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@ Things we will look at today

e More Backpropagation
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@ Things we will look at today

e More Backpropagation
o Still more backpropagation
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@ Things we will look at today

e More Backpropagation
o Still more backpropagation
e Quiz at 4:05 PM
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To understand, let us just calculate!
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One Neuron Again

w1
x

o Consider example x; Output for x is ¢; Correct Answer is y

o Loss L = (y —9)?
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One Neuron Again

w1
x

o Consider example x; Output for x is ¢; Correct Answer is y

o Loss L = (y —9)?

° y:xTW:x1w1+x2w2+...xdwd
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One Neuron Again

o

w1 w9

X1 €2 Zq

e Want to update w; (forget closed form solution for a bit!)
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One Neuron Again

o

w1 w9

X1 €2 Zq

e Want to update w; (forget closed form solution for a bit!)
o Update rule: w; := w; — ngfi
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One Neuron Again

o

w1 wWa

X1 €2 Zq

e Want to update w; (forget closed form solution for a bit!)
o Update rule: w; := w; — ngfi

o Now

oL
8wi -
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One Neuron Again

z1

e Want to update w; (forget closed form solution for a bit!)

e Update rule: w; := w; — ngfi
@ Now

OL _ 0 —y)* _

ow,  Ow;
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One Neuron Again

o

w1 w9

X1 €2 Zq

e Want to update w; (forget closed form solution for a bit!)

e Update rule: w; := w; — 7759151.
@ Now
OL = M — Q(A _ )8(‘7511[}1 + xowg + ... T4Wq)
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One Neuron Again

o

w1 w2

il i) Td

@ We have: OL =
8wi
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One Neuron Again

w1

z1
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One Neuron Again

w1
T

OL
We have: =2(y — i
e We have B, (g —y)x

e Update Rule:

w; = w; — (Y — y)x; = w; —ndxz; where § = (§ —y)
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One Neuron Again

w1
T

OL
We have: =2(y — i
e We have B, (g —y)x

e Update Rule:

w; = w; — (Y — y)x; = w; —ndxz; where § = (§ —y)

@ In vector form: w :=w — ndx
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One Neuron Again

Wq
w1 w9
il i) . xd

OL
We have: =2(y — i
e We have B, (g —y)x

e Update Rule:

w; = w; — (Y — y)x; = w; —ndxz; where § = (§ —y)

@ In vector form: w :=w — ndx

@ Simple enough! Now let’s graduate ...
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Simple Feedforward Network

<1
1
o
I
(), 2
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Simple Feedforward Network

21
1
wgl)
x1
o = w§2)z1 + w§2)22
e z; = tanh(ay) where a; = wgll)xl + wéll)xg + w§11)$3 likewise

for z9
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Simple Feedforward Network

w
22
X

e z; = tanh(ay) where a; = /
wgl)azl + w( )LUQ + wé )xg ad
@ 2z = tanh(ag) where ag =

wg)ml + w(l):vg + w%)xg

e Output g = w§2)21 + w§2)22; Loss L = (§ — y)*

Lecture 4 Backpropagation CMSC 35246



Simple Feedforward Network

w
22
X

e z; = tanh(ay) where a; = /
wgl)azl + w( )LUQ + wé )xg ad
@ 2z = tanh(ag) where ag =

wg)ml + w(l):vg + w%)xg

e Output g = w§2)21 + w§2)22; Loss L = (§ — y)*

@ Want to assign credit for the loss L to each weight
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Top Layer

e Want to find: —2L- and ‘9(2)
ow

e Consider w?) first
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Top Layer

e Want to find: —2L- and ‘9(2)
ow

e Consider w?) first

zy

oL  _
8w§2)
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Top Layer

8
e Want to find: o (2) and Bl

e Consider w?) first

oL  _ 9(g—y)? _

o = =
8w§2) Bw?)
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Top Layer

8
e Want to find: o (2) and Bl

. 2 .
o Consider w§ ) first
o _OL_ _ 0@—y)? _ 204 — ) (w21 +wi 25) _
8w§2) Bw?) Bw?)

