by a general graph G = (Q, E)

The notion of locality can be generalized easily via W

For given W and threshold §, we have neighborhoods:

Ng(j):{’iGQ:VViJ >5}

@ Can have filters with receptive fields given by these
neighborhoods
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-
Spatial Construction

So we replace a grid by a general graph G = (Q, E)

The notion of locality can be generalized easily via W

For given W and threshold §, we have neighborhoods:

Ns(j) ={i € Q: Wi; > 6}

@ Can have filters with receptive fields given by these
neighborhoods

Number of parameters: O(Sn) (S is average neighbhorhood
size)
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Spatial Construction

@ To mimic subsampling and pooling, we can do a multiscale
clustering of the graph (K scales)
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Spatial Construction

@ To mimic subsampling and pooling, we can do a multiscale
clustering of the graph (K scales)

Set g =, at each level k =1,..., K define Q and Qp_1
Q. is a partition of €;_1 in dj. clusters

Around every element of ;_1, we can define the
neighborhood
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-
Defining the Network

@ Let number of filters at layer be given by f%
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Defining the Network

@ Let number of filters at layer be given by f%

o Every layer will transform a f;_1 dimensional signal, indexed
by Q;_1 into a fi indexed by

o Ifx, = (xp59=1...fx_1)is the dy_; x fr—1 dim input to
layer k, the output is defined as:

Jr—1
Thi1,j = Lkh< Z kaxkl> with j =1... f%

i=1
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Defining the Network

Let number of filters at layer be given by fi

Every layer will transform a f;_1 dimensional signal, indexed
by Q;_1 into a fi indexed by

o Ifx, = (xp59=1...fx_1)is the dy_; x fr—1 dim input to
layer k, the output is defined as:
fr—1
Th+1,j = Lkh< Z Fk,i,jxk,i> with j=1... f
i=1
® [} ;;isady_1 x di_1 sparse matrix with A}, indicated by

Zeros
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-
Defining the Network

Let number of filters at layer be given by fi

Every layer will transform a f;_1 dimensional signal, indexed
by Q;_1 into a fi indexed by

o Ifx, = (xp59=1...fx_1)is the dy_; x fr—1 dim input to
layer k, the output is defined as:
fr—1
Th+1,j = Lkh< Z Fk,i,jxk,i> with j=1... f
i=1
® [} ;;isady_1 x di_1 sparse matrix with A}, indicated by

Zeros

h is the non-linearity and Ly is the pooling operation
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Locally Connected Networks: In Pictures

Wil Q
Ny 2o

@ Level 1 clustering

This and next few illustrations are by Joan Bruna
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Locally Connected Networks: In Pictures

s Q

@ Pooling to get 4
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Locally Connected Networks: In Pictures

N, @

>
Ny

@ Pooling to get )y
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Locally Connected Networks: In Pictures

o Level 2 clustering
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Locally Connected Networks: In Pictures

x1 x2

@ Multiple Feature maps: Level 1
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Locally Connected Networks: In Pictures

Ha Z2 €3

@ Multiple Feature maps: Level 2
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Spectral Construction

Spectral Networks
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Quick Digression: The Graph Laplacian
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-
Spectral Networks

o Again consider W € R%*4, the weighted adjacency matrix for
g= (Qv E)
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-
Spectral Networks

o Again consider W € R%*4, the weighted adjacency matrix for
g= (Qv E)

@ We consider the following definition of the Graph Laplacian:

L=1-DY2wyp-1/2
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-
Spectral Networks

o Again consider W € R%*4, the weighted adjacency matrix for
g= (Qv E)

@ We consider the following definition of the Graph Laplacian:

L=1-DY2wyp-1/2

@ D is a diagonal matrix; the degree matrix with D; ; = Zz Wi ..
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-
Spectral Networks

o Again consider W € R%*4, the weighted adjacency matrix for
g= (Qv E)

@ We consider the following definition of the Graph Laplacian:
L=1-D?wp-1/?
e D is a diagonal matrix; the degree matrix with D;; = > . W; .

