
Lecture 9
CMSC 35246: Deep Learning

Shubhendu Trivedi
&

Risi Kondor

University of Chicago

April 24, 2017

Lecture 9 CMSC 35246



Architectures from before

Lecture 9 CMSC 35246



Depth is clearly a significant factor for superior performance

Is learning better networks just about stacking more layers?

Lecture 9 CMSC 35246



Depth is clearly a significant factor for superior performance

Is learning better networks just about stacking more layers?

Lecture 9 CMSC 35246



Architectures from before

Lecture 9 CMSC 35246



Degradation Problem

Adding more layers leads to a Degradation Problem

Increasing depth: Accuracy first saturates, then rapidly
degrades

Degradation is not caused due to overfitting

On adding more layers after a certain depth training error
increases with depth

Lecture 9 CMSC 35246



Degradation Problem

Adding more layers leads to a Degradation Problem

Increasing depth: Accuracy first saturates, then rapidly
degrades

Degradation is not caused due to overfitting

On adding more layers after a certain depth training error
increases with depth

Lecture 9 CMSC 35246



Degradation Problem

Adding more layers leads to a Degradation Problem

Increasing depth: Accuracy first saturates, then rapidly
degrades

Degradation is not caused due to overfitting

On adding more layers after a certain depth training error
increases with depth

Lecture 9 CMSC 35246



Degradation Problem

Networks obtained by stacking 3x3 convolutional layers on
CIFAR-10

Figure: He et al. Deep Residual Learning for Image Recognition, CVPR 2016

Lecture 9 CMSC 35246



Degradation Problem

Networks obtained by stacking 3x3 convolutional layers on
ImageNet 1000

Figure: He et al. Deep Residual Learning for Image Recognition, CVPR 2016

Lecture 9 CMSC 35246



A Solution by Construction

Figure: He et al. Deep Residual Learning for Image Recognition, CVPR 2016

Lecture 9 CMSC 35246



A deeper model should not have higher training error

Lecture 9 CMSC 35246



A Plain Network Block

Let H(x) be the function to be fit by a few stacked layers

Above, we hope that the two layers will fit H(x)

Lecture 9 CMSC 35246



A Plain Network Block

Let H(x) be the function to be fit by a few stacked layers

Above, we hope that the two layers will fit H(x)

Lecture 9 CMSC 35246



Residual Learning

If stack can approximate H(x), then it can approximate
F(x) = H(x)− x

H(x)− x is a residual function (x and H(x) of same size)

F(x) is a residual map with respect to the identity

Lecture 9 CMSC 35246



Residual Learning

If stack can approximate H(x), then it can approximate
F(x) = H(x)− x

H(x)− x is a residual function (x and H(x) of same size)

F(x) is a residual map with respect to the identity

Lecture 9 CMSC 35246



Residual Learning

If stack can approximate H(x), then it can approximate
F(x) = H(x)− x

H(x)− x is a residual function (x and H(x) of same size)

F(x) is a residual map with respect to the identity

Lecture 9 CMSC 35246



Residual Learning

If stack can approximate H(x), then it can approximate
F(x) = H(x)− x

H(x)− x is a residual function (x and H(x) of same size)

F(x) is a residual map with respect to the identity

Lecture 9 CMSC 35246



Residual Learning

If identity map is optimal =⇒ drive weights to zero to
approach identity

Identity is rarely optimal but it serves to pre-condition the
problem (e.g. similar work in multigrid literature)

If the optimal map is closer to identity than a zero map, easier
to find small perturbations w.r.t identity

Lecture 9 CMSC 35246



Residual Learning

If identity map is optimal =⇒ drive weights to zero to
approach identity

Identity is rarely optimal but it serves to pre-condition the
problem (e.g. similar work in multigrid literature)

If the optimal map is closer to identity than a zero map, easier
to find small perturbations w.r.t identity

Lecture 9 CMSC 35246



Residual Learning

If identity map is optimal =⇒ drive weights to zero to
approach identity

Identity is rarely optimal but it serves to pre-condition the
problem (e.g. similar work in multigrid literature)

If the optimal map is closer to identity than a zero map, easier
to find small perturbations w.r.t identity