Lecture 4 Backpropagation CMSC 35246



Top Layer

8
e Want to find: o (2) and Bl

e Consider w?) first
oL _ 3§—y)? _ orn O PatwPa) oo
® 2@ T ou® T 29— y) a;iz) =2(§—y)=

Lecture 4 Backpropagation CMSC 35246



Top Layer

8
e Want to find: o (2) and Bl

e Consider w?) first
oL _ 0(§—y)® _ ~ 8(w<2)z +w(2) 2) “
® 2@ T ou® T 29— y) a;iz) =2(§—y)=
e Familiar from earlier! Update for wgz) would be
2 ._,,2 L  _
Wy~ =Wy _naw?) -

Lecture 4 Backpropagation CMSC 35246



Top Layer

daL

e Want to find: (2) an e

e Consider w§ ) first

OL_ _ 3=y _ gpp _ 2wt mtwi?z) o0
° 8w§2) = Bwf) = 2(34 —v) a;iz) =2(y —y)=1
e Familiar from earlier! Update for wgz) would be
2 2 . N
wg )= wg ) —7]881(:2) = wg ) —ndzp with 0 = (g — y)
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Top Layer

8
Want to find: ) and Pul®

Consider w§ ) first

8(11}(2)

(2) 2)

21+wy

oL _ 0(H—y)? _ o/~ orn
® 2@ T ou® T 29— y) 0 =2(§—y)=
e Familiar from earlier! Update for wgz) would be

w§2) = w?) - 7738<L2> = wg = Nz with § = (3 —y)

o Likewise, for wé ) update would be wé )= wg) ndzo
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Next Layer &

@ There are six weights to assign

credit for the loss incurred
(1)

. 1
e Consider wy;

for an illustration

@ Rest are similar
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Next Layer &

@ There are six weights to assign

credit for the loss incurred
(1)

. 1
e Consider wy;

for an illustration
@ Rest are similar

o 0L _

8w§11)
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Next Layer &

@ There are six weights to assign

credit for the loss incurred
(1)

. 1
e Consider wy;

for an illustration
@ Rest are similar

AL A(G—y)?

oty awly
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Next Layer &

@ There are six weights to assign

credit for the loss incurred
(1)

. 1
e Consider wy;

for an illustration

@ Rest are similar

oL _ 9g—y)* _ 2 — 2 %2)
® 50D T TouD )
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Next Layer &

There are six weights to assign

credit for the loss incurred

Consider wﬁ)

for an illustration

Rest are similar
L _ 0(g—y)* _ 24 — y) O 214wl z2)
awﬁ) Bwﬁ) 8w§211)
Now: 20artuls) _
. Bw(l) -
11
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Next Layer &

There are six weights to assign

credit for the loss incurred

Consider wﬁ)

for an illustration

Rest are similar
L _ 0(g—y)* _ 24 — y) O 214wl z2)
awﬁ) Bwﬁ) 8w§211)
Now: 8(w§2)21+w52>22) (2 8(tanh(w§11>ar1+w£11)m2+w§11)a:3)) 0
ow: ow' ! ol *
11 11
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Next Layer &

@ There are six weights to assign

credit for the loss incurred

Consider wﬁ)

° for an illustration
@ Rest are similar
o 0L _ 9G-y? :g@_y)w
ow'y o) ERED)
o Now: M — w(2) 6(tanh(w§11>$1+w£11)a:2+w§11)a:3)) 10
Bwﬂ) 1 ngll)

Which is: wf)(l — tanh?(a1))z;
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Next Layer &

@ There are six weights to assign

credit for the loss incurred
(1)

e Consider w;;” for an illustration
@ Rest are similar
N (2) (2,
oL _ 0§—v)? _ o(n O(w;~ 214wy 22)
° — QWY _ o — q) 8L AWy 22)
awﬁ) Bwﬁ) (y y) 8w§211)
o Now: 8(w§2)21+w52>22) _ w(2) 8(tanh(w§11>ar1+w£11)m2+w§11)a:3)) +0
' owy ! ow'?)
11 11

Which is: wf)( — tanh?(ay))z; recall a; =?
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Next Layer &

