
Lecture 17
Deep Neural Generative Models II

CMSC 35246: Deep Learning

Shubhendu Trivedi
&

Risi Kondor

University of Chicago

May 24, 2017

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Linear Factor Models

Sample latent factors h ∼ P (h)

Generate x =Wh+ b+ ε

In Probabilistic PCA:

• Latent Factors: h ∼ N (h; 0, I)
• Noise Model: ε ∼ N (0, σ2I)

Estimate W,b, σ2 by maximum likelihood estimation or
Expectation Maximization (EM)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Linear Factor Models

Sample latent factors h ∼ P (h)
Generate x =Wh+ b+ ε

In Probabilistic PCA:

• Latent Factors: h ∼ N (h; 0, I)
• Noise Model: ε ∼ N (0, σ2I)

Estimate W,b, σ2 by maximum likelihood estimation or
Expectation Maximization (EM)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Linear Factor Models

Sample latent factors h ∼ P (h)
Generate x =Wh+ b+ ε

In Probabilistic PCA:

• Latent Factors: h ∼ N (h; 0, I)

• Noise Model: ε ∼ N (0, σ2I)

Estimate W,b, σ2 by maximum likelihood estimation or
Expectation Maximization (EM)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Linear Factor Models

Sample latent factors h ∼ P (h)
Generate x =Wh+ b+ ε

In Probabilistic PCA:

• Latent Factors: h ∼ N (h; 0, I)
• Noise Model: ε ∼ N (0, σ2I)

Estimate W,b, σ2 by maximum likelihood estimation or
Expectation Maximization (EM)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Linear Factor Models

Sample latent factors h ∼ P (h)
Generate x =Wh+ b+ ε

In Probabilistic PCA:

• Latent Factors: h ∼ N (h; 0, I)
• Noise Model: ε ∼ N (0, σ2I)

Estimate W,b, σ2 by maximum likelihood estimation or
Expectation Maximization (EM)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Linear Factor Models

Sample latent factors h ∼ P (h)

Generate x =Wh+ b+ ε

In Factor Analysis:

• Latent Factors: h ∼ N (h; 0, I)
• Noise Model: ε ∼ N (0, diag([σ21, σ

2
2, . . . , σ

2
d])

Estimate W,b, diag([σ21, σ
2
2, . . . , σ

2
d] by Expectation

Maximization

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Linear Factor Models

Sample latent factors h ∼ P (h)
Generate x =Wh+ b+ ε

In Factor Analysis:

• Latent Factors: h ∼ N (h; 0, I)
• Noise Model: ε ∼ N (0, diag([σ21, σ

2
2, . . . , σ

2
d])

Estimate W,b, diag([σ21, σ
2
2, . . . , σ

2
d] by Expectation

Maximization

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Linear Factor Models

Sample latent factors h ∼ P (h)
Generate x =Wh+ b+ ε

In Factor Analysis:

• Latent Factors: h ∼ N (h; 0, I)

• Noise Model: ε ∼ N (0, diag([σ21, σ
2
2, . . . , σ

2
d])

Estimate W,b, diag([σ21, σ
2
2, . . . , σ

2
d] by Expectation

Maximization

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Linear Factor Models

Sample latent factors h ∼ P (h)
Generate x =Wh+ b+ ε

In Factor Analysis:

• Latent Factors: h ∼ N (h; 0, I)
• Noise Model: ε ∼ N (0, diag([σ21, σ

2
2, . . . , σ

2
d])

Estimate W,b, diag([σ21, σ
2
2, . . . , σ

2
d] by Expectation

Maximization

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Linear Factor Models

Sample latent factors h ∼ P (h)
Generate x =Wh+ b+ ε

In Factor Analysis:

• Latent Factors: h ∼ N (h; 0, I)
• Noise Model: ε ∼ N (0, diag([σ21, σ

2
2, . . . , σ

2
d])

Estimate W,b, diag([σ21, σ
2
2, . . . , σ

2
d] by Expectation

Maximization

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Linear Factor Models

P (h) is a factorial distribution

x1 x2 x3 x4 x5

h1 h2 h3

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Sigmoid Belief Networks

. . .
x

. . .
h1

. . .
h2

. . .
h3

Just like a feedfoward network, but with arrows reversed

What if we place a class as a latent variable at the top?

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Sigmoid Belief Networks

. . .
x

. . .
h1

. . .
h2

. . .
h3

Just like a feedfoward network, but with arrows reversed

What if we place a class as a latent variable at the top?