Lecture 9 CMSC 35246



Residual Learning

Here F(x) =W2max{0,W1x}

F(x) + x is implemented as a shortcut and elementwise
addition

Dimensions of F(x) and x must be equal

If not: Perform linear projection Wsx

Aside: Can also use a square matrix Ws even if dimensions are
equal, but an identity map is found to be better

Lecture 9 CMSC 35246



Residual Learning

Here F(x) =W2max{0,W1x}
F(x) + x is implemented as a shortcut and elementwise
addition

Dimensions of F(x) and x must be equal

If not: Perform linear projection Wsx

Aside: Can also use a square matrix Ws even if dimensions are
equal, but an identity map is found to be better

Lecture 9 CMSC 35246



Residual Learning

Here F(x) =W2max{0,W1x}
F(x) + x is implemented as a shortcut and elementwise
addition

Dimensions of F(x) and x must be equal

If not: Perform linear projection Wsx

Aside: Can also use a square matrix Ws even if dimensions are
equal, but an identity map is found to be better

Lecture 9 CMSC 35246



Residual Learning

Here F(x) =W2max{0,W1x}
F(x) + x is implemented as a shortcut and elementwise
addition

Dimensions of F(x) and x must be equal

If not: Perform linear projection Wsx

Aside: Can also use a square matrix Ws even if dimensions are
equal, but an identity map is found to be better

Lecture 9 CMSC 35246



Residual Learning

Here F(x) =W2max{0,W1x}
F(x) + x is implemented as a shortcut and elementwise
addition

Dimensions of F(x) and x must be equal

If not: Perform linear projection Wsx

Aside: Can also use a square matrix Ws even if dimensions are
equal, but an identity map is found to be better

Lecture 9 CMSC 35246



First Attempt: VGG Type Network

Lecture 9 CMSC 35246



First Attempt: VGG Type Network

Stacked network of before but with residual connections

Training Procedure:

• Both networks are trained from scratch
• No dropout is used
• Batch-normalization after every layer
• Use similar data augmentation for both

Lecture 9 CMSC 35246



First Attempt: VGG Type Network

Stacked network of before but with residual connections

Training Procedure:

• Both networks are trained from scratch

• No dropout is used
• Batch-normalization after every layer
• Use similar data augmentation for both

Lecture 9 CMSC 35246



First Attempt: VGG Type Network

Stacked network of before but with residual connections

Training Procedure:

• Both networks are trained from scratch
• No dropout is used

• Batch-normalization after every layer
• Use similar data augmentation for both

Lecture 9 CMSC 35246



First Attempt: VGG Type Network

Stacked network of before but with residual connections

Training Procedure:

• Both networks are trained from scratch
• No dropout is used
• Batch-normalization after every layer

• Use similar data augmentation for both

Lecture 9 CMSC 35246



First Attempt: VGG Type Network

Stacked network of before but with residual connections

Training Procedure:

• Both networks are trained from scratch
• No dropout is used
• Batch-normalization after every layer
• Use similar data augmentation for both

Lecture 9 CMSC 35246



CIFAR-10

For now focus on 32 layer results for both

Lecture 9 CMSC 35246



ImageNet with ResNet

Thin curves: Training Error; Thick curves: Validation Error

Deep ResNets have lower training and validation error

Lecture 9 CMSC 35246



ImageNet with ResNet

Thin curves: Training Error; Thick curves: Validation Error

Deep ResNets have lower training and validation error

Lecture 9 CMSC 35246



Bottleneck Residual Block

1x1 convolutions to reduce and increase dimensionality

Use parameter free identity shortcuts

Lecture 9 CMSC 35246



Bottleneck Residual Block

1x1 convolutions to reduce and increase dimensionality

Use parameter free identity shortcuts

Lecture 9 CMSC 35246



Results with Deeper ResNets: CIFAR-10

Lecture 9 CMSC 35246



Results with Deeper ResNets: ImageNet

Lecture 9 CMSC 35246



Revolution of Depth

Lecture 9 CMSC 35246



Revolution of Depth

Lecture 9 CMSC 35246



Types of Shortcut Connections

Lecture 9 CMSC 35246



Types of Shortcut Connections

Results on CIFAR-10 test-set using ResNet-100. Fail
represents error more than 20%

Lecture 9 CMSC 35246



Types of Activations

Lecture 9 CMSC 35246



Types of Activations

Results on CIFAR-10 test-set.

