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Abstract

The advent of large language models (LLMs)
has dramatically advanced the state-of-the-art
in numerous natural language generation tasks.
For LLMs to be applied reliably, it is essential
to have an accurate measure of their confidence.
Currently, the most commonly used confidence
score function is the likelihood of the generated
sequence, which, however, conflates seman-
tic and syntactic components. For instance, in
question-answering (QA) tasks, an awkward
phrasing of the correct answer might result
in a lower probability prediction. Addition-
ally, different tokens should be weighted differ-
ently depending on the context. In this work,
we propose enhancing the predicted sequence
probability by assigning different weights to
various tokens using attention values elicited
from the base LLM. By employing a valida-
tion set, we can identify the relevant attention
heads, thereby significantly improving the reli-
ability of the vanilla sequence probability con-
fidence measure. We refer to this new score
as the Contextualized Sequence Likelihood
(CSL). CSL is easy to implement, fast to com-
pute, and offers considerable potential for fur-
ther improvement with task-specific prompts.
Across several QA datasets and a diverse ar-
ray of LLMs, CSL has demonstrated signif-
icantly higher reliability than state-of-the-art
baselines in predicting generation quality, as
measured by the AUROC or AUARC. The
code to replicate our experiments is available
at https://github.com/zlin7/ContextSL.

1 Introduction

The development of large language models (LLMs)
has afforded tremendous advancements in natu-
ral language generation (NLG). Recently, LLMs
have been widely applied across various natural
language domains (Zhang et al., 2023; Wang et al.,
2023a; Alves et al., 2023; Zhang et al., 2024),
even extending to tasks and domains traditionally
dominated by other machine learning algorithms,

such as graph data (Fatemi et al., 2024), tabular
data (Borisov et al., 2023; Hegselmann et al., 2023),
time series (Gruver et al., 2023; Rasul et al., 2024),
predictive chemistry (Jablonka et al., 2024; Shi
et al., 2023), computer vision (Wang et al., 2023b),
amongst others. As LLMs continue to demonstrate
outstanding performance, their reliability is increas-
ingly scrutinized. Uncertainty quantification, an
area of research that can provide some guidance
on reliability, has recently gained much attention.
Despite its long history in other machine learning
tasks (Gawlikowski et al., 2023), our understand-
ing of uncertainty quantification in NLG remains
relatively limited.

During pre-training, (autoregressive) LLMs are
optimized to predict high logits for the target token
to minimize (variants of) the negative log likeli-
hood. Consequently, one of the most natural and
widely used confidence scores in selective NLG,
conformal NLG, or uncertainty quantification is
the (sometimes normalized) likelihood of the se-
quence, equivalent to the sum/mean of token logits.
At first glance, sequence likelihood appears to be
the most faithful reflection of a model’s confidence,
as it represents the (log of) the predicted probabil-
ity of the output sequence, or log p̂(s|x). However,
this measure often lacks proper contextualization
and disregards the specific nature of the task at
hand. p̂(s|x) conflates syntactic and semantic like-
lihoods, though we typically prioritize the semantic
aspect, to a varying degree depending on the task.
For example, depending on whether the question
is “Which country won the World Cup in 2022”
or “When did Messi win the World Cup,” the an-
swer “Messi emerged victorious in the 2022 World
Cup” could be considered correct or incorrect. Fur-
ther, the somewhat unusual expression here could
adversely impact p̂(s|x).

Despite its limitations, relatively limited atten-
tion has been paid to improving the vanilla se-
quence likelihood. A recent study by Duan et al.
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(2023) proposed assessing token relevance using an
external natural language inference (NLI) model.
The relevance score of a token is negatively pro-
portional to the similarity between the original se-
quence and the sequence with this token removed,
which is then applied to weight the token logits.
However, since modern LMs rely on sub-word to-
kenizers, removing one sub-word token at a time
results in non-words, is computationally expensive
for longer texts, and remains context-unaware.

In this paper, we investigate the potential of uti-
lizing the LLM’s own attention mechanism to de-
velop a weighted sequence likelihood as an en-
hanced confidence score. Specifically, the LLM is
prompted to concentrate on the relevant tokens in
its own generation. The most appropriate attention
heads are then employed to re-weight the original
token logits. The main contributions of this paper
are summarized as thus:

• We introduce a straightforward yet effective
method to reweight token logits, resulting in
Contextualized Sequence Likelihood (CSL), a
more reliable confidence measure.

