Lecture 14
 Introduction to Deep Unsupervised Learning
 CMSC 35246: Deep Learning

Shubhendu Trivedi
\&

Risi Kondor

University of Chicago
May 15, 2017

Unsupervised Learning

- So far we have only looked at discriminative models i.e. we model $Y=f(X ; \theta)$ or $P(Y \mid X)$

Unsupervised Learning

- So far we have only looked at discriminative models i.e. we model $Y=f(X ; \theta)$ or $P(Y \mid X)$
- Recall: $P(Y \mid X)=\frac{P(X \mid Y) P(Y)}{P(X)}$

Unsupervised Learning

- So far we have only looked at discriminative models i.e. we model $Y=f(X ; \theta)$ or $P(Y \mid X)$
- Recall: $P(Y \mid X)=\frac{P(X \mid Y) P(Y)}{P(X)}$
- $P(X)$ is defined in terms of $P(X \mid Y)$ or the best model of X (unsupervised learning) must involve the labels Y as a latent factor

Unsupervised Learning

- So far we have only looked at discriminative models i.e. we model $Y=f(X ; \theta)$ or $P(Y \mid X)$
- Recall: $P(Y \mid X)=\frac{P(X \mid Y) P(Y)}{P(X)}$
- $P(X)$ is defined in terms of $P(X \mid Y)$ or the best model of X (unsupervised learning) must involve the labels Y as a latent factor
- The idea of representation learning is to uncover the latent variables that explain X

Unsupervised Learning

Unsupervised Learning

Unsupervised Learning

Unsupervised Learning

G. Hinton and R. Salakhutdinov, "Semantic Hashing", 2006

Unsupervised Learning

- Distributed representations (constraints on experts, compare to localist representations (e.g. Big Yellow Volk))

Unsupervised Learning

- Distributed representations (constraints on experts, compare to localist representations (e.g. Big Yellow Volk))
- Intrinsic latent dimensions

Unsupervised Learning

- Distributed representations (constraints on experts, compare to localist representations (e.g. Big Yellow Volk))
- Intrinsic latent dimensions
- Visualization

Unsupervised Learning

- Distributed representations (constraints on experts, compare to localist representations (e.g. Big Yellow Volk))
- Intrinsic latent dimensions
- Visualization
- Figuring explanatory factors

Unsupervised Learning

- Distributed representations (constraints on experts, compare to localist representations (e.g. Big Yellow Volk))
- Intrinsic latent dimensions
- Visualization
- Figuring explanatory factors
- Learning features for classification

Unsupervised Learning

- Distributed representations (constraints on experts, compare to localist representations (e.g. Big Yellow Volk))
- Intrinsic latent dimensions
- Visualization
- Figuring explanatory factors
- Learning features for classification
- Semi-supervised learning

Unsupervised Deep Learning

Figure: Ruslan Salakhutdinov

Warm Up

Linear Projections

- Suppose we have a mean-centered dataset X with N datapoints $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in \mathbb{R}^{d}$

Linear Projections

- Suppose we have a mean-centered dataset X with N datapoints $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in \mathbb{R}^{d}$
- We don't have labels!

Linear Projections

- Suppose we have a mean-centered dataset X with N datapoints $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in \mathbb{R}^{d}$
- We don't have labels!
- We want to find bases $\mathbf{h}_{1}, \ldots, \mathbf{h}_{p}$ such that each:

Linear Projections

- Suppose we have a mean-centered dataset X with N datapoints $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in \mathbb{R}^{d}$
- We don't have labels!
- We want to find bases $\mathbf{h}_{1}, \ldots, \mathbf{h}_{p}$ such that each:

$$
\tilde{\mathbf{x}}_{i}=\sum_{j=1}^{p} \alpha_{i, j} \mathbf{h}_{j}
$$

Linear Projections

- Suppose we have a mean-centered dataset X with N datapoints $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in \mathbb{R}^{d}$
- We don't have labels!
- We want to find bases $\mathbf{h}_{1}, \ldots, \mathbf{h}_{p}$ such that each:

$$
\tilde{\mathbf{x}}_{i}=\sum_{j=1}^{p} \alpha_{i, j} \mathbf{h}_{j}
$$

- We want to minimize:

Linear Projections

- Suppose we have a mean-centered dataset X with N datapoints $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in \mathbb{R}^{d}$
- We don't have labels!
- We want to find bases $\mathbf{h}_{1}, \ldots, \mathbf{h}_{p}$ such that each:

$$
\tilde{\mathbf{x}}_{i}=\sum_{j=1}^{p} \alpha_{i, j} \mathbf{h}_{j}
$$

- We want to minimize:

$$
\text { Error }=\sum_{i=1}^{N}\left(\tilde{\mathbf{x}}_{i}-\mathbf{x}_{i}\right)^{2}
$$