Lecture 9 CMSC 35246



A Better Residual Unit

Lecture 9 CMSC 35246



ResNet in ResNet

Modular unit is a generalized residual block with two parallel
states:

• A residual stream r with identity shortcuts like in original
ResNets (parameters Wl,r→r)

• A transient stream t, a standard convolution layer
(parameters Wl,t→t)

Lecture 9 CMSC 35246



ResNet in ResNet

Modular unit is a generalized residual block with two parallel
states:

• A residual stream r with identity shortcuts like in original
ResNets (parameters Wl,r→r)

• A transient stream t, a standard convolution layer
(parameters Wl,t→t)

Lecture 9 CMSC 35246



ResNet in ResNet

Modular unit is a generalized residual block with two parallel
states:

• A residual stream r with identity shortcuts like in original
ResNets (parameters Wl,r→r)

• A transient stream t, a standard convolution layer
(parameters Wl,t→t)

Lecture 9 CMSC 35246



ResNet in ResNet

Two additional sets of conv. filters (Wl,r→t, Wl,t→r) in each
block are used for cross-stream info. transfer

Transient stream t allows to process information from either
stream without shortcuts (allowing information to be
discarded)

Lecture 9 CMSC 35246



ResNet in ResNet

Two additional sets of conv. filters (Wl,r→t, Wl,t→r) in each
block are used for cross-stream info. transfer

Transient stream t allows to process information from either
stream without shortcuts (allowing information to be
discarded)

Lecture 9 CMSC 35246



ResNet in ResNet

Two additional sets of conv. filters (Wl,r→t, Wl,t→r) in each
block are used for cross-stream info. transfer

Transient stream t allows to process information from either
stream without shortcuts (allowing information to be
discarded)

Lecture 9 CMSC 35246



Highway Networks

In ResNets we had

xl+1 = F(Wl,xl) + xl

In Highway Networks:

xl+1 = F(Wl,xl)T (WT ,xl) + xlC(WC,xl)

T is the Transfer Gate, C is the Carry Gate

When C = 1− T

xl+1 = F(Wl,xl)T (WT ,xl) + xl(1− T (WT ,xl))

Lecture 9 CMSC 35246



Highway Networks

In ResNets we had

xl+1 = F(Wl,xl) + xl

In Highway Networks:

xl+1 = F(Wl,xl)T (WT ,xl) + xlC(WC,xl)

T is the Transfer Gate, C is the Carry Gate

When C = 1− T

xl+1 = F(Wl,xl)T (WT ,xl) + xl(1− T (WT ,xl))

Lecture 9 CMSC 35246



Highway Networks

In ResNets we had

xl+1 = F(Wl,xl) + xl

In Highway Networks:

xl+1 = F(Wl,xl)T (WT ,xl) + xlC(WC,xl)

T is the Transfer Gate, C is the Carry Gate

When C = 1− T

xl+1 = F(Wl,xl)T (WT ,xl) + xl(1− T (WT ,xl))

Lecture 9 CMSC 35246



Highway Networks

In ResNets we had

xl+1 = F(Wl,xl) + xl

In Highway Networks:

xl+1 = F(Wl,xl)T (WT ,xl) + xlC(WC,xl)

T is the Transfer Gate, C is the Carry Gate

When C = 1− T

xl+1 = F(Wl,xl)T (WT ,xl) + xl(1− T (WT ,xl))

Lecture 9 CMSC 35246



Highway Networks

In ResNets we had

xl+1 = F(Wl,xl) + xl

In Highway Networks:

xl+1 = F(Wl,xl)T (WT ,xl) + xlC(WC,xl)

T is the Transfer Gate, C is the Carry Gate

When C = 1− T

xl+1 = F(Wl,xl)T (WT ,xl) + xl(1− T (WT ,xl))

Lecture 9 CMSC 35246



Highway Networks

xl+1 = F(Wl,xl)T (WT ,xl) + xl(1− T (WT ,xl))

Dim. of xl+1,xl,F(Wl,xl), T (WT ,xl) must be same

Note that:

• If T (WT ,xl) = 0 then xl+1 = xl
• If T (WT ,xl) = 1 then xl+1 = F(Wl,xl)

The highway layer can smoothly vary between a plain layer
and just the identity map depending on the transfer gate

Like the residual block, the highway layer is then repeated to
train deep networks