• We improve current automatic evaluation meth-
ods for confidence measures on Question-
Answering (QA) datasets and manually verify
their effectiveness.

• In popular free-form QA datasets, and on a va-
riety of LLMs, we verify that CSL significantly
outperforms baselines. Case studies suggest the
attention weights are meaningful.

2 Related Works

With the rapid proliferation of LLMs and their
swift adoption across various domains, uncertainty
quantification (UQ) for natural language generation
(NLG) is a fast-growing area of research (see Baan
et al. (2023) and references therein). Adopting the
language used by Lin et al. (2023), uncertainty mea-
sures the predictive distribution, while confidence
(our focus) further depends on the specific genera-
tion. A common approach involves reducing NLG
to a de facto classification problem and utilizing or
enhancing classical UQ methods for classification
(Desai and Durrett, 2020; Jiang et al., 2021; Ka-
math et al., 2020; Wang et al., 2022; Xiong et al.,
2023). Recognizing the unique challenges posed by
the inherently high (potentially infinite) dimension-
ality of NLG, recent research increasingly consid-
ers UQ for NLG from a sequence perspective (Hou
et al., 2023; Kuhn et al., 2023; Malinin and Gales,

2021; Lin et al., 2023).
Relatively less attention has been devoted to con-

fidence measures. Sequence likelihood, or the log-
probability of the generated sequence, remains one
of the most popular proxies for assessing the qual-
ity of individual answers (Quach et al., 2023; Kuhn
et al., 2023; Cole et al., 2023). Another natural
approach, given the versatility and strong perfor-
mance of LLMs, involves using prompts to elicit
the LLM’s own confidence level (Kadavath et al.,
2022; Lin et al., 2022a; Mielke et al., 2020; Chen
and Mueller, 2023; He et al., 2023; Li et al., 2024;
Wightman et al., 2023). For free-form generation
datasets, this is typically done by arranging answers
as options and extracting the model’s logits for each
option. While our method also employs prompts,
they primarily guide the model to focus on tokens
relevant to the context of the question. Another
approach involves sampling additional generations
and comparing their similarities (Lin et al., 2023;
Cole et al., 2023), which demonstrates good dis-
criminative capability but can be rather expensive.
Although this approach has the advantage that it
can work for black-box LLMs. Ensemble methods
have also been proposed (Chen and Mueller, 2023).

Recently, Duan et al. (2023) proposed an im-
provement to sequence likelihood by weighting the
tokens using their importance, which is computed
by removing one token at a time from the original
sequence and computing the NLI dissimilarity be-
tween the new and original sequences. The removal
of sub-word tokens, however, introduces drastically
grammatically incorrect sentences, which could
confuse the NLI model. In addition, such a method
could incur high computation overhead by making
n NLI comparisons, where n is the length of the
generation. In contrast, our method incurs no artifi-
cial grammatical errors and miniscule overhead.

An important downstream application of confi-
dence measures is abstention in LLMs. Classifica-
tion with rejection (Corbière et al., 2019; Fumera
et al., 2000; Geifman and El-Yaniv, 2017; Jiang
et al., 2018; Lin et al., 2022b) could be considered
the direct antecedent of selective NLG—both aim-
ing to determine when to trust a model. Naturally,
approaches similar to those in the classification
with rejection literature have been applied to NLP
applications (Varshney et al., 2022a,b). More re-
cently, Cole et al. (2023); Yadkori et al. (2024); Lin
et al. (2023); Quach et al. (2023) started investigat-
ing NLG with abstention from UQ or risk control
perspectives.
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Calibration is another crucial and relevant topic
that has been extensively studied (Mielke et al.,
2022; Si et al., 2022; Xiong et al., 2023; Zhu et al.,
2023). Although calibration is not directly related
to our primary focus—our main interest lies in
ranking the confidence of different measures—we
include results on the calibrated performance in
the Appendix. Conformal prediction (Vovk et al.,
2005) could also be considered a form of calibra-
tion at the distribution level, and has been extended
to NLG to bound variants of error rates (Quach
et al., 2023; Yadkori et al., 2024).

