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Two Scenarios

For CNNs on graphs, we have two distinct scenarios:

• Scenario 1: Each data point lives in Rd, but the dataset
has an underlying graph structure

I Each coordinate is a value associated with a vertex of
underlying graph

I For images: The underlying graph is always a grid of fixed
dimensions

• Scenario 2: Each data point is itself a graph (Example
regression task: Molecules as input, boiling points as
output)

I Each graph can be of different size
I Sub-problem: Given a graph G, find an embedding φ : G → Rp
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Scenario 1

CNNs on data in irregular domains
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CNNs on Grids

So far we have defined CNNs on grids

We model images and feature maps as functions on a
rectangular domain

f : Z2 → RK

In general the grid can be Zd

CNNs are able to exploit various structures that reduce
sample complexity

• Translation structure (allowing use of filters)
• Metric on the grid (allows compactly supported filters)
• Multiscale structure of the grid (allows subsampling)
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CNNs on Grids

Z2(i− i0)

Z2(i)

The translation group acts on Z2

We are able to exploit this symmetry of the grid in CNNs
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CNNs on Grids

If we have n input pixels, a fully connected network with m
outputs has nm parameters, roughly O(n2)

With k filters, each with support S we have O(kS)
(independent of n)

Using multiscale nature, we can pool, and reduce the number
of parameters further
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Data on Irregular Domains

Often we can have structured data defined over coordinates
that does not enjoy any of these properties

Example: 3-D mesh data (each coordinate might be surface
tension)

More: Social network data, protein interaction networks etc.

In each case we again have n coordinates but which don’t live
on a regular grid

Figure source: Eurocom Face Modeling
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Functions on Graphs

We can think of a n dimensional image as a function defined
on the vertices of a graph G = (Ω, E) with |Ω| = n

G just happens to be a grid graph with strong local structure
which makes CNNs useful

In general we can have signals defined over a general graph:
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Functions on Graphs

1

2 3

4 5

6

7

8

9

Ω is the vertex set (input coordinates), Wi,j the similarity
between any two coordinates i and j

Note: Wi,j is similarity between coordinates, not datapoints
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Functions on Graphs

1

2 3

4 5

6

7

8

9

If the underlying graph structure is known, Wi,j will be
available

If unknown: Need to estimate it from training data
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Spatial Construction

Locally Connected Networks
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Spatial Construction

So we replace a grid by a general graph G = (Ω, E)

The notion of locality can be generalized easily via W

For given W and threshold δ, we have neighborhoods:

Nδ(j) = {i ∈ Ω : Wi,j > δ}

Can have filters with receptive fields given by these
neighborhoods

Number of parameters: O(Sn) (S is average neighbhorhood
size)

Lecture 10 CNNs on Graphs CMSC 35246



Spatial Construction

So we replace a grid by a general graph G = (Ω, E)

The notion of locality can be generalized easily via W

For given W and threshold δ, we have neighborhoods:

Nδ(j) = {i ∈ Ω : Wi,j > δ}

Can have filters with receptive fields given by these
neighborhoods

Number of parameters: O(Sn) (S is average neighbhorhood
size)

Lecture 10 CNNs on Graphs CMSC 35246



Spatial Construction

So we replace a grid by a general graph G = (Ω, E)

The notion of locality can be generalized easily via W

For given W and threshold δ, we have neighborhoods:

Nδ(j) = {i ∈ Ω : Wi,j > δ}

Can have filters with receptive fields given by these
neighborhoods

Number of parameters: O(Sn) (S is average neighbhorhood
size)

Lecture 10 CNNs on Graphs CMSC 35246



Spatial Construction

So we replace a grid by a general graph G = (Ω, E)

The notion of locality can be generalized easily via W

For given W and threshold δ, we have neighborhoods:

Nδ(j) = {i ∈ Ω : Wi,j > δ}

Can have filters with receptive fields given by these
neighborhoods

Number of parameters: O(Sn) (S is average neighbhorhood
size)

Lecture 10 CNNs on Graphs CMSC 35246



Spatial Construction

So we replace a grid by a general graph G = (Ω, E)

The notion of locality can be generalized easily via W

For given W and threshold δ, we have neighborhoods:

Nδ(j) = {i ∈ Ω : Wi,j > δ}

Can have filters with receptive fields given by these
neighborhoods

Number of parameters: O(Sn) (S is average neighbhorhood
size)

Lecture 10 CNNs on Graphs CMSC 35246



Spatial Construction

So we replace a grid by a general graph G = (Ω, E)

The notion of locality can be generalized easily via W

For given W and threshold δ, we have neighborhoods:

