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Recap: Linear Factor Models

Sample latent factors h ∼ P (h)

Generate x =Wh+ b+ ε

In Probabilistic PCA:

• Latent Factors: h ∼ N (h; 0, I)
• Noise Model: ε ∼ N (0, σ2I)

Estimate W,b, σ2 by maximum likelihood estimation or
Expectation Maximization (EM)
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Recap: Linear Factor Models

Sample latent factors h ∼ P (h)

Generate x =Wh+ b+ ε

In Factor Analysis:
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Recap: Linear Factor Models

P (h) is a factorial distribution

x1 x2 x3 x4 x5

h1 h2 h3
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Recap: Sigmoid Belief Networks

. . .
x

. . .
h1

. . .
h2

. . .
h3

Just like a feedfoward network, but with arrows reversed

What if we place a class as a latent variable at the top?
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Recap: Sigmoid Belief Networks

Joint probability factorizes as:

P (x,h1, . . . ,hl) = P (hl)
( l−1∏
k=1

P (hk|hk+1)
)
P (x|h1)

Marginalization yields P (x)
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Recap: Deep Belief Networks

. . .
x

. . .
h1

. . .
h2

. . .
h3

The top two layers are a Restricted Boltzmann Machine
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Recap: Deep Belief Networks

The joint probability factorizes as:

P (x,h1, . . . ,hl) = P (hl,hl−1)
( l−2∏
k=1

P (hk|hk+1)
)
P (x|h1)
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Recap: Energy Based Models

We defined a probability distribution through an energy:

P (x) =
exp−(Energy(x))

Z

Z is a normalizing factor called the Partition Function

Z =
∑
x

exp(−Energy(x))
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Recap: Energy Based Models

One formulation of the energy:

Energy(x) =
∑
i

fi(x)

This gave us the Product of Experts Model (PoE):

P (x) ∝
∏
i

Pi(x) ∝
∏
i

exp(−fi(x))
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Recap: Energy Based Models

x is observed, h represents hidden factors

Joint probability:

P (x,h) =
exp−(Energy(x,h))

Z

We only care about the marginal:

P (x) =
∑
h

exp−(Energy(x,h))

Z

We can write the marginal in terms of free energy:

P (x) =
exp−(FreeEnergy(x))

Z
with Z =

∑
x

exp−FreeEnergy(x)

Lecture 17 Deep Neural Generative Models II CMSC 35246



Recap: Energy Based Models

x is observed, h represents hidden factors

Joint probability:

P (x,h) =
exp−(Energy(x,h))

Z

We only care about the marginal:

P (x) =
∑
h

exp−(Energy(x,h))

Z

We can write the marginal in terms of free energy:

P (x) =
exp−(FreeEnergy(x))

Z
with Z =

∑
x

exp−FreeEnergy(x)

Lecture 17 Deep Neural Generative Models II CMSC 35246



Recap: Energy Based Models

x is observed, h represents hidden factors

Joint probability:

P (x,h) =
exp−(Energy(x,h))

Z

We only care about the marginal:

P (x) =
∑
h

exp−(Energy(x,h))

Z

We can write the marginal in terms of free energy:

P (x) =
exp−(FreeEnergy(x))

Z
with Z =

∑
x

exp−FreeEnergy(x)

Lecture 17 Deep Neural Generative Models II CMSC 35246



Recap: Energy Based Models

x is observed, h represents hidden factors

Joint probability:

P (x,h) =
exp−(Energy(x,h))

Z

We only care about the marginal:

P (x) =
∑
h

exp−(Energy(x,h))

Z

We can write the marginal in terms of free energy:

P (x) =
exp−(FreeEnergy(x))

Z
with Z =

∑
x

exp−FreeEnergy(x)

Lecture 17 Deep Neural Generative Models II CMSC 35246



Recap: Energy Based Models

EP̃

[
∂ logP (x)

∂θ

]
= −EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)

∂θ

]

P̃ is the empirical training distribution

Easy to compute!
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Recap: Energy Based Models
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∂ logP (x)

∂θ

]
= −EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)
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]

P is the model distribution (exponentially many
configurations!)

Usually very hard to compute!

Resort to Markov Chain Monte Carlo to get a stochastic
estimator of the gradient
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End of recap
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A Special Case

Suppose the energy has the following form:

Energy(x,h) = −β(x) +
∑
i

γi(x,hi)

P (x) =
exp−(FreeEnergy(x))

Z
=

expβ(x)

Z

∏
i

∑
hi

exp−γi(x,hi)

FreeEnergy(x) = − logP (x)− logZ

= −β −
∑
i

log
∑
hi

exp−γi(x,hi)
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Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

Form of energy:

Energy(x,h) = −bTx− cTh− hTWx

Takes the earlier nice form with β(x) = bTx and
γi(x,hi) = hi(ci +Wix)

Originally proposed by Smolensky (1987) who called them
Harmoniums as a special case of Boltzmann Machines
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Restricted Boltzmann Machines

With β(x) = bTx and γi(x,hi) = hi(ci +Wix):

P (x) =
expb

Tx

Z

∏
i

∑
hi

exphi(ci+Wix)

Likewise, plugging in, we have:

FreeEnergy(x) = −bTx−
∑
i

log
∑
hi

exphi(ci+Wix)
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Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

We have an expression for P (x) and the Free Energy can be
computed analytically

The conditional probability:

P (h|x) = exp (bTx+ cTh+ hTWx)∑
h̃ exp (b

Tx+ cT h̃+ h̃TWx)
=
∏
i

P (hi|x)
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Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

x and h play symmetric roles:

P (x|h) =
∏
i

P (xi|h)

The common transfer (for the binary case):

P (hi = 1|x) = σ(ci +Wix)

P (xj = 1|h) = σ(bj +W T
:,jh)
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Approximate Learning and Gibbs Sampling

EP̃

[
∂ logP (x)

∂θ

]
= −EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)

∂θ

]

We saw the expression for Free Energy for a RBM. But the
second term was intractable. How do learn in this case?