Linear Projections

- Note that for bases $\mathbf{h}_{1}, \ldots, \mathbf{h}_{N}$

Linear Projections

- Note that for bases $\mathbf{h}_{1}, \ldots, \mathbf{h}_{N}$

$$
\mathbf{x}_{i}=\sum_{j=1}^{N} \alpha_{i, j} \mathbf{h}_{j}
$$

Linear Projections

- Note that for bases $\mathbf{h}_{1}, \ldots, \mathbf{h}_{N}$

$$
\mathbf{x}_{i}=\sum_{j=1}^{N} \alpha_{i, j} \mathbf{h}_{j}
$$

- We can now re-write the error:

$$
\text { Error }=\sum_{i=1}^{N}\left(\sum_{j=1}^{p} \alpha_{i, j} \mathbf{h}_{j}-\sum_{j=1}^{N} \alpha_{i, j} \mathbf{h}_{j}\right)^{2}
$$

Linear Projections

- Note that for bases $\mathbf{h}_{1}, \ldots, \mathbf{h}_{N}$

$$
\mathbf{x}_{i}=\sum_{j=1}^{N} \alpha_{i, j} \mathbf{h}_{j}
$$

- We can now re-write the error:

$$
\text { Error }=\sum_{i=1}^{N}\left(\sum_{j=1}^{p} \alpha_{i, j} \mathbf{h}_{j}-\sum_{j=1}^{N} \alpha_{i, j} \mathbf{h}_{j}\right)^{2}
$$

- After some basic manipulation $\left(\alpha_{i, j}=\mathbf{x}_{i} \mathbf{h}_{j}\right)$:

Linear Projections

- Note that for bases $\mathbf{h}_{1}, \ldots, \mathbf{h}_{N}$

$$
\mathbf{x}_{i}=\sum_{j=1}^{N} \alpha_{i, j} \mathbf{h}_{j}
$$

- We can now re-write the error:

$$
\text { Error }=\sum_{i=1}^{N}\left(\sum_{j=1}^{p} \alpha_{i, j} \mathbf{h}_{j}-\sum_{j=1}^{N} \alpha_{i, j} \mathbf{h}_{j}\right)^{2}
$$

- After some basic manipulation $\left(\alpha_{i, j}=\mathbf{x}_{i} \mathbf{h}_{j}\right)$:

$$
\text { Error }=\sum_{i=1}^{N} \sum_{j=p+1}^{N} \alpha_{i, j}
$$

Linear Projections

$$
\text { Error }=\sum_{i=1}^{N} \sum_{j=p+1}^{N} \alpha_{i, j}
$$

Linear Projections

$$
\text { Error }=\sum_{i=1}^{N} \sum_{j=p+1}^{N} \alpha_{i, j}
$$

- Note that $\alpha_{i, j}=\mathbf{h}_{j} \mathbf{x}_{i}$, therefore:

Linear Projections

$$
\text { Error }=\sum_{i=1}^{N} \sum_{j=p+1}^{N} \alpha_{i, j}
$$

- Note that $\alpha_{i, j}=\mathbf{h}_{j} \mathbf{x}_{i}$, therefore:

$$
\text { Error }=\sum_{i=1}^{N} \sum_{j=p+1}^{N}\left(\mathbf{h}_{j} \mathbf{x}_{i}\right)^{2}
$$

Linear Projections

$$
\text { Error }=\sum_{i=1}^{N} \sum_{j=p+1}^{N} \alpha_{i, j}
$$

- Note that $\alpha_{i, j}=\mathbf{h}_{j} \mathbf{x}_{i}$, therefore:

$$
\text { Error }=\sum_{i=1}^{N} \sum_{j=p+1}^{N}\left(\mathbf{h}_{j} \mathbf{x}_{i}\right)^{2}
$$

- Which is just:

$$
\text { Error }=\sum_{i=1}^{N} \sum_{j=p+1}^{N} \mathbf{h}_{j}^{T} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \mathbf{h}_{j}
$$

Linear Projections

$$
\text { Error }=\sum_{j=p+1}^{N} \mathbf{h}_{j}^{T} \Sigma \mathbf{h}_{j}
$$

- Now to find the minimizer, solve:

$$
\min _{\mathbf{u}} \mathbf{u} \Sigma \mathbf{u}+\lambda\left(1-\mathbf{u}^{T} \mathbf{u}\right)
$$

Linear Projections

$$
\text { Error }=\sum_{j=p+1}^{N} \mathbf{h}_{j}^{T} \Sigma \mathbf{h}_{j}
$$

- Now to find the minimizer, solve:

$$
\min _{\mathbf{u}} \mathbf{u} \Sigma \mathbf{u}+\lambda\left(1-\mathbf{u}^{T} \mathbf{u}\right)
$$