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Sigmoid Belief Networks

Joint probability factorizes as:

P (x,h1, . . . ,hl) = P (hl)
(l−1∏
k=1

P (hk|hk+1)
)
P (x|h1)

Marginalization yields P (x)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Sigmoid Belief Networks

Joint probability factorizes as:

P (x,h1, . . . ,hl) = P (hl)
(l−1∏
k=1

P (hk|hk+1)
)
P (x|h1)

Marginalization yields P (x)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Sigmoid Belief Networks

Joint probability factorizes as:

P (x,h1, . . . ,hl) = P (hl)
(l−1∏
k=1

P (hk|hk+1)
)
P (x|h1)

Marginalization yields P (x)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Deep Belief Networks

. . .
x

. . .
h1

. . .
h2

. . .
h3

The top two layers are a Restricted Boltzmann Machine

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Deep Belief Networks

The joint probability factorizes as:

P (x,h1, . . . ,hl) = P (hl,hl−1)
(l−2∏
k=1

P (hk|hk+1)
)
P (x|h1)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

We defined a probability distribution through an energy:

P (x) =
exp−(Energy(x))

Z

Z is a normalizing factor called the Partition Function

Z =
∑
x

exp(−Energy(x))

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

We defined a probability distribution through an energy:

P (x) =
exp−(Energy(x))

Z

Z is a normalizing factor called the Partition Function

Z =
∑
x

exp(−Energy(x))

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

We defined a probability distribution through an energy:

P (x) =
exp−(Energy(x))

Z

Z is a normalizing factor called the Partition Function

Z =
∑
x

exp(−Energy(x))

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

One formulation of the energy:

Energy(x) =
∑
i

fi(x)

This gave us the Product of Experts Model (PoE):

P (x) ∝
∏
i

Pi(x) ∝
∏
i

exp(−fi(x))

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

One formulation of the energy:

Energy(x) =
∑
i

fi(x)

This gave us the Product of Experts Model (PoE):

P (x) ∝
∏
i

Pi(x) ∝
∏
i

exp(−fi(x))

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

One formulation of the energy:

Energy(x) =
∑
i

fi(x)

This gave us the Product of Experts Model (PoE):

P (x) ∝
∏
i

Pi(x) ∝
∏
i

exp(−fi(x))

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

One formulation of the energy:

Energy(x) =
∑
i

fi(x)

This gave us the Product of Experts Model (PoE):

P (x) ∝
∏
i

Pi(x) ∝
∏
i

exp(−fi(x))

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

x is observed, h represents hidden factors

Joint probability:

P (x,h) =
exp−(Energy(x,h))

Z

We only care about the marginal:

P (x) =
∑
h

exp−(Energy(x,h))

Z

We can write the marginal in terms of free energy:

P (x) =
exp−(FreeEnergy(x))

Z
with Z =

∑
x

exp−FreeEnergy(x)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

x is observed, h represents hidden factors

Joint probability:

P (x,h) =
exp−(Energy(x,h))

Z

We only care about the marginal:

P (x) =
∑
h

exp−(Energy(x,h))

Z

We can write the marginal in terms of free energy:

P (x) =
exp−(FreeEnergy(x))

Z
with Z =

∑
x

exp−FreeEnergy(x)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

x is observed, h represents hidden factors

Joint probability:

P (x,h) =
exp−(Energy(x,h))

Z

We only care about the marginal:

P (x) =
∑
h

exp−(Energy(x,h))

Z

We can write the marginal in terms of free energy:

P (x) =
exp−(FreeEnergy(x))

Z
with Z =

∑
x

exp−FreeEnergy(x)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

x is observed, h represents hidden factors

Joint probability:

P (x,h) =
exp−(Energy(x,h))

Z

We only care about the marginal:

P (x) =
∑
h

exp−(Energy(x,h))

Z

We can write the marginal in terms of free energy:

P (x) =
exp−(FreeEnergy(x))

Z
with Z =

∑
x

exp−FreeEnergy(x)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

EP̃

[
∂ logP (x)

∂θ

]
= −EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)

∂θ

]

P̃ is the empirical training distribution

Easy to compute!

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

EP̃

[
∂ logP (x)

∂θ

]
= −EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)

∂θ

]

P̃ is the empirical training distribution

Easy to compute!

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

EP̃

[
∂ logP (x)

∂θ

]
= −EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)

∂θ

]

P is the model distribution (exponentially many
configurations!)

Usually very hard to compute!

Resort to Markov Chain Monte Carlo to get a stochastic
estimator of the gradient

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

EP̃

[
∂ logP (x)

∂θ

]
= −EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)

∂θ

]

P is the model distribution (exponentially many
configurations!)

Usually very hard to compute!