o Let U = [uy,...,uq| be the eigenvectors of L
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Graph Convolution in Frequency Domain

@ Define convolution of input signal x with filter g on G as:

zxgg=U(Uz®Ug)
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Graph Convolution in Frequency Domain

@ Define convolution of input signal x with filter g on G as:

zxgg=U(Uz®Ug)

@ Learning filters on a graph = learning spectral weights:

z*g g = U (diag(wy)Uz)with wy = (w1, . .., wy)
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Local Filters

@ Notice that g has support over all vertices
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Local Filters

@ Notice that g has support over all vertices

@ But we want filters that are local

@ Observation: Smoothness in frequency domain = spatial
decay
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Local Filters

@ Notice that g has support over all vertices
@ But we want filters that are local

@ Observation: Smoothness in frequency domain = spatial
decay
@ Solution: Consider a smoothing kernel K € R4*% and search
for multipliers:
wy = Kby
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Graph Convolution Layer

e Forward Pass:
e For input z, compute interpolated weights wy y = Kwy ¢
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Graph Convolution Layer

e Forward Pass:
e For input z, compute interpolated weights wy y = Kwy ¢
o Compute the output: yopr = UT (3" Uzss © wyry)

o Backward Pass:
e Compute gradient w.r.t input Az
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Graph Convolution Layer

e Forward Pass:
e For input z, compute interpolated weights wy y = Kwy ¢
o Compute the output: yopr = UT (3" Uzss © wyry)

o Backward Pass:

e Compute gradient w.r.t input Az
e Compute gradient w.r.t interpolated weights Awy: s
e Compute gradient w.r.t weight Ay = ICTAwf,f

Lecture 10 CNNs on Graphs CMSC 35246



-
What if Graph Structure is unknown?

@ Estimate it from data:
@ Method 1: Unsupervised

o Given dataset X € RV*4 compute distance d(i, 5)
between features:

d(i,§) = |1 X; — X;l3
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-
What if Graph Structure is unknown?

@ Estimate it from data:
@ Method 1: Unsupervised

o Given dataset X € RV*4 compute distance d(i, 5)
between features:

d(i,§) = |1 X; — X;l3

_ di,j)
e Then compute W;; = exp o2
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-
What if Graph Structure is unknown?

@ Estimate it from data:
o Method 2: Supervised

o Given dataset X € RV*? and labels y € {1,...,C}%,
train a fully connected MLP with K layers, with weights
Wi,...,Wg
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What if Graph Structure is unknown?

@ Estimate it from data:
o Method 2: Supervised

o Given dataset X € RV*? and labels y € {1,...,C}%,
train a fully connected MLP with K layers, with weights
Wi,...,Wg

e Pass data through network, extract K layer features
Wg € RVX™k  then compute:

d(i, 7) = Wi — WislI3
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What if Graph Structure is unknown?

@ Estimate it from data:
o Method 2: Supervised

o Given dataset X € RV*? and labels y € {1,...,C}%,
train a fully connected MLP with K layers, with weights
Wi,...,Wg

e Pass data through network, extract K layer features
Wg € RVX™k  then compute:

d(i, 7) = Wi — WislI3

e Use Gaussian kernel as before to get W ;
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Scenario 2

Learning Embeddings of Graphs
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Example Task: Regression

7
v on
N e ‘/:] 0
LA
on o
[ e B e
I . I [
o L

@ Input: Organic Compounds (graphs)
o Output: Boiling point
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-
Graph Embedding: Simple Algorithm

Algorithm 1 Generation of embedding
Require: G = (V, E), radius §, Hidden Weights: H{,... ,Hl‘s, Out-
put Weights: Wy,..., W;s
Initialize: Embedding ¢ < 0 Initialize: For every vertex r,, < ¥(v)
(local vertex features)

1. for all L =1 to 6 (for every layer) do

2: for each vertex v in graph do
3: ri,...,ry = neighbors(v)
4: V4 Ty + Zf\il r;

5: r, < o(vHY)

6: i < softmax(r, Wp,)

7: Update: ¢ < ¢ +1i

8: end for

9: end for

10: Output embedding ¢