Replace the average over all possible input configurations by
samples

Run Markov Chain Monte Carlo (Gibbs Sampling):

We want P̃ (x) ≈ P (x)
First sample x1 ∼ P̃ (x), then h1 ∼ P (h|x1), then
x2 ∼ P (x|h1), then h2 ∼ P (h|x2) till xk+1
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Approximate Learning, Alternating Gibbs
Sampling

We have already seen: P (x|h) =
∏
i

P (xi|h) and

P (h|x) =
∏
i

P (hi|x)

With: P (hi = 1|x) = σ(ci +Wix) and
P (xj = 1|h) = σ(bj +W T

:,jh)
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Training a RBM: The Contrastive Divergence
Algorithm

Start with a training example on the visible units

Update all the hidden units in parallel

Update all the visible units in parallel to obtain a
reconstruction

Update all the hidden units again

Update model parameters

Aside: Easy to extend RBM (and contrastive divergence) to
the continuous case
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Boltzmann Machines

A model in which the energy has the form:

Energy(x,h) = −bTx− cTh− hTWx− xTUx− hTV h

Originally proposed by Hinton and Sejnowski (1983)

Important historically. But very difficult to train (why?)
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Gradient of Log-Likelihood Revisited

∂ logP (x)

∂θ
=
∂ log

∑
h exp

−Energy(x,h)

∂θ

−
∂ log

∑
x̃,h exp

−Energy(x̃,h)

∂θ

After basic manipulations and substitution:

∂ logP (x)

∂θ
= −

∑
h

P (h|x)∂Energy(x,h)

∂θ

+
∑
x̃,h

P (x̃,h)
∂Energy(x̃,h)

∂θ
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Gradient of Log-Likelihood Revisited

∂ logP (x)

∂θ
= −

∑
h

P (h|x)∂Energy(x,h)

∂θ

+
∑
x̃,h

P (x̃,h)
∂Energy(x̃,h)

∂θ

Note that ∂Energy(x,h)
∂θ is easy to compute

If we have a procedure to sample from P (h|x) and from
P (x̃,h) we get an unbiased stochastic estimator of the
gradient
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Back to Deep Belief Networks

. . .
x

. . .
h1

. . .
h2

. . .
h3

P (x,h1, . . . ,hl) = P (hl,hl−1)
( l−2∏
k=1

P (hk|hk+1)
)
P (x|h1)
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Greedy Layer-wise Training of DBNs

Reference: G. E. Hinton, S. Osindero and Y-W Teh: A Fast
Learning Algorithm for Deep Belief Networks, In Neural
Computation, 2006.

First Step: Construct a RBM with input x and a hidden layer
h, train the RBM

Stack another layer on top of the RBM to form a new RBM.
Fix W 1, sample from P (h1|x), train W 2 as RBM

Continue till k layers

Implicitly defines P (x) and P (h) (variational bound justifies
layerwise training)

Can then be discriminatively fine-tuned using backpropagation
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Deep Autoencoders (2006)

G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 2006

From last time: Was hard to train deep networks from scratch in
2006!
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Semantic Hashing

G. Hinton and R. Salakhutdinov, ”Semantic Hashing”, 2006
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Why does Unsupervised Pre-training work?

Regularization. Feature representations that are good for
P (x) are good for P (y|x)

Optimization: Unsupervised pre-training leads to better
regions of the space i.e. better than random initialization
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Effect of Unsupervised Pre-training
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Lecture 17 Deep Neural Generative Models II CMSC 35246



Important topics we didn’t talk about in detail/at all:

• Joint unsupervised training of all layers (Wake-Sleep
algorithm)

• Deep Boltzmann Machines
• Variational bounds justifying greedy layerwise training
• Conditional RBMs, Multimodal RBMs, Temporal RBMs

etc
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Generative Adversarial Networks
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Representations

Figure: Ruslan Salakhutdinov
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Motivation

We don’t want to write down the formula for P (X)

Thus want to avoid variational learning, ML estimation,
MCMC etc

By playing an adversarial game!
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Goal

Assume we have training samples
D = {X|X ∼ Pdata, X ∈ X}

We want a generative model Pmodel from which we can draw
new samples X ∼ Pmodel

Such that Pmodel ≈ Pdata

Figure by Gilles Louppe
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Generative Adversarial Networks (Goodfellow
et al. 2014)

Don’t assume any form, instead use a neural network to
produce similar samples

Setup a two-player game between:

• A Generator G
• A Discriminator D

The discriminator D tries to distinguish between a sample
from Pmodel and a sample from G

The generator G tries to fool D by producing samples that
are hard to discriminate from the real data
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Catch me if you can

Slide adapted from Gilles Louppe
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Generative Adversarial Networks

Slide adapted from Ian Goodfellow
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Generative Adversarial Networks

The value function:

V (D,G) = EX∼Pdata
[log(D(X))]+EZ∼Pnoise

[log(1−D(G(X)))]

For training we want to:

• Fix G, find D which maximizes V (D,G)
• Fix D, find G which minimizes V (D,G)

Alternate till convergence

This is good since we can use the machinery for neural
networks
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Samples
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Samples

Open Question: How do you evaluate goodness of generated
samples?
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Next Time

GANs wrap-up

Quiz
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