Lecture 9 CMSC 35246



Highway Networks

xl+1 = F(Wl,xl)T (WT ,xl) + xl(1− T (WT ,xl))

Dim. of xl+1,xl,F(Wl,xl), T (WT ,xl) must be same

Note that:

• If T (WT ,xl) = 0 then xl+1 = xl
• If T (WT ,xl) = 1 then xl+1 = F(Wl,xl)

The highway layer can smoothly vary between a plain layer
and just the identity map depending on the transfer gate

Like the residual block, the highway layer is then repeated to
train deep networks

Lecture 9 CMSC 35246



Highway Networks

xl+1 = F(Wl,xl)T (WT ,xl) + xl(1− T (WT ,xl))

Dim. of xl+1,xl,F(Wl,xl), T (WT ,xl) must be same

Note that:

• If T (WT ,xl) = 0 then xl+1 = xl

• If T (WT ,xl) = 1 then xl+1 = F(Wl,xl)

The highway layer can smoothly vary between a plain layer
and just the identity map depending on the transfer gate

Like the residual block, the highway layer is then repeated to
train deep networks

Lecture 9 CMSC 35246



Highway Networks

xl+1 = F(Wl,xl)T (WT ,xl) + xl(1− T (WT ,xl))

Dim. of xl+1,xl,F(Wl,xl), T (WT ,xl) must be same

Note that:

• If T (WT ,xl) = 0 then xl+1 = xl
• If T (WT ,xl) = 1 then xl+1 = F(Wl,xl)

The highway layer can smoothly vary between a plain layer
and just the identity map depending on the transfer gate

Like the residual block, the highway layer is then repeated to
train deep networks

Lecture 9 CMSC 35246



Highway Networks

xl+1 = F(Wl,xl)T (WT ,xl) + xl(1− T (WT ,xl))

Dim. of xl+1,xl,F(Wl,xl), T (WT ,xl) must be same

Note that:

• If T (WT ,xl) = 0 then xl+1 = xl
• If T (WT ,xl) = 1 then xl+1 = F(Wl,xl)

The highway layer can smoothly vary between a plain layer
and just the identity map depending on the transfer gate

Like the residual block, the highway layer is then repeated to
train deep networks

Lecture 9 CMSC 35246



Highway Networks

xl+1 = F(Wl,xl)T (WT ,xl) + xl(1− T (WT ,xl))

Dim. of xl+1,xl,F(Wl,xl), T (WT ,xl) must be same

Note that:

• If T (WT ,xl) = 0 then xl+1 = xl
• If T (WT ,xl) = 1 then xl+1 = F(Wl,xl)

The highway layer can smoothly vary between a plain layer
and just the identity map depending on the transfer gate

Like the residual block, the highway layer is then repeated to
train deep networks

Lecture 9 CMSC 35246



Highway Networks

Was published just before Residual Networks (Srivastava,
Greff, Schmidhuber, 2015)

Contrasts:

• While more general, has not demonstrated accuracy gains
with greater depth

• Gates in highway networks are data-dependent while
identity shortcuts in ResNets are parameter-free

• When the gates for shortcut are closed in highway nets,
they highway module represents non-residual functions

Lecture 9 CMSC 35246



Highway Networks

Was published just before Residual Networks (Srivastava,
Greff, Schmidhuber, 2015)

Contrasts:

• While more general, has not demonstrated accuracy gains
with greater depth

• Gates in highway networks are data-dependent while
identity shortcuts in ResNets are parameter-free

• When the gates for shortcut are closed in highway nets,
they highway module represents non-residual functions

Lecture 9 CMSC 35246



Highway Networks

Was published just before Residual Networks (Srivastava,
Greff, Schmidhuber, 2015)

Contrasts:

• While more general, has not demonstrated accuracy gains
with greater depth

• Gates in highway networks are data-dependent while
identity shortcuts in ResNets are parameter-free

• When the gates for shortcut are closed in highway nets,
they highway module represents non-residual functions

Lecture 9 CMSC 35246



Highway Networks

Was published just before Residual Networks (Srivastava,
Greff, Schmidhuber, 2015)

Contrasts:

• While more general, has not demonstrated accuracy gains
with greater depth

• Gates in highway networks are data-dependent while
identity shortcuts in ResNets are parameter-free

• When the gates for shortcut are closed in highway nets,
they highway module represents non-residual functions