Nδ(j) = {i ∈ Ω : Wi,j > δ}

Can have filters with receptive fields given by these
neighborhoods

Number of parameters: O(Sn) (S is average neighbhorhood
size)

Lecture 10 CNNs on Graphs CMSC 35246



Spatial Construction

To mimic subsampling and pooling, we can do a multiscale
clustering of the graph (K scales)

Set Ω0 = Ω, at each level k = 1, . . . ,K define Ωk and Ωk−1

Ωk is a partition of Ωk−1 in dk clusters

Around every element of Ωk−1, we can define the
neighborhood

Nk = {Nk,i : i = 1 . . . dk−1}
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Defining the Network

Let number of filters at layer be given by fk

Every layer will transform a fk−1 dimensional signal, indexed
by Ωk−1 into a fk indexed by Ωk

If xk = (xk,i; i = 1 . . . fk−1) is the dk−1 × fk−1 dim input to
layer k, the output is defined as:

xk+1,j = Lkh

( fk−1∑
i=1

Fk,i,jxk,i

)
with j = 1 . . . fk

Fk,i,j is a dk−1 × dk−1 sparse matrix with Nk indicated by
zeros

h is the non-linearity and Lk is the pooling operation
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Locally Connected Networks: In Pictures

Level 1 clustering

This and next few illustrations are by Joan Bruna
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Locally Connected Networks: In Pictures

Pooling to get Ω1
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Locally Connected Networks: In Pictures

Level 2 clustering
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Locally Connected Networks: In Pictures

Multiple Feature maps: Level 1
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Locally Connected Networks: In Pictures

Multiple Feature maps: Level 2
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Spectral Construction

Spectral Networks
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Quick Digression: The Graph Laplacian
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Spectral Networks

Again consider W ∈ Rd×d, the weighted adjacency matrix for
G = (Ω, E)

We consider the following definition of the Graph Laplacian:

L = I −D−1/2WD−1/2

D is a diagonal matrix; the degree matrix with Di,i =
∑

iWi,:

Let U = [u1, . . . , ud] be the eigenvectors of L
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Graph Convolution in Frequency Domain

Define convolution of input signal x with filter g on G as:

x ∗G g = UT (Ux� Ug)

Learning filters on a graph =⇒ learning spectral weights:

x ∗G g = UT (diag(wg)Ux)with wg = (w1, . . . , wd)
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Local Filters

Notice that g has support over all vertices

But we want filters that are local

Observation: Smoothness in frequency domain =⇒ spatial
decay

Solution: Consider a smoothing kernel K ∈ Rd×d0 and search
for multipliers:

wg = Kw̃g
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Graph Convolution Layer

Forward Pass:

• For input x, compute interpolated weights wf ′f = Kw̃f ′f

• Compute the output: ysf ′ = UT (
∑

f Uxsf � wf ′f )

Backward Pass:

• Compute gradient w.r.t input ∆xsf
• Compute gradient w.r.t interpolated weights ∆wf ′f
• Compute gradient w.r.t weight ∆w̃f ′f = KT∆wf ′f
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What if Graph Structure is unknown?

Estimate it from data:

Method 1: Unsupervised

• Given dataset X ∈ RN×d, compute distance d(i, j)
between features:

d(i, j) = ‖Xi −Xj‖22

• Then compute Wi,j = exp−
d(i,j)

σ2
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What if Graph Structure is unknown?

Estimate it from data:

Method 2: Supervised

• Given dataset X ∈ RN×d and labels y ∈ {1, . . . , C}L,
train a fully connected MLP with K layers, with weights
W1, . . . ,WK

• Pass data through network, extract K layer features
WK ∈ RN×mk , then compute:

d(i, j) = ‖Wki −Wkj‖22

• Use Gaussian kernel as before to get Wi,j
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Scenario 2

Learning Embeddings of Graphs
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Example Task: Regression

Input: Organic Compounds (graphs)

Output: Boiling point

Lecture 10 CNNs on Graphs CMSC 35246



Graph Embedding: Simple Algorithm

Algorithm 1 Generation of embedding

Require: G = (V,E), radius δ, Hidden Weights: H1
1 , . . . ,H

δ
l , Out-

put Weights: W1, . . . ,Wδ

Initialize: Embedding φ← 0 Initialize: For every vertex rv ← Ψ(v)
(local vertex features)

1: for all L = 1 to δ (for every layer) do
2: for each vertex v in graph do
3: r1, . . . , rN = neighbors(v)
4: v ← rv +

∑N
i=1 ri

5: rv ← σ(vHN
L )

6: i← softmax(rvWL)
7: Update: φ← φ+ i
8: end for
9: end for

10: Output embedding φ
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