- The extra terms enforces orthonormality

Linear Projections

$$
\text { Error }=\sum_{j=p+1}^{N} \mathbf{h}_{j}^{T} \Sigma \mathbf{h}_{j}
$$

- Now to find the minimizer, solve:

$$
\min _{\mathbf{u}} \mathbf{u} \Sigma \mathbf{u}+\lambda\left(1-\mathbf{u}^{T} \mathbf{u}\right)
$$

- The extra terms enforces orthonormality
- Take derivative, and set to zero:

$$
\mathbf{u}_{i} \Sigma=\lambda_{i} \mathbf{u}_{i}
$$

Linear Projections

$$
\text { Error }=\sum_{j=p+1}^{N} \mathbf{h}_{j}^{T} \Sigma \mathbf{h}_{j}
$$

- Now to find the minimizer, solve:

$$
\min _{\mathbf{u}} \mathbf{u} \Sigma \mathbf{u}+\lambda\left(1-\mathbf{u}^{T} \mathbf{u}\right)
$$

- The extra terms enforces orthonormality
- Take derivative, and set to zero:

$$
\mathbf{u}_{i} \Sigma=\lambda_{i} \mathbf{u}_{i}
$$

- Solutions are eigenvectors!

PCA on Face Images: Eigenfaces

Eigenfaces: Features

A Linear Neural Network

A Linear Neural Network

- Encoding: $\mathbf{x} \rightarrow \mathbf{h}=W \mathbf{x}$. Decoding: $\mathbf{h} \rightarrow \tilde{\mathbf{x}}=V \mathbf{h}$

A Linear Neural Network

- Objective:

$$
\min _{W, V}\|\mathbf{x}-V W \mathbf{x}\|_{2}^{2}
$$

A Linear Neural Network

- This is a linear Autoencoder

Autoencoder: Non-Linear PCA

Autoencoder: Implicit Bottleneck

Another Linear Model: ICA

- Canonical example: Cocktail party problem

Mixtures

Separated Sources

Another Linear Model: ICA

- Suppose $\mathbf{x}_{1}, \ldots, \mathbf{x}_{7}$ are the microphone signals

Another Linear Model: ICA

- Suppose $\mathbf{x}_{1}, \ldots, \mathbf{x}_{7}$ are the microphone signals
- Each \mathbf{x}_{i} is a result of linear mixing between the sources \mathbf{h}_{i}

Another Linear Model: ICA

- Suppose $\mathbf{x}_{1}, \ldots, \mathbf{x}_{7}$ are the microphone signals
- Each \mathbf{x}_{i} is a result of linear mixing between the sources \mathbf{h}_{i}

$$
\mathbf{x}_{i}=\sum_{i} \mathbf{a}_{i} \mathbf{h}_{i} \text { or } X=A H
$$

Another Linear Model: ICA

- Suppose $\mathbf{x}_{1}, \ldots, \mathbf{x}_{7}$ are the microphone signals
- Each \mathbf{x}_{i} is a result of linear mixing between the sources \mathbf{h}_{i}

$$
\mathbf{x}_{i}=\sum_{i} \mathbf{a}_{i} \mathbf{h}_{i} \text { or } X=A H
$$

- Task: Only X is observed, A is unknown, recover H

Another Linear Model: ICA

- Suppose $\mathbf{x}_{1}, \ldots, \mathbf{x}_{7}$ are the microphone signals
- Each \mathbf{x}_{i} is a result of linear mixing between the sources \mathbf{h}_{i}

$$
\mathbf{x}_{i}=\sum_{i} \mathbf{a}_{i} \mathbf{h}_{i} \text { or } X=A H
$$

- Task: Only X is observed, A is unknown, recover H
- Here the bases are independent of each other

Difference with PCA

- In PCA $X=A H$ with $H^{T} H=I$ i.e. bases are orthogonal

Difference with PCA

- In PCA $X=A H$ with $H^{T} H=I$ i.e. bases are orthogonal
- In ICA $X=A H$ with A invertible

Difference with PCA

- In PCA $X=A H$ with $H^{T} H=I$ i.e. bases are orthogonal
- In ICA $X=A H$ with A invertible
- PCA does compression, ICA doesn't do any compression ($p=d$)

Difference with PCA

- In PCA $X=A H$ with $H^{T} H=I$ i.e. bases are orthogonal
- In ICA $X=A H$ with A invertible
- PCA does compression, ICA doesn't do any compression ($p=d$)
- Some PCs are more important than others, not in the case with ICA

Difference with PCA

Filters

men

Sparse Coding

- Objective: Given a set of input vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$, learn a dictionary of bases $\mathbf{h}_{1}, \mathbf{h}_{2}, \ldots, \mathbf{h}_{p}$ such that:

$$
\mathbf{x}_{i}=\sum_{k=1}^{p} a_{i k} \mathbf{h}_{k}
$$

Sparse Coding

- Objective: Given a set of input vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$, learn a dictionary of bases $\mathbf{h}_{1}, \mathbf{h}_{2}, \ldots, \mathbf{h}_{p}$ such that:

$$
\mathbf{x}_{i}=\sum_{k=1}^{p} a_{i k} \mathbf{h}_{k}
$$

- This such that most $a_{i k}$ are zero i.e. very few bases explain \mathbf{x}_{i}