@ There are six weights to assign
credit for the loss incurred
(1)

e Consider w;;” for an illustration

@ Rest are similar

o 0L _ 0@-y)? _ 24 — y) O(wi® 214wV 2)
awﬁ) Bwﬁ) 8w§211)
a(w'? (2) 2) d(tanh(w!Y (1) (1)
o Now: 2zt _ 0 otemteifertulovolan) | g
Wy Owyy

e Which is: wf)( — tanh?(ay))x recall a3 =?

o So we have: -5 = 2(j — y)wg )(1 — tanh?(ay))z

11
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Next Layer

oL .
° owly 2 / )
2(j — y)wi? (1 — tanh(ar))z; -

1

o Weight update:
(n . (1) oL
Wy = Wiy anm
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Next Layer

OL  _
awﬁ)

. 2
2(j — y)wy”
o Weight update:

(1)

o Likewise, if we were considering wyy’, we'd have:
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Next Layer

oL __
® il
. 2
2(j — y)wy”
o Weight update:
1 1 oL
wgl) = wgl) Pwey

(1)

o Likewise, if we were considering wyy’, we'd have:

o L. —9(j— y)wf)(l — tanh?(ay)) s

Bwé?

Lecture 4 Backpropagation CMSC 35246



Next Layer

oL  _
° ow'l
. 2
2(j — y)wy”
o Weight update:
@ ._ .1 oL
Wi =Wy =Ny @
o Likewise, if we were considering w%), we'd have:
. 2
° 6‘9{41) =2(y— y)wg )(1 — tanhQ(ag))acg
Wao
; can) (1) AL
o Weight update: wy, = wy, —naw%)
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Let’s clean this up...

634L2> = (9 —y)zi = 0z (ignoring 2)

w

@ Recall, for top layer:
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Let’s clean this up...

@ Recall, for top layer: ai%” = (§ — y)z; = dz; (ignoring 2)

oL _ 5
8w§2> ~~

local error |ocal input

@ One can think of this as: Zi

Lecture 4 Backpropagation CMSC 35246



Let’s clean this up...

@ Recall, for top layer: ai%” = (§ — y)z; = dz; (ignoring 2)

oL _ 5
8w§2> ~~

local error |ocal input

@ One can think of this as: Zi

e For next layer we had: aZﬁ) =(y— y)wj(?)(l — tanh?(a;))w;
ij
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Let’s clean this up...

@ Recall, for top layer: 63%2) = (§ — y)z; = dz; (ignoring 2)

i

oL _ 5
8w§2> ~~

local error |ocal input

@ One can think of this as: Zi

For next layer we had: 681(;1) = (- y)w(Q)(l — tanh2(aj)):);’i
ij

w! J

o Letd; = (y— y)wj(?)(l — tanh?(a;)) = (5w](-2)(1 — tanh?(a;))
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Let’s clean this up...

@ Recall, for top layer: ai%” = (§ — y)z; = dz; (ignoring 2)
@ One can think of this as: 8—@,) = ) Z
ow, ~—~

local error |ocal input

e For next layer we had: aZﬁ) =(y— y)wj(?)(l — tanh?(a;))w;
ij

o Letd; = (y— y)wj(?)(l — tanh?(a;)) = (5w](-2)(1 — tanh?(a;))

(Notice that §; contains the ¢ term (which is the error!))
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Let’s clean this up...

@ Recall, for top layer: ai%” = (§ — y)z; = dz; (ignoring 2)
@ One can think of this as: 8—@,) = ) Z
ow, ~—~

local error |ocal input

@ For next layer we had: " (1) =(y— y) (2 )( tanhQ(aj)):):Z-

o Let §; = (§ — y)w, (2 )( tanhz(aj)) = (5w](-2)(1 — tanh?(a;))
(Notice that J; contalns the 0 term (which is the error!))

@ Then: (1) = 5j ZT;

2] /
local error local input
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Let’s clean this up...

@ Recall, for top layer: ai%” = (§ — y)z; = dz; (ignoring 2)
@ One can think of this as: 8—@,) = ) Z
ow, ~—~

local error |ocal input

@ For next layer we had: " (1) =(y— y) (2 )( tanhQ(aj)):):Z-

o Let §; = (§ — y)w, (2 )( tanhz(aj)) = (5w](-2)(1 — tanh?(a;))
(Notice that J; contalns the 0 term (which is the error!))