Resort to Markov Chain Monte Carlo to get a stochastic
estimator of the gradient

Lecture 17 Deep Neural Generative Models II CMSC 35246

Recap: Energy Based Models

EP̃

[
∂ logP (x)

∂θ

]
= −EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)

∂θ

]

P is the model distribution (exponentially many
configurations!)

Usually very hard to compute!

Resort to Markov Chain Monte Carlo to get a stochastic
estimator of the gradient

Lecture 17 Deep Neural Generative Models II CMSC 35246

End of recap

Lecture 17 Deep Neural Generative Models II CMSC 35246

A Special Case

Suppose the energy has the following form:

Energy(x,h) = −β(x) +
∑
i

γi(x,hi)

P (x) =
exp−(FreeEnergy(x))

Z
=

expβ(x)

Z

∏
i

∑
hi

exp−γi(x,hi)

FreeEnergy(x) = − logP (x)− logZ

= −β −
∑
i

log
∑
hi

exp−γi(x,hi)

Lecture 17 Deep Neural Generative Models II CMSC 35246

A Special Case

Suppose the energy has the following form:

Energy(x,h) = −β(x) +
∑
i

γi(x,hi)

P (x) =
exp−(FreeEnergy(x))

Z
=

expβ(x)

Z

∏
i

∑
hi

exp−γi(x,hi)

FreeEnergy(x) = − logP (x)− logZ

= −β −
∑
i

log
∑
hi

exp−γi(x,hi)

Lecture 17 Deep Neural Generative Models II CMSC 35246

A Special Case

Suppose the energy has the following form:

Energy(x,h) = −β(x) +
∑
i

γi(x,hi)

P (x) =
exp−(FreeEnergy(x))

Z
=

expβ(x)

Z

∏
i

∑
hi

exp−γi(x,hi)

FreeEnergy(x) = − logP (x)− logZ

= −β −
∑
i

log
∑
hi

exp−γi(x,hi)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

Form of energy:

Energy(x,h) = −bTx− cTh− hTWx

Takes the earlier nice form with β(x) = bTx and
γi(x,hi) = hi(ci +Wix)

Originally proposed by Smolensky (1987) who called them
Harmoniums as a special case of Boltzmann Machines

Lecture 17 Deep Neural Generative Models II CMSC 35246

Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

Form of energy:

Energy(x,h) = −bTx− cTh− hTWx

Takes the earlier nice form with β(x) = bTx and
γi(x,hi) = hi(ci +Wix)

Originally proposed by Smolensky (1987) who called them
Harmoniums as a special case of Boltzmann Machines

Lecture 17 Deep Neural Generative Models II CMSC 35246

Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

Form of energy:

Energy(x,h) = −bTx− cTh− hTWx

Takes the earlier nice form with β(x) = bTx and
γi(x,hi) = hi(ci +Wix)

Originally proposed by Smolensky (1987) who called them
Harmoniums as a special case of Boltzmann Machines

Lecture 17 Deep Neural Generative Models II CMSC 35246

Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

Form of energy:

Energy(x,h) = −bTx− cTh− hTWx

Takes the earlier nice form with β(x) = bTx and
γi(x,hi) = hi(ci +Wix)

Originally proposed by Smolensky (1987) who called them
Harmoniums as a special case of Boltzmann Machines

Lecture 17 Deep Neural Generative Models II CMSC 35246

Restricted Boltzmann Machines

With β(x) = bTx and γi(x,hi) = hi(ci +Wix):

P (x) =
expb

Tx

Z

∏
i

∑
hi

exphi(ci+Wix)

Likewise, plugging in, we have:

FreeEnergy(x) = −bTx−
∑
i

log
∑
hi

exphi(ci+Wix)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Restricted Boltzmann Machines

With β(x) = bTx and γi(x,hi) = hi(ci +Wix):

P (x) =
expb

Tx

Z

∏
i

∑
hi

exphi(ci+Wix)

Likewise, plugging in, we have:

FreeEnergy(x) = −bTx−
∑
i

log
∑
hi

exphi(ci+Wix)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Restricted Boltzmann Machines

With β(x) = bTx and γi(x,hi) = hi(ci +Wix):

P (x) =
expb

Tx

Z

∏
i

∑
hi

exphi(ci+Wix)

Likewise, plugging in, we have:

FreeEnergy(x) = −bTx−
∑
i

log
∑
hi

exphi(ci+Wix)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

We have an expression for P (x) and the Free Energy can be
computed analytically

The conditional probability:

P (h|x) = exp (bTx+ cTh+ hTWx)∑
h̃ exp (b

Tx+ cT h̃+ h̃TWx)
=
∏
i

P (hi|x)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

We have an expression for P (x) and the Free Energy can be
computed analytically

The conditional probability:

P (h|x) = exp (bTx+ cTh+ hTWx)∑
h̃ exp (b

Tx+ cT h̃+ h̃TWx)
=
∏
i

P (hi|x)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

x and h play symmetric roles:

P (x|h) =
∏
i

P (xi|h)

The common transfer (for the binary case):

P (hi = 1|x) = σ(ci +Wix)

P (xj = 1|h) = σ(bj +W T
:,jh)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

x and h play symmetric roles:

P (x|h) =
∏
i

P (xi|h)

The common transfer (for the binary case):

P (hi = 1|x) = σ(ci +Wix)

P (xj = 1|h) = σ(bj +W T
:,jh)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

x and h play symmetric roles:

P (x|h) =
∏
i

P (xi|h)

The common transfer (for the binary case):

P (hi = 1|x) = σ(ci +Wix)

P (xj = 1|h) = σ(bj +W T
:,jh)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

x and h play symmetric roles:

P (x|h) =
∏
i

P (xi|h)

The common transfer (for the binary case):

P (hi = 1|x) = σ(ci +Wix)

P (xj = 1|h) = σ(bj +W T
:,jh)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

x and h play symmetric roles:

P (x|h) =
∏
i

P (xi|h)

The common transfer (for the binary case):

P (hi = 1|x) = σ(ci +Wix)

P (xj = 1|h) = σ(bj +W T
:,jh)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Restricted Boltzmann Machines

. . .
hl

. . .
hl+1

x and h play symmetric roles:

P (x|h) =
∏
i

P (xi|h)

The common transfer (for the binary case):

P (hi = 1|x) = σ(ci +Wix)

P (xj = 1|h) = σ(bj +W T
:,jh)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Approximate Learning and Gibbs Sampling

EP̃

[
∂ logP (x)

∂θ

]
= −EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)

∂θ

]

We saw the expression for Free Energy for a RBM. But the
second term was intractable. How do learn in this case?

Replace the average over all possible input configurations by
samples

Run Markov Chain Monte Carlo (Gibbs Sampling):

We want P̃ (x) ≈ P (x)
First sample x1 ∼ P̃ (x), then h1 ∼ P (h|x1), then
x2 ∼ P (x|h1), then h2 ∼ P (h|x2) till xk+1

Lecture 17 Deep Neural Generative Models II CMSC 35246

Approximate Learning and Gibbs Sampling

EP̃

[
∂ logP (x)

∂θ

]
= −EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)

∂θ

]

We saw the expression for Free Energy for a RBM. But the
second term was intractable. How do learn in this case?

Replace the average over all possible input configurations by
samples

Run Markov Chain Monte Carlo (Gibbs Sampling):

We want P̃ (x) ≈ P (x)
First sample x1 ∼ P̃ (x), then h1 ∼ P (h|x1), then
x2 ∼ P (x|h1), then h2 ∼ P (h|x2) till xk+1

Lecture 17 Deep Neural Generative Models II CMSC 35246

Approximate Learning and Gibbs Sampling

EP̃

[
∂ logP (x)

∂θ

]
= −EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)

∂θ

]

We saw the expression for Free Energy for a RBM. But the
second term was intractable. How do learn in this case?

Replace the average over all possible input configurations by
samples

Run Markov Chain Monte Carlo (Gibbs Sampling):

We want P̃ (x) ≈ P (x)
First sample x1 ∼ P̃ (x), then h1 ∼ P (h|x1), then
x2 ∼ P (x|h1), then h2 ∼ P (h|x2) till xk+1

Lecture 17 Deep Neural Generative Models II CMSC 35246

Approximate Learning and Gibbs Sampling

EP̃

[
∂ logP (x)

∂θ

]
= −EP̃

[
∂FreeEnergy(x)

∂θ

]
+EP

[
∂FreeEnergy(x)

∂θ

]

We saw the expression for Free Energy for a RBM. But the
second term was intractable. How do learn in this case?

Replace the average over all possible input configurations by
samples

Run Markov Chain Monte Carlo (Gibbs Sampling):

We want P̃ (x) ≈ P (x)
First sample x1 ∼ P̃ (x), then h1 ∼ P (h|x1), then
x2 ∼ P (x|h1), then h2 ∼ P (h|x2) till xk+1

Lecture 17 Deep Neural Generative Models II CMSC 35246

Approximate Learning, Alternating Gibbs
Sampling

We have already seen: P (x|h) =
∏
i

P (xi|h) and

P (h|x) =
∏
i

P (hi|x)

With: P (hi = 1|x) = σ(ci +Wix) and
P (xj = 1|h) = σ(bj +W T

:,jh)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Approximate Learning, Alternating Gibbs
Sampling