Sparse Coding

- Objective: Given a set of input vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$, learn a dictionary of bases $\mathbf{h}_{1}, \mathbf{h}_{2}, \ldots, \mathbf{h}_{p}$ such that:

$$
\mathbf{x}_{i}=\sum_{k=1}^{p} a_{i k} \mathbf{h}_{k}
$$

- This such that most $a_{i k}$ are zero i.e. very few bases explain \mathbf{x}_{i}
- Like before, but data is now a sparse linear combination of bases

Sparse Coding

Sparse Coding

- Optimization: Given $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N} \in \mathbb{R}^{d}$, learn dictionary $\mathbf{h}_{1}, \mathbf{h}_{2}, \ldots, \mathbf{h}_{p} \in \mathbb{R}^{d}$ (arranged as $\left.H=\left[\mathbf{h}_{1}, \mathbf{h}_{2}, \ldots, \mathbf{h}_{p}\right] \in \mathbb{R}^{d \times p}\right)$ such that:

$$
\min _{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}, H} \sum_{i=1}^{N}\left\|\mathbf{x}_{i}-H \mathbf{a}_{i}\right\|_{2}^{2}+\lambda \sum_{i=1}^{N}\left\|\mathbf{a}_{i}\right\|_{1}
$$

Sparse Coding

- Optimization: Given $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N} \in \mathbb{R}^{d}$, learn dictionary $\mathbf{h}_{1}, \mathbf{h}_{2}, \ldots, \mathbf{h}_{p} \in \mathbb{R}^{d}$ (arranged as $\left.H=\left[\mathbf{h}_{1}, \mathbf{h}_{2}, \ldots, \mathbf{h}_{p}\right] \in \mathbb{R}^{d \times p}\right)$ such that:

$$
\min _{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}, H} \sum_{i=1}^{N}\left\|\mathbf{x}_{i}-H \mathbf{a}_{i}\right\|_{2}^{2}+\lambda \sum_{i=1}^{N}\left\|\mathbf{a}_{i}\right\|_{1}
$$

- Reconstruction term: $\left\|\mathbf{x}_{i}-H \mathbf{a}_{i}\right\|_{2}^{2}$

Sparse Coding

- Optimization: Given $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N} \in \mathbb{R}^{d}$, learn dictionary $\mathbf{h}_{1}, \mathbf{h}_{2}, \ldots, \mathbf{h}_{p} \in \mathbb{R}^{d}$ (arranged as $\left.H=\left[\mathbf{h}_{1}, \mathbf{h}_{2}, \ldots, \mathbf{h}_{p}\right] \in \mathbb{R}^{d \times p}\right)$ such that:

$$
\min _{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}, H} \sum_{i=1}^{N}\left\|\mathbf{x}_{i}-H \mathbf{a}_{i}\right\|_{2}^{2}+\lambda \sum_{i=1}^{N}\left\|\mathbf{a}_{i}\right\|_{1}
$$

- Reconstruction term: $\left\|\mathbf{x}_{i}-H \mathbf{a}_{i}\right\|_{2}^{2}$
- Sparsity term: $\left\|\mathbf{a}_{i}\right\|_{1}$

Sparse Coding

$$
\min _{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}, H} \sum_{i=1}^{N}\left\|\mathbf{x}_{i}-H \mathbf{a}_{i}\right\|_{2}^{2}+\lambda \sum_{i=1}^{N}\left\|\mathbf{a}_{i}\right\|_{1}
$$

Sparse Coding

$$
\min _{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}, H} \sum_{i=1}^{N}\left\|\mathbf{x}_{i}-H \mathbf{a}_{i}\right\|_{2}^{2}+\lambda \sum_{i=1}^{N}\left\|\mathbf{a}_{i}\right\|_{1}
$$

- Optimization:

1 Initialize $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$ and $H=\left[\mathbf{h}_{1} \ldots, \mathbf{h}_{p}\right]$ randomly

Sparse Coding

$$
\min _{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}, H} \sum_{i=1}^{N}\left\|\mathbf{x}_{i}-H \mathbf{a}_{i}\right\|_{2}^{2}+\lambda \sum_{i=1}^{N}\left\|\mathbf{a}_{i}\right\|_{1}
$$

- Optimization:

1 Initialize $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$ and $H=\left[\mathbf{h}_{1} \ldots, \mathbf{h}_{p}\right]$ randomly
2 Fix bases $H=\left[\mathbf{h}_{1} \ldots, \mathbf{h}_{p}\right]$ and optimize for codes \mathbf{a}_{i}