@ Then: (1) = 5j ZT;

2] /
local error local input

@ Neat!
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Let’s clean this up...

@ Let's get a cleaner notation to summarize this
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Let’s clean this up...

@ Let's get a cleaner notation to summarize this

@ Let w;..; be the weight for the connection FROM node ¢ to
node j
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Let’s clean this up...

@ Let's get a cleaner notation to summarize this

@ Let w;..; be the weight for the connection FROM node ¢ to
node j

@ Then
oL

8wi->j
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Let’s clean this up...

@ Let's get a cleaner notation to summarize this

@ Let w;..; be the weight for the connection FROM node ¢ to
node j

@ Then
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Let’s clean this up...

Let's get a cleaner notation to summarize this

@ Let w;..; be the weight for the connection FROM node ¢ to

node j
@ Then
OL 5
=02
8w7;w] J
@ ¢; is the local error (going from j backwards) and z; is the

local input coming from ¢
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-
Credit Assignment: A Graphical Revision

O

2 (1) 2 (2)

961@ 362@ @333

@ Let's redraw our toy network with new notation and label
nodes
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Credit Assignment: Top Layer

21
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Credit Assignment: Top Layer

<1

x1® m@ @:Bg

@ Local error from 0: 6 = (y — y), local input from 1: z;
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Credit Assignment: Top Layer

<1

x1® m@ @:Bg

@ Local error from 0: 6 = (y — y), local input from 1: z;

oL
awlwo

= §z1; and update Wi..g := Wiwp — No21
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-
Credit Assignment: Top Layer

O

2 (1) 2 (2)
961@ 332@ @173
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Credit Assignment: Top Layer

0

0

Wo-
SO

x1® m@ @:Bg

@ Local error from 0: § = (y —y), local input from 2: 2,
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Credit Assignment: Top Layer

0

0

Wo-
SO

x1® m@ @:Bg

@ Local error from 0: § = (y —y), local input from 2: 2,

oL
awaO

= 022 and update wa..g := Wag — N22
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-
Credit Assignment: Next Layer

O

2 (1) 2 (2)
961@ 332@ @173
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Credit Assignment: Next Layer
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Credit Assignment: Next Layer

21
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Credit Assignment: Next Layer

21

x3

1 (&) 210

o Local error from 1: §; = (§)(w10)(1 — tanh?(ay)), local
input from 3: x3
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Credit Assignment: Next Layer

21

1 (&) 210

o Local error from 1: §; = (§)(w10)(1 — tanh?(ay)), local
input from 3: x3

oL
8U)B«Hl

x3

= 0123 and update w31 ;= W31 — 77(51$3

Lecture 4 Backpropagation CMSC 35246



-
Credit Assignment: Next Layer

O

2 (1) 2 (2)
961@ 332@ @173
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Credit Assignment: Next Layer

2 (1) 2 (2)

961@ 332@ @173
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-
Credit Assignment: Next Layer
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-
Credit Assignment: Next Layer

oF

o Local error from 2: 8y = (§)(wz-.0)(1 — tanh?(asy)), local
input from 4: xo
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-
Credit Assignment: Next Layer

1 (&) 210 Ok

o Local error from 2: 8y = (§)(wz-.0)(1 — tanh?(asy)), local
input from 4: xo

oL
- Owgenz

Lecture 4 Backpropagation CMSC 35246
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Let’s Vectorize

o Let W = [leo} (ignore that W(?) is a vector and hence
2~~0

more appropriate to use W(Q))

Lecture 4 Backpropagation CMSC 35246



Let’s Vectorize

o Let W = [leo} (ignore that W(?) is a vector and hence
2~~0

more appropriate to use W(Q))
o Let
W51 W52
W(l) = |W4~s1 W42
W31 W32
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Let’s Vectorize

o Let W = [leo} (ignore that W(?) is a vector and hence
2~~0

more appropriate to use W(Q))

o Let }
W51 W52
W(l) = | W41 W42
| W31 W32
o Let }
I 5
ZW = |zy| and 22 = Ll]
£U3_ 2
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Feedforward Computation