We have already seen: P (x|h) =
∏
i

P (xi|h) and

P (h|x) =
∏
i

P (hi|x)

With: P (hi = 1|x) = σ(ci +Wix) and
P (xj = 1|h) = σ(bj +W T

:,jh)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Training a RBM: The Contrastive Divergence
Algorithm

Start with a training example on the visible units

Update all the hidden units in parallel

Update all the visible units in parallel to obtain a
reconstruction

Update all the hidden units again

Update model parameters

Aside: Easy to extend RBM (and contrastive divergence) to
the continuous case

Lecture 17 Deep Neural Generative Models II CMSC 35246

Training a RBM: The Contrastive Divergence
Algorithm

Start with a training example on the visible units

Update all the hidden units in parallel

Update all the visible units in parallel to obtain a
reconstruction

Update all the hidden units again

Update model parameters

Aside: Easy to extend RBM (and contrastive divergence) to
the continuous case

Lecture 17 Deep Neural Generative Models II CMSC 35246

Training a RBM: The Contrastive Divergence
Algorithm

Start with a training example on the visible units

Update all the hidden units in parallel

Update all the visible units in parallel to obtain a
reconstruction

Update all the hidden units again

Update model parameters

Aside: Easy to extend RBM (and contrastive divergence) to
the continuous case

Lecture 17 Deep Neural Generative Models II CMSC 35246

Training a RBM: The Contrastive Divergence
Algorithm

Start with a training example on the visible units

Update all the hidden units in parallel

Update all the visible units in parallel to obtain a
reconstruction

Update all the hidden units again

Update model parameters

Aside: Easy to extend RBM (and contrastive divergence) to
the continuous case

Lecture 17 Deep Neural Generative Models II CMSC 35246

Training a RBM: The Contrastive Divergence
Algorithm

Start with a training example on the visible units

Update all the hidden units in parallel

Update all the visible units in parallel to obtain a
reconstruction

Update all the hidden units again

Update model parameters

Aside: Easy to extend RBM (and contrastive divergence) to
the continuous case

Lecture 17 Deep Neural Generative Models II CMSC 35246

Training a RBM: The Contrastive Divergence
Algorithm

Start with a training example on the visible units

Update all the hidden units in parallel

Update all the visible units in parallel to obtain a
reconstruction

Update all the hidden units again

Update model parameters

Aside: Easy to extend RBM (and contrastive divergence) to
the continuous case

Lecture 17 Deep Neural Generative Models II CMSC 35246

Boltzmann Machines

A model in which the energy has the form:

Energy(x,h) = −bTx− cTh− hTWx− xTUx− hTV h

Originally proposed by Hinton and Sejnowski (1983)

Important historically. But very difficult to train (why?)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Boltzmann Machines

A model in which the energy has the form:

Energy(x,h) = −bTx− cTh− hTWx− xTUx− hTV h

Originally proposed by Hinton and Sejnowski (1983)

Important historically. But very difficult to train (why?)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Boltzmann Machines

A model in which the energy has the form:

Energy(x,h) = −bTx− cTh− hTWx− xTUx− hTV h

Originally proposed by Hinton and Sejnowski (1983)

Important historically. But very difficult to train (why?)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Gradient of Log-Likelihood Revisited

∂ logP (x)

∂θ
=
∂ log

∑
h exp

−Energy(x,h)

∂θ

−
∂ log

∑
x̃,h exp

−Energy(x̃,h)

∂θ

After basic manipulations and substitution:

∂ logP (x)

∂θ
= −

∑
h

P (h|x)∂Energy(x,h)

∂θ

+
∑
x̃,h

P (x̃,h)
∂Energy(x̃,h)

∂θ

Lecture 17 Deep Neural Generative Models II CMSC 35246

Gradient of Log-Likelihood Revisited

∂ logP (x)

∂θ
=
∂ log

∑
h exp

−Energy(x,h)

∂θ

−
∂ log

∑
x̃,h exp

−Energy(x̃,h)

∂θ

After basic manipulations and substitution:

∂ logP (x)

∂θ
= −

∑
h

P (h|x)∂Energy(x,h)

∂θ

+
∑
x̃,h

P (x̃,h)
∂Energy(x̃,h)

∂θ

Lecture 17 Deep Neural Generative Models II CMSC 35246

Gradient of Log-Likelihood Revisited

∂ logP (x)

∂θ
= −

∑
h

P (h|x)∂Energy(x,h)

∂θ

+
∑
x̃,h

P (x̃,h)
∂Energy(x̃,h)

∂θ

Note that ∂Energy(x,h)
∂θ is easy to compute

If we have a procedure to sample from P (h|x) and from
P (x̃,h) we get an unbiased stochastic estimator of the
gradient