Lecture 9 CMSC 35246



Residuals might not be necessary

Lecture 9 CMSC 35246



Fractal Networks

Work done here in campus (Gustav Larsson, Michael Maire,
Gregory Shakhnarovich)

Lecture 9 CMSC 35246



Fractal Networks

Base case: f1(z) = conv(z)

Recursive definition: fC+1(z) = [fC ◦ fC(z)]⊕ [conv(z)]

Lecture 9 CMSC 35246



Fractal Networks

Base case: f1(z) = conv(z)

Recursive definition: fC+1(z) = [fC ◦ fC(z)]⊕ [conv(z)]

Lecture 9 CMSC 35246



Training by DropPath

Alternate global and local sampling strategies to encourage
development of individual columns that can be strong
stand-alone subnetworks

Can train very deep networks with competitive performance
without residuals

Lecture 9 CMSC 35246



Performance of Residual Networks might not be due to depth

Lecture 9 CMSC 35246



Viet et al.

For an output x3, we have x3 = x2 + f3(x2)

Expanding: x3 = [x1 + f2(x1)] + f3(x1 + f2(x1))

Expanding further:

= [x0+f1(x0)+f1(x0+f1(x0))]+f3(x0+f1(x0)+f1(x0+f1(x0)))

Lecture 9 CMSC 35246



Viet et al.

For an output x3, we have x3 = x2 + f3(x2)

Expanding: x3 = [x1 + f2(x1)] + f3(x1 + f2(x1))

Expanding further:

= [x0+f1(x0)+f1(x0+f1(x0))]+f3(x0+f1(x0)+f1(x0+f1(x0)))

Lecture 9 CMSC 35246



Viet et al.

For an output x3, we have x3 = x2 + f3(x2)

Expanding: x3 = [x1 + f2(x1)] + f3(x1 + f2(x1))

Expanding further:

= [x0+f1(x0)+f1(x0+f1(x0))]+f3(x0+f1(x0)+f1(x0+f1(x0)))

Lecture 9 CMSC 35246



Viet et al.

Unraveled view graphically:

Lecture 9 CMSC 35246



Viet et al.

Many paths from the input to output: 2n paths

In classical visual hierarchy, each layer of processing depends
only on the output of the previous layer, this is not true for
residual networks due to their inherent structure

Infact, each module fi(·) can be thought of as being fed data
from a mixture of 2i−1 different distributions generated from
every possible configuration of the previous i− 1 modules

Viet et al. provide experimental evidence that most paths in
residual networks are relatively independent of each other, and
usually short paths are active

The strength of ResNets may not come from depth, but due
to an ensemble of exponentially many shallow networks

Lecture 9 CMSC 35246



Viet et al.

Many paths from the input to output: 2n paths

In classical visual hierarchy, each layer of processing depends
only on the output of the previous layer, this is not true for
residual networks due to their inherent structure

Infact, each module fi(·) can be thought of as being fed data
from a mixture of 2i−1 different distributions generated from
every possible configuration of the previous i− 1 modules

Viet et al. provide experimental evidence that most paths in
residual networks are relatively independent of each other, and
usually short paths are active

The strength of ResNets may not come from depth, but due
to an ensemble of exponentially many shallow networks

Lecture 9 CMSC 35246



Viet et al.

Many paths from the input to output: 2n paths

In classical visual hierarchy, each layer of processing depends
only on the output of the previous layer, this is not true for
residual networks due to their inherent structure

Infact, each module fi(·) can be thought of as being fed data
from a mixture of 2i−1 different distributions generated from
every possible configuration of the previous i− 1 modules

Viet et al. provide experimental evidence that most paths in
residual networks are relatively independent of each other, and
usually short paths are active

The strength of ResNets may not come from depth, but due
to an ensemble of exponentially many shallow networks

Lecture 9 CMSC 35246



Viet et al.

Many paths from the input to output: 2n paths

In classical visual hierarchy, each layer of processing depends
only on the output of the previous layer, this is not true for
residual networks due to their inherent structure

Infact, each module fi(·) can be thought of as being fed data
from a mixture of 2i−1 different distributions generated from
every possible configuration of the previous i− 1 modules

Viet et al. provide experimental evidence that most paths in
residual networks are relatively independent of each other, and
usually short paths are active

The strength of ResNets may not come from depth, but due
to an ensemble of exponentially many shallow networks

Lecture 9 CMSC 35246



Viet et al.