Compute AV =z
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Feedforward Computation

Compute A — Z(I)TW(I)
Applying element-wise non-linearity Z() = tanh A1)
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Feedforward Computation

Compute A — Z(I)TW(I)
Applying element-wise non-linearity Z() = tanh A1)
Compute Output § = 22 W®
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-
Feedforward Computation

Compute A — Z(I)TW(I)
Applying element-wise non-linearity Z() = tanh A1)
Compute Output § = 22 W®

Compute Loss on example (5 — y)?
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Flowing Backward

Top: Compute §
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Flowing Backward

Top: Compute §
Gradient w.r.t W® = §2(3

Lecture 4 Backpropagation CMSC 35246



Flowing Backward

Top: Compute §
Gradient w.r.t W® = §2(3
Compute 6, = (W' 6) ® (1 — tanh(AD)?)
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-
Flowing Backward

Top: Compute §
Gradient w.r.t W® = §2(3
Compute 6, = (W' 6) ® (1 — tanh(AD)?)

Notes: (a): ® is Hadamard product. (b) have written w5
as & can be a vector when there are multiple outputs
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-
Flowing Backward

Top: Compute §

Gradient w.r.t W® = §2(2)

Compute 61 = (W(Q)T5) ® (1 — tanh(A™M)?)
Notes: (a): ® is Hadamard product. (b) have written w5
as & can be a vector when there are multiple outputs

Gradient w.r.t W) = 512(1)
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-
Flowing Backward

Top: Compute §

Gradient w.r.t W® = §2(2)

Compute 61 = (W(Q)T5) ® (1 — tanh(A™M)?)
Notes: (a): ® is Hadamard product. (b) have written w5
as & can be a vector when there are multiple outputs

Gradient w.r.t W) = §,z(1)
Update W® .= w® — psz®2
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-
Flowing Backward

Top: Compute §

Gradient w.r.t W® = §2(2)

Compute 61 = (W(Q)T5) ® (1 — tanh(A™M)?)
Notes: (a): ® is Hadamard product. (b) have written w@"s
as & can be a vector when there are multiple outputs

Gradient w.r.t W = 5,21
Update W® .= w® — psz®2
@ Update W .= w® — g, 210
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BN

~ o~

Flowing Backward

Top: Compute §

Gradient w.r.t W®? =52

Compute 61 = (W(Q)T5) ® (1 — tanh(A™M)?)

Notes: (a): ® is Hadamard product. (b) have written w@"s
as & can be a vector when there are multiple outputs

Gradient w.r.t W) = 5,2z
Update W® = w®@ — sz
Update W .= @ — 7751Z(1)

All the dimensionalities nicely check out!
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So Far

@ Backpropagation in the context of neural networks is all about
assigning credit (or blame!) for error incurred to the weights
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So Far

@ Backpropagation in the context of neural networks is all about
assigning credit (or blame!) for error incurred to the weights

e We follow the path from the output (where we have an
error signal) to the edge we want to consider
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So Far

@ Backpropagation in the context of neural networks is all about
assigning credit (or blame!) for error incurred to the weights
e We follow the path from the output (where we have an
error signal) to the edge we want to consider

e We find the ds from the top to the edge concerned by
using the chain rule
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So Far

@ Backpropagation in the context of neural networks is all about
assigning credit (or blame!) for error incurred to the weights

e We follow the path from the output (where we have an
error signal) to the edge we want to consider

e We find the ds from the top to the edge concerned by
using the chain rule

e Once we have the partial derivative, we can write the
update rule for that weight
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e
What did we miss?

@ Exercise: What if there are multiple outputs? (look at slide
from last class)
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e
What did we miss?

@ Exercise: What if there are multiple outputs? (look at slide
from last class)

@ Another exercise: Add bias neurons. What changes?
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e
What did we miss?

@ Exercise: What if there are multiple outputs? (look at slide
from last class)

@ Another exercise: Add bias neurons. What changes?

@ As we go down the network, notice that we need previous Js
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What did we miss?