Lecture 17 Deep Neural Generative Models II CMSC 35246

Gradient of Log-Likelihood Revisited

∂ logP (x)

∂θ
= −

∑
h

P (h|x)∂Energy(x,h)

∂θ

+
∑
x̃,h

P (x̃,h)
∂Energy(x̃,h)

∂θ

Note that ∂Energy(x,h)
∂θ is easy to compute

If we have a procedure to sample from P (h|x) and from
P (x̃,h) we get an unbiased stochastic estimator of the
gradient

Lecture 17 Deep Neural Generative Models II CMSC 35246

Gradient of Log-Likelihood Revisited

∂ logP (x)

∂θ
= −

∑
h

P (h|x)∂Energy(x,h)

∂θ

+
∑
x̃,h

P (x̃,h)
∂Energy(x̃,h)

∂θ

Note that ∂Energy(x,h)
∂θ is easy to compute

If we have a procedure to sample from P (h|x) and from
P (x̃,h) we get an unbiased stochastic estimator of the
gradient

Lecture 17 Deep Neural Generative Models II CMSC 35246

Gradient of Log-Likelihood Revisited

∂ logP (x)

∂θ
= −

∑
h

P (h|x)∂Energy(x,h)

∂θ

+
∑
x̃,h

P (x̃,h)
∂Energy(x̃,h)

∂θ

Note that ∂Energy(x,h)
∂θ is easy to compute

If we have a procedure to sample from P (h|x) and from
P (x̃,h) we get an unbiased stochastic estimator of the
gradient

Lecture 17 Deep Neural Generative Models II CMSC 35246

Back to Deep Belief Networks

. . .
x

. . .
h1

. . .
h2

. . .
h3

P (x,h1, . . . ,hl) = P (hl,hl−1)
(l−2∏
k=1

P (hk|hk+1)
)
P (x|h1)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Back to Deep Belief Networks

. . .
x

. . .
h1

. . .
h2

. . .
h3

P (x,h1, . . . ,hl) = P (hl,hl−1)
(l−2∏
k=1

P (hk|hk+1)
)
P (x|h1)

Lecture 17 Deep Neural Generative Models II CMSC 35246

Greedy Layer-wise Training of DBNs

Reference: G. E. Hinton, S. Osindero and Y-W Teh: A Fast
Learning Algorithm for Deep Belief Networks, In Neural
Computation, 2006.

First Step: Construct a RBM with input x and a hidden layer
h, train the RBM

Stack another layer on top of the RBM to form a new RBM.
Fix W 1, sample from P (h1|x), train W 2 as RBM

Continue till k layers

Implicitly defines P (x) and P (h) (variational bound justifies
layerwise training)

Can then be discriminatively fine-tuned using backpropagation

Lecture 17 Deep Neural Generative Models II CMSC 35246

Greedy Layer-wise Training of DBNs

Reference: G. E. Hinton, S. Osindero and Y-W Teh: A Fast
Learning Algorithm for Deep Belief Networks, In Neural
Computation, 2006.

First Step: Construct a RBM with input x and a hidden layer
h, train the RBM

Stack another layer on top of the RBM to form a new RBM.
Fix W 1, sample from P (h1|x), train W 2 as RBM

Continue till k layers

Implicitly defines P (x) and P (h) (variational bound justifies
layerwise training)

Can then be discriminatively fine-tuned using backpropagation

Lecture 17 Deep Neural Generative Models II CMSC 35246

Greedy Layer-wise Training of DBNs

Reference: G. E. Hinton, S. Osindero and Y-W Teh: A Fast
Learning Algorithm for Deep Belief Networks, In Neural
Computation, 2006.

First Step: Construct a RBM with input x and a hidden layer
h, train the RBM

Stack another layer on top of the RBM to form a new RBM.
Fix W 1, sample from P (h1|x), train W 2 as RBM

Continue till k layers

Implicitly defines P (x) and P (h) (variational bound justifies
layerwise training)

Can then be discriminatively fine-tuned using backpropagation

Lecture 17 Deep Neural Generative Models II CMSC 35246

Greedy Layer-wise Training of DBNs

Reference: G. E. Hinton, S. Osindero and Y-W Teh: A Fast
Learning Algorithm for Deep Belief Networks, In Neural
Computation, 2006.

First Step: Construct a RBM with input x and a hidden layer
h, train the RBM

Stack another layer on top of the RBM to form a new RBM.
Fix W 1, sample from P (h1|x), train W 2 as RBM

Continue till k layers

Implicitly defines P (x) and P (h) (variational bound justifies
layerwise training)

Can then be discriminatively fine-tuned using backpropagation

Lecture 17 Deep Neural Generative Models II CMSC 35246

Greedy Layer-wise Training of DBNs

Reference: G. E. Hinton, S. Osindero and Y-W Teh: A Fast
Learning Algorithm for Deep Belief Networks, In Neural
Computation, 2006.