Many paths from the input to output: 2n paths

In classical visual hierarchy, each layer of processing depends
only on the output of the previous layer, this is not true for
residual networks due to their inherent structure

Infact, each module fi(·) can be thought of as being fed data
from a mixture of 2i−1 different distributions generated from
every possible configuration of the previous i− 1 modules

Viet et al. provide experimental evidence that most paths in
residual networks are relatively independent of each other, and
usually short paths are active

The strength of ResNets may not come from depth, but due
to an ensemble of exponentially many shallow networks

Lecture 9 CMSC 35246



DenseNets

Lecture 9 CMSC 35246



DenseNets

The lth layer has l inputs, consisting of feature maps of all
preceding convolutional blocks

Lecture 9 CMSC 35246



DenseNets

The lth layer has l inputs, consisting of feature maps of all
preceding convolutional blocks

Lecture 9 CMSC 35246



DenseNets

A Deep Dense Net with 3 dense blocks

Lecture 9 CMSC 35246



Achitectures

k is growth factor (if Fl produces k feature maps as o/p, it follows that the lth layer has
k × (l− 1) + k0 input feature maps. Where k0 is the number of channels in the input image)

Lecture 9 CMSC 35246



Results

Lecture 9 CMSC 35246



Similarity Learning and Siamese Networks

Lecture 9 CMSC 35246



Who is more similar?

Lecture 9 CMSC 35246



Similar Gender

Lecture 9 CMSC 35246



Similar Age

Lecture 9 CMSC 35246



Similar Hair

Lecture 9 CMSC 35246



Similarity depends on the context, which may not be adequately
captured by the Euclidean distance on the native feature space

Lecture 9 CMSC 35246



Distance Metric Learning (Linear Case)

Learning a distance metric:

• Amplify informative directions
• Squash non-informative directions

Lecture 9 CMSC 35246



Distance Metric Learning (Linear Case)

Learning a distance metric:

• Amplify informative directions

• Squash non-informative directions

Lecture 9 CMSC 35246



Distance Metric Learning (Linear Case)

Learning a distance metric:

• Amplify informative directions
• Squash non-informative directions

Lecture 9 CMSC 35246



Distance Metric Learning (Linear Case)

Learning a distance metric:

• Amplify informative directions
• Squash non-informative directions

Lecture 9 CMSC 35246



Distance Metric Learning (Linear Case)

Learning a distance metric:

• Amplify informative directions

• Squash non-informative directions

Lecture 9 CMSC 35246



Distance Metric Learning (Linear Case)

Learning a distance metric:

• Amplify informative directions
• Squash non-informative directions

Lecture 9 CMSC 35246



Distance Metric Learning (Linear Case)

Learning a distance metric:

• Amplify informative directions
• Squash non-informative directions

Here the map is x 7→ Lx

Lecture 9 CMSC 35246



Distance Metric Learning (Linear Case)

Learning a distance metric:
• Amplify informative directions

• Squash non-informative directions

Here the map is x 7→ Lx

Lecture 9 CMSC 35246



Distance Metric Learning (Linear Case)

Learning a distance metric:
• Amplify informative directions
• Squash non-informative directions

Here the map is x 7→ Lx

Lecture 9 CMSC 35246



Distance Metric Learning

Fundamental intuition behind most work in the area:

• ”Pull” good neighbors (from the correct class for a given
point) closer

• ”Pushing” bad neighbors (from the incorrect class for a
given point) farther away

”Good” and ”Bad” is usually some combination of label
agreement and proximity

Exact formulation of ”Good” and ”Bad”, and how many to
consider for each training point, varies from algorithm to
algorithm

Lecture 9 CMSC 35246



Distance Metric Learning

Fundamental intuition behind most work in the area:

• ”Pull” good neighbors (from the correct class for a given
point) closer

• ”Pushing” bad neighbors (from the incorrect class for a
given point) farther away

”Good” and ”Bad” is usually some combination of label
agreement and proximity

Exact formulation of ”Good” and ”Bad”, and how many to
consider for each training point, varies from algorithm to
algorithm

Lecture 9 CMSC 35246



Distance Metric Learning

Fundamental intuition behind most work in the area:

• ”Pull” good neighbors (from the correct class for a given
point) closer

• ”Pushing” bad neighbors (from the incorrect class for a
given point) farther away

”Good” and ”Bad” is usually some combination of label
agreement and proximity

Exact formulation of ”Good” and ”Bad”, and how many to
consider for each training point, varies from algorithm to
algorithm

Lecture 9 CMSC 35246



Distance Metric Learning

Fundamental intuition behind most work in the area:

• ”Pull” good neighbors (from the correct class for a given
point) closer

• ”Pushing” bad neighbors (from the incorrect class for a
given point) farther away

”Good” and ”Bad” is usually some combination of label
agreement and proximity

Exact formulation of ”Good” and ”Bad”, and how many to
consider for each training point, varies from algorithm to
algorithm

Lecture 9 CMSC 35246



Distance Metric Learning

Fundamental intuition behind most work in the area:

• ”Pull” good neighbors (from the correct class for a given
point) closer

• ”Pushing” bad neighbors (from the incorrect class for a
given point) farther away

”Good” and ”Bad” is usually some combination of label
agreement and proximity

Exact formulation of ”Good” and ”Bad”, and how many to
consider for each training point, varies from algorithm to
algorithm

Lecture 9 CMSC 35246



Distance Metric Learning

Lecture 9 CMSC 35246



Semantic Embeddings

In general, we can have a non-linear map x 7→ φ(x)

φ can be modeled by a neural network!

Reminder: Goal – Given labeled data, learn a metric that has
the form d(x,x′) = ‖φ(x)− φ(x)′‖ that is compatible with
labels

Lecture 9 CMSC 35246



Semantic Embeddings

In general, we can have a non-linear map x 7→ φ(x)

φ can be modeled by a neural network!

Reminder: Goal – Given labeled data, learn a metric that has
the form d(x,x′) = ‖φ(x)− φ(x)′‖ that is compatible with
labels

Lecture 9 CMSC 35246



Semantic Embeddings

In general, we can have a non-linear map x 7→ φ(x)

φ can be modeled by a neural network!

Reminder: Goal – Given labeled data, learn a metric that has
the form d(x,x′) = ‖φ(x)− φ(x)′‖ that is compatible with
labels

Lecture 9 CMSC 35246



Siamese Networks

Uses a contrastive cost function:

J = min
φ
yi,jD(xi,xj)

2 + (1− yi,j)max{0, α−D(xi,xj)
2}

With D(xi,xj) = ‖φ(xi)− φ(xj)‖2
Two neural networks with shared weights, trained by
backpropagation

Lecture 9 CMSC 35246



Siamese Networks

Uses a contrastive cost function:

J = min
φ
yi,jD(xi,xj)

2 + (1− yi,j)max{0, α−D(xi,xj)
2}

With D(xi,xj) = ‖φ(xi)− φ(xj)‖2

Two neural networks with shared weights, trained by
backpropagation

Lecture 9 CMSC 35246



Siamese Networks

Uses a contrastive cost function:

J = min
φ
yi,jD(xi,xj)

2 + (1− yi,j)max{0, α−D(xi,xj)
2}

With D(xi,xj) = ‖φ(xi)− φ(xj)‖2
Two neural networks with shared weights, trained by
backpropagation

Lecture 9 CMSC 35246



Triplet Embeddings

We have an anchor point xai

We pick a point with the same class xpi , and a point with a
wrong class xni
We then optimize the following objective function:

J = min
φ

∑
i

max{0, D(xai ,x
p
i )

2 −D(xai ,x
n
i )

2 + α}

With D(xi,xj) = ‖φ(xi)− φ(xj)‖2
Three neural networks with shared weights, trained by
backpropagation

Lecture 9 CMSC 35246



Triplet Embeddings

We have an anchor point xai
We pick a point with the same class xpi , and a point with a
wrong class xni

We then optimize the following objective function:

J = min
φ

∑
i

max{0, D(xai ,x
p
i )

2 −D(xai ,x
n
i )

2 + α}

With D(xi,xj) = ‖φ(xi)− φ(xj)‖2
Three neural networks with shared weights, trained by
backpropagation

Lecture 9 CMSC 35246



Triplet Embeddings

We have an anchor point xai
We pick a point with the same class xpi , and a point with a
wrong class xni
We then optimize the following objective function:

J = min
φ

∑
i

max{0, D(xai ,x
p
i )

2 −D(xai ,x
n
i )

2 + α}

With D(xi,xj) = ‖φ(xi)− φ(xj)‖2
Three neural networks with shared weights, trained by
backpropagation

Lecture 9 CMSC 35246



Triplet Embeddings

We have an anchor point xai
We pick a point with the same class xpi , and a point with a
wrong class xni
We then optimize the following objective function:

J = min
φ

∑
i

max{0, D(xai ,x
p
i )

2 −D(xai ,x
n
i )

2 + α}

With D(xi,xj) = ‖φ(xi)− φ(xj)‖2
Three neural networks with shared weights, trained by
backpropagation

Lecture 9 CMSC 35246



Triplet Embeddings

We have an anchor point xai
We pick a point with the same class xpi , and a point with a
wrong class xni
We then optimize the following objective function:

J = min
φ

∑
i

max{0, D(xai ,x
p
i )

2 −D(xai ,x
n
i )

2 + α}

With D(xi,xj) = ‖φ(xi)− φ(xj)‖2

Three neural networks with shared weights, trained by
backpropagation

Lecture 9 CMSC 35246



Triplet Embeddings

We have an anchor point xai
We pick a point with the same class xpi , and a point with a
wrong class xni
We then optimize the following objective function:

J = min
φ

∑
i

max{0, D(xai ,x
p
i )

2 −D(xai ,x
n
i )

2 + α}

With D(xi,xj) = ‖φ(xi)− φ(xj)‖2
Three neural networks with shared weights, trained by
backpropagation

Lecture 9 CMSC 35246



Application: Visual Analogies

Analogies: ”A is to B as C is to D” e.g. ”Paris is to France as
London is to UK”

How to solve analogies using embeddings?

Lecture 9 CMSC 35246



Application: Visual Analogies

Analogies: ”A is to B as C is to D” e.g. ”Paris is to France as
London is to UK”

How to solve analogies using embeddings?

Lecture 9 CMSC 35246



Application: One Shot Learning

Suppose we have learned a semantic embedding for a face
database (multiple images per person)

Now we have ONE image of a new class given to us. How can
we integrate it in our system?

Leverage examples from other classes and transfer knowledge

Lecture 9 CMSC 35246



Application: One Shot Learning

Suppose we have learned a semantic embedding for a face
database (multiple images per person)

Now we have ONE image of a new class given to us. How can
we integrate it in our system?

Leverage examples from other classes and transfer knowledge

Lecture 9 CMSC 35246



Application: One Shot Learning

Suppose we have learned a semantic embedding for a face
database (multiple images per person)

Now we have ONE image of a new class given to us. How can
we integrate it in our system?

Leverage examples from other classes and transfer knowledge

Lecture 9 CMSC 35246



Application: One Shot Learning

Suppose we have learned a semantic embedding for a face
database (multiple images per person)

Now we have ONE image of a new class given to us. How can
we integrate it in our system?

Leverage examples from other classes and transfer knowledge

Lecture 9 CMSC 35246



Application: One Shot Learning

Suppose we have learned a semantic embedding for a face
database (multiple images per person)

Now we have ONE image of a new class given to us. How can
we integrate it in our system?

Leverage examples from other classes and transfer knowledge

Lecture 9 CMSC 35246



Application: One Shot Learning

Suppose we have learned a semantic embedding for a face
database (multiple images per person)

Now we have ONE image of a new class given to us. How can
we integrate it in our system?

Leverage examples from other classes and transfer knowledge

Lecture 9 CMSC 35246



Application: One Shot Learning

Semantic embedding learning using a siamese network

Lecture 9 CMSC 35246



Application: One Shot Learning

Semantic embedding learning using a siamese network

Lecture 9 CMSC 35246



Application: One Shot Learning

We train the network to detect whether a pair comes from
same class or not

Lecture 9 CMSC 35246



Application: One Shot Learning

Now given one training example x̃i from each new class and a
query x, estimate label as: ŷ = argmaxi F (x̃i, x)

Lecture 9 CMSC 35246



Application: One Shot Learning

Koch and Salakhutdinov (2015), used a Siamese CNN
architecture to get the state of the art performance on the
OmniGlot dataset

Lecture 9 CMSC 35246