@ Exercise: What if there are multiple outputs? (look at slide
from last class)

@ Another exercise: Add bias neurons. What changes?
@ As we go down the network, notice that we need previous Js

@ If we recompute them each time, it can blow up!
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e
What did we miss?

Exercise: What if there are multiple outputs? (look at slide
from last class)

Another exercise: Add bias neurons. What changes?
As we go down the network, notice that we need previous ds

If we recompute them each time, it can blow up!

Need to book-keep derivatives as we go down the network and
reuse them
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A General View of Backpropagation

Some redundancy in upcoming slides, but redundancy can be good!
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e
An Aside

@ Backpropagation only refers to the method for computing the
gradient
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e
An Aside

@ Backpropagation only refers to the method for computing the
gradient

@ This is used with another algorithm such as SGD for learning
using the gradient
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e
An Aside

@ Backpropagation only refers to the method for computing the
gradient

@ This is used with another algorithm such as SGD for learning
using the gradient

e Next: Computing gradient V, f(z,y) for arbitrary f
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e
An Aside

@ Backpropagation only refers to the method for computing the
gradient

@ This is used with another algorithm such as SGD for learning
using the gradient

e Next: Computing gradient V, f(z,y) for arbitrary f

@ x is the set of variables whose derivatives are desired
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e
An Aside

Backpropagation only refers to the method for computing the
gradient

This is used with another algorithm such as SGD for learning
using the gradient

Next: Computing gradient V, f(z,y) for arbitrary f

x is the set of variables whose derivatives are desired

Often we require the gradient of the cost J(f) with respect to
parameters 6 i.e VyJ(0)
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e
An Aside

Backpropagation only refers to the method for computing the
gradient

This is used with another algorithm such as SGD for learning
using the gradient

Next: Computing gradient V, f(z,y) for arbitrary f

x is the set of variables whose derivatives are desired

Often we require the gradient of the cost J(f) with respect to
parameters 6 i.e VyJ(0)

@ Note: We restrict to case where f has a single output
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e
An Aside

@ Backpropagation only refers to the method for computing the
gradient

@ This is used with another algorithm such as SGD for learning
using the gradient

e Next: Computing gradient V, f(z,y) for arbitrary f
@ x is the set of variables whose derivatives are desired

e Often we require the gradient of the cost J(6) with respect to
parameters 6 i.e VyJ(0)

@ Note: We restrict to case where f has a single output

@ First: Move to more precise computational graph language!
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-
Computational Graphs

@ Formalize computation as graphs
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Computational Graphs

@ Formalize computation as graphs

e Nodes indicate variables (scalar, vector, tensor or another
variable)
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@ Operations are simple functions of one or more variables
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Computational Graphs

@ Formalize computation as graphs

e Nodes indicate variables (scalar, vector, tensor or another
variable)

@ Operations are simple functions of one or more variables

@ Our graph language comes with a set of allowable operations
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-
Computational Graphs

Formalize computation as graphs

Nodes indicate variables (scalar, vector, tensor or another
variable)

Operations are simple functions of one or more variables

Our graph language comes with a set of allowable operations

Examples:
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@ Graph uses x operation for the computation
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Logistic Regression

T
()

dot
o \@

o Computes § = o(xTw +b)
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H = max{0, XW + b}

©
]

e

MM is matrix multiplication and Rc is ReLU activation
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-
Back to backprop: Chain Rule

@ Backpropagation computes the chain rule, in a manner that is
highly efficient
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-
Back to backprop: Chain Rule

@ Backpropagation computes the chain rule, in a manner that is
highly efficient
o Let f,g:R—>R
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-
Back to backprop: Chain Rule

@ Backpropagation computes the chain rule, in a manner that is
highly efficient
o Let f,g:R—>R

@ Suppose y = g(x) and z = f(y) = f(g(x))
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-
Back to backprop: Chain Rule

Backpropagation computes the chain rule, in a manner that is
highly efficient

o Let f,g:R—>R
@ Suppose y = g(x) and z = f(y) = f(g(x))
@ Chain rule:

de _dzdy

de  dydx
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dz
dy

* @

Chain rule: j—i = Zzz
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z
Az dz
dy1 Y2