Sparse Coding

$$
\min _{\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}, H} \sum_{i=1}^{N}\left\|\mathbf{x}_{i}-H \mathbf{a}_{i}\right\|_{2}^{2}+\lambda \sum_{i=1}^{N}\left\|\mathbf{a}_{i}\right\|_{1}
$$

- Optimization:

1 Initialize $\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}$ and $H=\left[\mathbf{h}_{1} \ldots, \mathbf{h}_{p}\right]$ randomly
2 Fix bases $H=\left[\mathbf{h}_{1} \ldots, \mathbf{h}_{p}\right]$ and optimize for codes \mathbf{a}_{i}
3 Fix codes \mathbf{a}_{i} and optimize for H (convex)

Sparse Coding:Test Time

- Given a new patch $\tilde{\mathbf{x}} \in \mathbb{R}^{d}$ and learned dictionary $H=\left[\mathbf{h}_{1} \ldots, \mathbf{h}_{p}\right]$, we find the code $\tilde{\mathbf{a}}$ as:

Sparse Coding:Test Time

- Given a new patch $\tilde{\mathbf{x}} \in \mathbb{R}^{d}$ and learned dictionary $H=\left[\mathbf{h}_{1} \ldots, \mathbf{h}_{p}\right]$, we find the code $\tilde{\mathbf{a}}$ as:

$$
\min _{\tilde{\mathbf{a}}}\|\tilde{\mathbf{x}}-H \tilde{\mathbf{a}}\|_{2}^{2}+\lambda\|\tilde{\mathbf{a}}\|_{1}
$$

Sparse Coding:Test Time

- Given a new patch $\tilde{\mathbf{x}} \in \mathbb{R}^{d}$ and learned dictionary $H=\left[\mathbf{h}_{1} \ldots, \mathbf{h}_{p}\right]$, we find the code $\tilde{\mathbf{a}}$ as:

$$
\min _{\tilde{\mathbf{a}}}\|\tilde{\mathbf{x}}-H \tilde{\mathbf{a}}\|_{2}^{2}+\lambda\|\tilde{\mathbf{a}}\|_{1}
$$

- $\tilde{\mathbf{a}}$ will be a sparse representation for $\tilde{\mathbf{x}}$

Image Classification

Evaluated on Caltech101 object category dataset.

Input Image

Features (coefficients)

Algorithm	Accuracy
Baseline (Fei-Fei et al., 2004)	16%
PCA	37%
Sparse Coding	$\mathbf{4 7 \%}$

Slide Credit: Honglak Lee

Features for Faces

Figure: Charles Cadieu

Encoding-Decoding

- Encoding: Implicit non-linear (in \mathbf{x}) encoding
- Decoding: Explicit linear decoding
- Can be overcomplete

Encoding-Decoding

Simple Neural Network

Sparse Autoencoders

Stacked Autoencoders

Pre-Training

Deep Autoencoders (2006)

Fig. 1. Pretraining consists of learning a stack of restricted Boltzmann machines (RBMs), each having only one layer of feature detectors. The learned feature activations of one RBM are used as the "data" for training the next RBM in the stack. After the pretraining, the RBMs are "unrolled" to create a deep autoencoder, which is then fine-tuned using backpropagation of error derivatives.
G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 2006

It was hard to train deep feedforward networks from scratch in 2006!

Effect of Unsupervised Pre-training

Effect of Unsupervised Pre-training

with pre-training

Why does Unsupervised Pre-training work?

- Regularization. Feature representations that are good for $P(x)$ are good for $P(y \mid x)$

Why does Unsupervised Pre-training work?

- Regularization. Feature representations that are good for $P(x)$ are good for $P(y \mid x)$
- Optimization: Unsupervised pre-training leads to better regions of the space i.e. better than random initialization

More Autoencoders

- De-noising Autoencoders: Input is corrupted by noise, but we attempt to reconstruct the uncorrupted image

More Autoencoders

- De-noising Autoencoders: Input is corrupted by noise, but we attempt to reconstruct the uncorrupted image
- Contractive Autoencoders: The regularization term penalizes for the derivative:

$$
\Omega(\mathbf{h}, \mathbf{x})=\lambda \sum_{i}\left\|\nabla_{\mathbf{x}} \mathbf{h}_{i}\right\|_{2}^{2}
$$

De-Noising Autoencoder: Intuition

Figure: Goodfellow et al.