First Step: Construct a RBM with input x and a hidden layer
h, train the RBM

Stack another layer on top of the RBM to form a new RBM.
Fix W 1, sample from P (h1|x), train W 2 as RBM

Continue till k layers

Implicitly defines P (x) and P (h) (variational bound justifies
layerwise training)

Can then be discriminatively fine-tuned using backpropagation

Lecture 17 Deep Neural Generative Models II CMSC 35246

Greedy Layer-wise Training of DBNs

Reference: G. E. Hinton, S. Osindero and Y-W Teh: A Fast
Learning Algorithm for Deep Belief Networks, In Neural
Computation, 2006.

First Step: Construct a RBM with input x and a hidden layer
h, train the RBM

Stack another layer on top of the RBM to form a new RBM.
Fix W 1, sample from P (h1|x), train W 2 as RBM

Continue till k layers

Implicitly defines P (x) and P (h) (variational bound justifies
layerwise training)

Can then be discriminatively fine-tuned using backpropagation

Lecture 17 Deep Neural Generative Models II CMSC 35246

Deep Autoencoders (2006)

G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 2006

From last time: Was hard to train deep networks from scratch in
2006!

Lecture 17 Deep Neural Generative Models II CMSC 35246

Semantic Hashing

G. Hinton and R. Salakhutdinov, ”Semantic Hashing”, 2006

Lecture 17 Deep Neural Generative Models II CMSC 35246

Why does Unsupervised Pre-training work?

Regularization. Feature representations that are good for
P (x) are good for P (y|x)

Optimization: Unsupervised pre-training leads to better
regions of the space i.e. better than random initialization

Lecture 17 Deep Neural Generative Models II CMSC 35246

Why does Unsupervised Pre-training work?

Regularization. Feature representations that are good for
P (x) are good for P (y|x)
Optimization: Unsupervised pre-training leads to better
regions of the space i.e. better than random initialization

Lecture 17 Deep Neural Generative Models II CMSC 35246

Effect of Unsupervised Pre-training

Lecture 17 Deep Neural Generative Models II CMSC 35246

Effect of Unsupervised Pre-training

Lecture 17 Deep Neural Generative Models II CMSC 35246

Important topics we didn’t talk about in detail/at all:

• Joint unsupervised training of all layers (Wake-Sleep
algorithm)

• Deep Boltzmann Machines
• Variational bounds justifying greedy layerwise training
• Conditional RBMs, Multimodal RBMs, Temporal RBMs

etc

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks

Lecture 17 Deep Neural Generative Models II CMSC 35246

Representations

Figure: Ruslan Salakhutdinov

Lecture 17 Deep Neural Generative Models II CMSC 35246

Motivation

We don’t want to write down the formula for P (X)

Thus want to avoid variational learning, ML estimation,
MCMC etc

By playing an adversarial game!

Lecture 17 Deep Neural Generative Models II CMSC 35246

Motivation

We don’t want to write down the formula for P (X)

Thus want to avoid variational learning, ML estimation,
MCMC etc

By playing an adversarial game!

Lecture 17 Deep Neural Generative Models II CMSC 35246

Motivation

We don’t want to write down the formula for P (X)

Thus want to avoid variational learning, ML estimation,
MCMC etc

By playing an adversarial game!

Lecture 17 Deep Neural Generative Models II CMSC 35246

Goal

Assume we have training samples
D = {X|X ∼ Pdata, X ∈ X}

We want a generative model Pmodel from which we can draw
new samples X ∼ Pmodel

Such that Pmodel ≈ Pdata

Figure by Gilles Louppe

Lecture 17 Deep Neural Generative Models II CMSC 35246

Goal

Assume we have training samples
D = {X|X ∼ Pdata, X ∈ X}
We want a generative model Pmodel from which we can draw
new samples X ∼ Pmodel

Such that Pmodel ≈ Pdata

Figure by Gilles Louppe

Lecture 17 Deep Neural Generative Models II CMSC 35246

Goal

Assume we have training samples
D = {X|X ∼ Pdata, X ∈ X}
We want a generative model Pmodel from which we can draw
new samples X ∼ Pmodel

Such that Pmodel ≈ Pdata

Figure by Gilles Louppe

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks (Goodfellow
et al. 2014)

Don’t assume any form, instead use a neural network to
produce similar samples

Setup a two-player game between:

• A Generator G
• A Discriminator D

The discriminator D tries to distinguish between a sample
from Pmodel and a sample from G

The generator G tries to fool D by producing samples that
are hard to discriminate from the real data

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks (Goodfellow
et al. 2014)

Don’t assume any form, instead use a neural network to
produce similar samples

Setup a two-player game between:

• A Generator G
• A Discriminator D

The discriminator D tries to distinguish between a sample
from Pmodel and a sample from G

The generator G tries to fool D by producing samples that
are hard to discriminate from the real data

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks (Goodfellow
et al. 2014)

Don’t assume any form, instead use a neural network to
produce similar samples

Setup a two-player game between:

• A Generator G

• A Discriminator D

The discriminator D tries to distinguish between a sample
from Pmodel and a sample from G

The generator G tries to fool D by producing samples that
are hard to discriminate from the real data

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks (Goodfellow
et al. 2014)

Don’t assume any form, instead use a neural network to
produce similar samples

Setup a two-player game between:

• A Generator G
• A Discriminator D

The discriminator D tries to distinguish between a sample
from Pmodel and a sample from G

The generator G tries to fool D by producing samples that
are hard to discriminate from the real data

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks (Goodfellow
et al. 2014)

Don’t assume any form, instead use a neural network to
produce similar samples

Setup a two-player game between:

• A Generator G
• A Discriminator D

The discriminator D tries to distinguish between a sample
from Pmodel and a sample from G

The generator G tries to fool D by producing samples that
are hard to discriminate from the real data

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks (Goodfellow
et al. 2014)

Don’t assume any form, instead use a neural network to
produce similar samples

Setup a two-player game between:

• A Generator G
• A Discriminator D

The discriminator D tries to distinguish between a sample
from Pmodel and a sample from G

The generator G tries to fool D by producing samples that
are hard to discriminate from the real data

Lecture 17 Deep Neural Generative Models II CMSC 35246

Catch me if you can

Slide adapted from Gilles Louppe

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks

Slide adapted from Ian Goodfellow

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks

Slide adapted from Ian Goodfellow

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks

Slide adapted from Ian Goodfellow

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks

Slide adapted from Ian Goodfellow

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks

The value function:

V (D,G) = EX∼Pdata
[log(D(X))]+EZ∼Pnoise

[log(1−D(G(X)))]

For training we want to:

• Fix G, find D which maximizes V (D,G)
• Fix D, find G which minimizes V (D,G)

Alternate till convergence

This is good since we can use the machinery for neural
networks

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks

The value function:

V (D,G) = EX∼Pdata
[log(D(X))]+EZ∼Pnoise

[log(1−D(G(X)))]

For training we want to:

• Fix G, find D which maximizes V (D,G)
• Fix D, find G which minimizes V (D,G)

Alternate till convergence

This is good since we can use the machinery for neural
networks

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks

The value function:

V (D,G) = EX∼Pdata
[log(D(X))]+EZ∼Pnoise

[log(1−D(G(X)))]

For training we want to:

• Fix G, find D which maximizes V (D,G)

• Fix D, find G which minimizes V (D,G)

Alternate till convergence

This is good since we can use the machinery for neural
networks

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks

The value function:

V (D,G) = EX∼Pdata
[log(D(X))]+EZ∼Pnoise

[log(1−D(G(X)))]

For training we want to:

• Fix G, find D which maximizes V (D,G)
• Fix D, find G which minimizes V (D,G)

Alternate till convergence

This is good since we can use the machinery for neural
networks

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks

The value function:

V (D,G) = EX∼Pdata
[log(D(X))]+EZ∼Pnoise

[log(1−D(G(X)))]

For training we want to:

• Fix G, find D which maximizes V (D,G)
• Fix D, find G which minimizes V (D,G)

Alternate till convergence

This is good since we can use the machinery for neural
networks

Lecture 17 Deep Neural Generative Models II CMSC 35246

Generative Adversarial Networks

The value function:

V (D,G) = EX∼Pdata
[log(D(X))]+EZ∼Pnoise

[log(1−D(G(X)))]

For training we want to:

• Fix G, find D which maximizes V (D,G)
• Fix D, find G which minimizes V (D,G)

Alternate till convergence

This is good since we can use the machinery for neural
networks

Lecture 17 Deep Neural Generative Models II CMSC 35246

Samples

Lecture 17 Deep Neural Generative Models II CMSC 35246

Samples

Open Question: How do you evaluate goodness of generated
samples?

Lecture 17 Deep Neural Generative Models II CMSC 35246

Next Time

GANs wrap-up

Quiz

Lecture 17 Deep Neural Generative Models II CMSC 35246