Y1 Y2

dx

. dz dz dy1  dz dys
Multiple Paths: — = — — 4+ — 2=
Hitiple Faths dxr  dyi dx + dyo dz
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dz
Multiple Paths: — =
UIpeanaz Z

d= dy;
dy; dx

J
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e
Chain Rule

@ Consider x € R™,y € R"
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e
Chain Rule

@ Consider x € R™,y € R"
@ Lletg:R™ —->R"and f:R" - R
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e
Chain Rule

@ Consider x € R™,y € R"
@ Lletg:R™ —->R"and f:R" - R
@ Suppose y = g(x) and z = f(y), then
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e
Chain Rule

@ Consider x € R™,y € R"
@ Lletg:R™ —->R"and f:R" - R
@ Suppose y = g(x) and z = f(y), then

0z 8yj
axz Z Oy; Ox;
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e
Chain Rule

@ Consider x € R™,y € R"
@ Lletg:R™ —->R"and f:R" - R
@ Suppose y = g(x) and z = f(y), then

0z 8yj
axz Z Oy; Ox;

@ In vector notation:

0z 9z Oyj
ox1 ZJ dy7 O T
e _ [ 9y
: = : =Vxz=| -] Vyz
) ox
0z S g Oy;
OTm J Oyj Oxm
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e
Chain Rule

a T

y

VXZ = ((%(> Vyz
Oy

° (ch) is the n X m Jacobian matrix of g
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e
Chain Rule

a T

y

VXZ = ((%(> Vyz
Oy

° (ch) is the n X m Jacobian matrix of g

e Gradient of x is a multiplication of a Jacobian matrix (g—i)
with a vector i.e. the gradient Vyz
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e
Chain Rule

5 T
Vxz = (81) Vyz
° (g—i) is the n X m Jacobian matrix of g

e Gradient of x is a multiplication of a Jacobian matrix (g—i)
with a vector i.e. the gradient Vyz

@ Backpropagation consists of applying such Jacobian-gradient
products to each operation in the computational graph
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e
Chain Rule

a T

y

VXZ = ((%(> Vyz
Oy

° (ch) is the n X m Jacobian matrix of g

e Gradient of x is a multiplication of a Jacobian matrix (g—i)

with a vector i.e. the gradient Vyz

@ Backpropagation consists of applying such Jacobian-gradient
products to each operation in the computational graph

@ In general this need not only apply to vectors, but can apply
to tensors w.l.o.g
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e
Chain Rule

@ We can ofcourse also write this in terms of tensors
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e
Chain Rule

@ We can ofcourse also write this in terms of tensors

@ Let the gradient of z with respect to a tensor X be Vxz
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e
Chain Rule

@ We can ofcourse also write this in terms of tensors
@ Let the gradient of z with respect to a tensor X be Vxz
o If Y =¢g(X) and z = f(Y), then:

0z

Vxz =Y (VxVj)5r 5,

J
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-
Recursive Application in a Computational
Graph

o Writing an algebraic expression for the gradient of a scalar
with respect to any node in the computational graph that
produced that scalar is straightforward using the chain-rule
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Recursive Application in a Computational
Graph

o Writing an algebraic expression for the gradient of a scalar
with respect to any node in the computational graph that
produced that scalar is straightforward using the chain-rule

@ Let for some node z the successors be: {y1,y2,...yn}
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Recursive Application in a Computational
Graph

o Writing an algebraic expression for the gradient of a scalar
with respect to any node in the computational graph that
produced that scalar is straightforward using the chain-rule

@ Let for some node z the successors be: {y1,y2,...yn}

@ Node: Computation result
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Recursive Application in a Computational
Graph

o Writing an algebraic expression for the gradient of a scalar
with respect to any node in the computational graph that
produced that scalar is straightforward using the chain-rule

@ Let for some node z the successors be: {y1,y2,...yn}
@ Node: Computation result

@ Edge: Computation dependency

dz dy;
Z dy; dx
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Flow Graph (for previous slide)
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-
Recursive Application in a Computational
Graph

@ Fpropagation: Visit nodes in the order after a topological sort
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-
Recursive Application in a Computational
Graph