Back to Simple Models

Linear Factor Model

- We want to build a probabilistic model of the input $\tilde{P}(\mathbf{x})$

Linear Factor Model

- We want to build a probabilistic model of the input $\tilde{P}(\mathbf{x})$
- Often we might be interested in latent factors \mathbf{h} that explain \mathbf{x}

Linear Factor Model

- We want to build a probabilistic model of the input $\tilde{P}(\mathbf{x})$
- Often we might be interested in latent factors \mathbf{h} that explain \mathbf{x}
- We then care about the marginal:

$$
\tilde{P}(\mathbf{x})=\mathbb{E}_{\mathbf{h}} \tilde{P}(\mathbf{x} \mid \mathbf{h})
$$

Linear Factor Model

- We want to build a probabilistic model of the input $\tilde{P}(\mathbf{x})$
- Often we might be interested in latent factors \mathbf{h} that explain \mathbf{x}
- We then care about the marginal:

$$
\tilde{P}(\mathbf{x})=\mathbb{E}_{\mathbf{h}} \tilde{P}(\mathbf{x} \mid \mathbf{h})
$$

- \mathbf{h} is a representation of the data

Linear Factor Model

- The latent factors \mathbf{h} are an encoding of the data

Linear Factor Model

- The latent factors \mathbf{h} are an encoding of the data
- Simplest decoding model: Get \mathbf{x} after a linear transformation of \mathbf{x} with some noise

Linear Factor Model

- The latent factors \mathbf{h} are an encoding of the data
- Simplest decoding model: Get \mathbf{x} after a linear transformation of \mathbf{x} with some noise
- Formally: Suppose we sample the latent factors from a distribution $\mathbf{h} \sim P(\mathbf{h})$

Linear Factor Model

- The latent factors \mathbf{h} are an encoding of the data
- Simplest decoding model: Get \mathbf{x} after a linear transformation of \mathbf{x} with some noise
- Formally: Suppose we sample the latent factors from a distribution $\mathbf{h} \sim P(\mathbf{h})$
- Then: $\mathbf{x}=W \mathbf{h}+\mathbf{b}+\epsilon$

Linear Factor Model

- The latent factors \mathbf{h} are an encoding of the data
- Simplest decoding model: Get \mathbf{x} after a linear transformation of \mathbf{x} with some noise
- Formally: Suppose we sample the latent factors from a distribution $\mathbf{h} \sim P(\mathbf{h})$
- Then: $\mathbf{x}=W \mathbf{h}+\mathbf{b}+\epsilon$
- How do we figure good representations that explain the data well?

Linear Factor Model

- The latent factors \mathbf{h} are an encoding of the data
- Simplest decoding model: Get \mathbf{x} after a linear transformation of \mathbf{x} with some noise
- Formally: Suppose we sample the latent factors from a distribution $\mathbf{h} \sim P(\mathbf{h})$
- Then: $\mathbf{x}=W \mathbf{h}+\mathbf{b}+\epsilon$
- How do we figure good representations that explain the data well?
- What would explaining the data mean?

Factor Analysis

- Suppose we fix the latent factor prior to be the unit Gaussian:

$$
\mathbf{h} \sim \mathcal{N}(\mathbf{h} ; 0, I)
$$

Factor Analysis

- Suppose we fix the latent factor prior to be the unit Gaussian:

$$
\mathbf{h} \sim \mathcal{N}(\mathbf{h} ; 0, I)
$$

- Now, we need to specify a noise model. Assume it comes from a Gaussian with covariance $\Sigma=\operatorname{diag}\left(\sigma_{i}^{2}\right)$

Factor Analysis

- Suppose we fix the latent factor prior to be the unit Gaussian:

$$
\mathbf{h} \sim \mathcal{N}(\mathbf{h} ; 0, I)
$$

- Now, we need to specify a noise model. Assume it comes from a Gaussian with covariance $\Sigma=\operatorname{diag}\left(\sigma_{i}^{2}\right)$
- For this simple model, \mathbf{x} is also a multivariate Gaussian:

Factor Analysis

- Suppose we fix the latent factor prior to be the unit Gaussian:

$$
\mathbf{h} \sim \mathcal{N}(\mathbf{h} ; 0, I)
$$

- Now, we need to specify a noise model. Assume it comes from a Gaussian with covariance $\Sigma=\operatorname{diag}\left(\sigma_{i}^{2}\right)$
- For this simple model, \mathbf{x} is also a multivariate Gaussian:

$$
\mathbf{x} \sim \mathcal{N}\left(\mathbf{x} ; b, W W^{T}+\Sigma\right)
$$

Probabilistic PCA

- We only need to make a small change in our general factor analysis model

Probabilistic PCA

- We only need to make a small change in our general factor analysis model
- Still sample \mathbf{h} as before:

$$
\mathbf{h} \sim \mathcal{N}(\mathbf{h} ; 0, I)
$$

Probabilistic PCA

- We only need to make a small change in our general factor analysis model
- Still sample \mathbf{h} as before:

$$
\mathbf{h} \sim \mathcal{N}(\mathbf{h} ; 0, I)
$$

- But now we assume a noise model which is a Gaussian with covariance $\sigma_{i}^{2} I$

Probabilistic PCA

- We only need to make a small change in our general factor analysis model
- Still sample \mathbf{h} as before:

$$
\mathbf{h} \sim \mathcal{N}(\mathbf{h} ; 0, I)
$$

- But now we assume a noise model which is a Gaussian with covariance $\sigma_{i}^{2} I$
- Then, the conditional distribution becomes:

$$
\mathbf{x} \sim \mathcal{N}\left(\mathbf{x} ; b, W W^{T}+\sigma^{2} I\right)
$$

Probabilistic PCA

- We only need to make a small change in our general factor analysis model
- Still sample \mathbf{h} as before:

$$
\mathbf{h} \sim \mathcal{N}(\mathbf{h} ; 0, I)
$$

- But now we assume a noise model which is a Gaussian with covariance $\sigma_{i}^{2} I$
- Then, the conditional distribution becomes:

$$
\mathbf{x} \sim \mathcal{N}\left(\mathbf{x} ; b, W W^{T}+\sigma^{2} I\right)
$$

- Or $\mathbf{x}=W \mathbf{h}+\mathbf{b}+$ noise

Probabilistic PCA

- We only need to make a small change in our general factor analysis model
- Still sample \mathbf{h} as before:

$$
\mathbf{h} \sim \mathcal{N}(\mathbf{h} ; 0, I)
$$

- But now we assume a noise model which is a Gaussian with covariance $\sigma_{i}^{2} I$
- Then, the conditional distribution becomes:

$$
\mathbf{x} \sim \mathcal{N}\left(\mathbf{x} ; b, W W^{T}+\sigma^{2} I\right)
$$

- Or $\mathbf{x}=W \mathbf{h}+\mathbf{b}+$ noise
- Approaches PCA as $\sigma \rightarrow 0$

Energy Based Models and PoE

- Energy-Based Models assign a scalar energy with every configuration of variables under consideration

Energy Based Models and PoE

- Energy-Based Models assign a scalar energy with every configuration of variables under consideration
- Learning: Change the energy function so that its final shape has some desirable properties

Energy Based Models and PoE

- Energy-Based Models assign a scalar energy with every configuration of variables under consideration
- Learning: Change the energy function so that its final shape has some desirable properties
- We can define a probability distribution through an energy:

$$
P(\mathbf{x})=\frac{\exp ^{-(\operatorname{Energy}(\mathbf{x}))}}{Z}
$$

Energy Based Models and PoE

- Energy-Based Models assign a scalar energy with every configuration of variables under consideration
- Learning: Change the energy function so that its final shape has some desirable properties
- We can define a probability distribution through an energy:

$$
P(\mathbf{x})=\frac{\exp ^{-(\operatorname{Energy}(\mathbf{x}))}}{Z}
$$

- Energies are in the log-probability domain:

$$
\operatorname{Energy}(\mathbf{x})=\log \frac{1}{(Z P(\mathbf{x}))}
$$

Energy Based Models and PoE

$-$

$$
P(\mathbf{x})=\frac{\exp ^{-(\operatorname{Energy}(\mathbf{x}))}}{Z}
$$

Energy Based Models and PoE

$-$

$$
P(\mathbf{x})=\frac{\exp ^{-(\operatorname{Energy}(\mathbf{x}))}}{Z}
$$

- Z is a normalizing factor called the Partition Function

$$
Z=\sum_{\mathbf{x}} \exp (-\operatorname{Energy}(\mathbf{x}))
$$

Energy Based Models and PoE

$-$

$$
P(\mathbf{x})=\frac{\exp ^{-(\operatorname{Energy}(\mathbf{x}))}}{Z}
$$

- Z is a normalizing factor called the Partition Function

$$
Z=\sum_{\mathbf{x}} \exp (-\operatorname{Energy}(\mathbf{x}))
$$

- How do we specify the energy function?

Product of Experts Formulation

- In this formulation, the energy function is:

$$
\operatorname{Energy}(\mathbf{x})=\sum_{i} f_{i}(\mathbf{x})
$$

Product of Experts Formulation

- In this formulation, the energy function is:

$$
\operatorname{Energy}(\mathbf{x})=\sum_{i} f_{i}(\mathbf{x})
$$

- Therefore:

$$
P(\mathbf{x})=\frac{\exp ^{-\left(\sum_{i} f_{i}(\mathbf{x})\right)}}{Z}
$$

Product of Experts Formulation

- In this formulation, the energy function is:

$$
\operatorname{Energy}(\mathbf{x})=\sum_{i} f_{i}(\mathbf{x})
$$

- Therefore:

$$
P(\mathbf{x})=\frac{\exp ^{-\left(\sum_{i} f_{i}(\mathbf{x})\right)}}{Z}
$$

- We have the product of experts:

$$
P(\mathbf{x}) \propto \prod_{i} P_{i}(\mathbf{x}) \propto \prod_{i} \exp ^{\left(-f_{i}(\mathbf{x})\right)}
$$

Product of Experts Formulation

$$
P(\mathbf{x}) \propto \prod_{i} P_{i}(\mathbf{x}) \propto \prod_{i} \exp ^{\left(-f_{i}(\mathbf{x})\right)}
$$