@ Fpropagation: Visit nodes in the order after a topological sort

@ Compute the value of each node given its ancestors
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Recursive Application in a Computational
Graph

Fpropagation: Visit nodes in the order after a topological sort
Compute the value of each node given its ancestors
Bpropagation: Output gradient = 1

Now visit nods in reverse order

Compute gradient with respect to each node using gradient
with respect to successors
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-
Recursive Application in a Computational
Graph

Fpropagation: Visit nodes in the order after a topological sort
Compute the value of each node given its ancestors
Bpropagation: Output gradient = 1

Now visit nods in reverse order

Compute gradient with respect to each node using gradient
with respect to successors

Successors of x in previous slide {y1,y2,...yn}:
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-
Recursive Application in a Computational
Graph

Fpropagation: Visit nodes in the order after a topological sort
Compute the value of each node given its ancestors
Bpropagation: Output gradient = 1

Now visit nods in reverse order

Compute gradient with respect to each node using gradient
with respect to successors

Successors of x in previous slide {y1,y2,...yn}:

dz alyZ
Z dy; dx

Lecture 4 Backpropagation CMSC 35246



Automatic Differentiation

e Computation of the gradient can be automatically inferred
from the symbolic expression of fprop
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Automatic Differentiation

e Computation of the gradient can be automatically inferred
from the symbolic expression of fprop

@ Every node type needs to know:
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Automatic Differentiation

e Computation of the gradient can be automatically inferred
from the symbolic expression of fprop

@ Every node type needs to know:
e How to compute its output
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Automatic Differentiation

e Computation of the gradient can be automatically inferred
from the symbolic expression of fprop

@ Every node type needs to know:

e How to compute its output
e How to compute its gradients with respect to its inputs
given the gradient w.r.t its outputs

Lecture 4 Backpropagation CMSC 35246



Automatic Differentiation

e Computation of the gradient can be automatically inferred
from the symbolic expression of fprop

@ Every node type needs to know:

e How to compute its output
e How to compute its gradients with respect to its inputs
given the gradient w.r.t its outputs

@ Makes for rapid prototyping
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-
Computational Graph for a MLP

Figure: Goodfellow et al.

@ To train we want to compute Vy,a)J and Vi 2)J
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Computational Graph for a MLP

Figure: Goodfellow et al.

@ To train we want to compute Vy,a)J and Vi 2)J

@ Two paths lead backwards from J to weights: Through cross
entropy and through regularization cost
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Computational Graph for a MLP

Figure: Goodfellow et al.

@ To train we want to compute Vy,a)J and Vi 2)J

@ Two paths lead backwards from J to weights: Through cross
entropy and through regularization cost
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-
Computational Graph for a MLP

Figure: Goodfellow et al.

@ Weight decay cost is relatively simple: Will always contribute
2AW ) to gradient on W)

@ Two paths lead backwards from J to weights: Through cross
entropy and through regularization cost

Lecture 4 Backpropagation CMSC 35246



-
Computational Graph for a MLP

Figure: Goodfellow et al.

@ Weight decay cost is relatively simple: Will always contribute
2AW ) to gradient on W)

@ Two paths lead backwards from J to weights: Through cross
entropy and through regularization cost
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Symbol to Symbol

Figure: Goodfellow et al.

@ In this approach backpropagation never accesses any
numerical values
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Symbol to Symbol

Figure: Goodfellow et al.

@ In this approach backpropagation never accesses any
numerical values

@ Instead it just adds nodes to the graph that describe how to
compute derivatives
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Symbol to Symbol

Figure: Goodfellow et al.

@ In this approach backpropagation never accesses any
numerical values

@ Instead it just adds nodes to the graph that describe how to
compute derivatives

@ A graph evaluation engine will then do the actual computation
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Symbol to Symbol

Figure: Goodfellow et al.

@ In this approach backpropagation never accesses any
numerical values

@ Instead it just adds nodes to the graph that describe how to
compute derivatives

@ A graph evaluation engine will then do the actual computation

@ Approach taken by Theano and TensorFlow

CMSC 35246
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Next time

@ Regularization Methods for Deep Neural Networks

Lecture 4 Backpropagation CMSC 35246