- Every expert f_{i} can be seen as enforcing a constraint on \mathbf{x}

Product of Experts Formulation

$$
P(\mathbf{x}) \propto \prod_{i} P_{i}(\mathbf{x}) \propto \prod_{i} \exp ^{\left(-f_{i}(\mathbf{x})\right)}
$$

- Every expert f_{i} can be seen as enforcing a constraint on \mathbf{x}
- If f_{i} is large $\Longrightarrow P_{i}(\mathbf{x})$ is small i.e. the expert thinks \mathbf{x} is implausible (constraint violated)

Product of Experts Formulation

$$
P(\mathbf{x}) \propto \prod_{i} P_{i}(\mathbf{x}) \propto \prod_{i} \exp ^{\left(-f_{i}(\mathbf{x})\right)}
$$

- Every expert f_{i} can be seen as enforcing a constraint on \mathbf{x}
- If f_{i} is large $\Longrightarrow P_{i}(\mathbf{x})$ is small i.e. the expert thinks \mathbf{x} is implausible (constraint violated)
- If f_{i} is small $\Longrightarrow P_{i}(\mathbf{x})$ is large i.e. the expert thinks \mathbf{x} is plausible (constraint satisfied)

Product of Experts Formulation

$$
P(\mathbf{x}) \propto \prod_{i} P_{i}(\mathbf{x}) \propto \prod_{i} \exp ^{\left(-f_{i}(\mathbf{x})\right)}
$$

- Every expert f_{i} can be seen as enforcing a constraint on \mathbf{x}
- If f_{i} is large $\Longrightarrow P_{i}(\mathbf{x})$ is small i.e. the expert thinks \mathbf{x} is implausible (constraint violated)
- If f_{i} is small $\Longrightarrow P_{i}(\mathbf{x})$ is large i.e. the expert thinks \mathbf{x} is plausible (constraint satisfied)
- Contrast this with mixture models

Latent Variables

- \mathbf{x} is observed, let's say \mathbf{h} are hidden factors that explain \mathbf{x}

Latent Variables

- \mathbf{x} is observed, let's say \mathbf{h} are hidden factors that explain \mathbf{x}
- The probability then becomes:

$$
P(\mathbf{x}, \mathbf{h})=\frac{\exp ^{-(\operatorname{Energy}(\mathbf{x}, \mathbf{h}))}}{Z}
$$

Latent Variables

- \mathbf{x} is observed, let's say \mathbf{h} are hidden factors that explain \mathbf{x}
- The probability then becomes:

$$
P(\mathbf{x}, \mathbf{h})=\frac{\left.\exp ^{-(E n e r g y}(\mathbf{x}, \mathbf{h})\right)}{Z}
$$

- We only care about the marginal:

$$
P(\mathbf{x})=\sum_{\mathbf{h}} \frac{\exp ^{-(\operatorname{Energy}(\mathbf{x}, \mathbf{h}))}}{Z}
$$

Latent Variables

- \mathbf{x} is observed, let's say \mathbf{h} are hidden factors that explain \mathbf{x}
- The probability then becomes:

$$
P(\mathbf{x}, \mathbf{h})=\frac{\left.\exp ^{-(E n e r g y}(\mathbf{x}, \mathbf{h})\right)}{Z}
$$

- We only care about the marginal:

$$
P(\mathbf{x})=\sum_{\mathbf{h}} \frac{\exp ^{-(\operatorname{Energy}(\mathbf{x}, \mathbf{h}))}}{Z}
$$

Latent Variables

$$
P(\mathbf{x})=\sum_{\mathbf{h}} \frac{\exp ^{-(\operatorname{Energy}(\mathbf{x}, \mathbf{h}))}}{Z}
$$

Latent Variables

$$
P(\mathbf{x})=\sum_{\mathbf{h}} \frac{\exp ^{-(\operatorname{Energy}(\mathbf{x}, \mathbf{h}))}}{Z}
$$

- We introduce another term from statistical physics: free energy:

$$
P(\mathbf{x})=\frac{\exp ^{-(\text {FreeEnergy }(\mathbf{x}))}}{Z}
$$

Latent Variables

$$
P(\mathbf{x})=\sum_{\mathbf{h}} \frac{\exp ^{-(\operatorname{Energy}(\mathbf{x}, \mathbf{h}))}}{Z}
$$

- We introduce another term from statistical physics: free energy:

$$
P(\mathbf{x})=\frac{\exp ^{-(\text {FreeEnergy }(\mathbf{x}))}}{Z}
$$

- Free Energy is just a marginalization of energies in the log-domain:

$$
\operatorname{FreeEnergy}(\mathbf{x})=-\log \sum_{\mathbf{h}} \exp ^{-(\operatorname{Energy}(\mathbf{x}, \mathbf{h}))}
$$