3 Contextualized Sequence Likelihood

3.1 Background: Sequence Likelihood
In this section we describe our approach: contextu-
alized sequence likelihood (CSL). We first fix no-
tation and introduce relevant definitions. We will
focus on auto-regressive LMs, the current domi-
nant paradigm. Denoting the model as M, for any
given input prompt denoted as x, the response s is
a sequence of tokens [s1, . . . , sn] sampled from the
predictive distribution P (S;x,M). We will denote
s<i as the truncated sequence [s1, . . . , si−1]. Given
the auto-regressive assumption, the (log-softmax’d)
logit for the i-th token represent M’s prediction
of the log probability of token si at this location.
Consequently, the sum of all the logits for the se-
quence represents the log of the model’s predicted
probability of the output sequence:

CSL =
n∑

i=1

li = log
n∏

i=1

p̂(si|s<i, x). (1)

Eq. (1) is commonly used as a confidence
score (Quach et al., 2023; Cole et al., 2023), and of-
ten normalized by the length n, as otherwise longer
sequences tend to receive lower confidence (Kuhn
et al., 2023; Malinin and Gales, 2021):

CSL(norm) =
1

n

n∑
i=1

li. (2)

As pointed out by Cole et al. (2023), in practice
CLL is far from the actual log-probability of the
sequence s, log p̂(s|x). Techniques like nucleus
sampling or top-k sampling will reduce the sum
of the predicted probability of all tokens below 1.
However, if we view this new distribution that s is
effectively sampled from as P ′(S|x,M), then we
at least have:

∀s, P ′(s|x) ∝
n∏

i=1

p̂(si|s<i, x). (3)

Thus, CSL still faithfully preserves the ranking of
LM’s predicted probability of all possible gener-
ated sequences, which is all we care about for a
good (pre-calibrated) confidence measure. How-
ever, as we shall see next, this does not imply se-
quence likelihood is a good confidence measure.

3.2 Contextualized Likelihood via Attention

While intuitively natural as confidence measures,
Eqs. (1) and (2) sweep a crucial consideration un-
der the proverbial rug: While sequence-likelihood
reflects the model’s predicted probability of the se-
quence s, what does this probability actually mean?
Unfortunately, there is an inherent ambiguity here.
For instance, let’s say we are classifying an image
x from ImageNet (Deng et al., 2009), and take the
first-choice confidence score p̂(y|x) as predicted by
a ResNet (He et al., 2016). However, p̂(y = cat|x)
could mean the (model’s predicted) probability of
“the input image is that of a cat”, “there is a cat
in the input image”, or probably more precisely
speaking, “this image should be labeled as a cat
by ImageNet standards”1. Similarly, strictly speak-
ing, p̂(s|x) only reflects the LM’s prediction of
the probability of “s follows x, according to the
training data”.

To illustrate further, consider the question-
answer pair where x is “Q: What did Neil Arm-
strong do on July 20, 1969?”. A response s which
goes “A: On July 20, 1969, Armstrong and Buzz
Aldrin landed on the Moon for the first time in
human history.” appears appropriate and highly
probable. However, the confidence of “whether s
correctly answers x” is minimally influenced by
the redundant mention of the date or Armstrong’s
fellow astronaut, Buzz Aldrin. Generally speaking,
the confidence that we are concerned with in a re-
sponse s depends on the context, with some tokens
being significantly more relevant than others.

How can we systematically identify the most
relevant tokens? To address this, we propose using
a prompt (Fig. 1) to elicit the LM’s attention on its
own response s. Essentially, we prompt the LM
to assess whether its generated response correctly
answers the question. Unlike previous approaches
that rely on similar prompts, we disregard the actual
judgment and instead extract the attention values
of the LM on s during this process to reweight
the token logits. Assuming the si becomes the i′-
th token in the attention-eliciting prompt, the new

1See a similar discussion in Beyer et al. (2020).
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confidence score could be written as:

CCSL =

n∑
i=1

wili where wi =
ai∑n

i′=1 ai′
(4)

where ai′ is the attention of the last token of the
attention-eliciting prompt on the si.

1 Read the following question with
optional context and decide if the
answer correctly answer the question
. Focus on the answer , and reply Y
or N.

2 ...
3 Context: Harry is a good witcher.
4 Question: How old is Harry?
5 Answer: Harry practices witchcraft.
6 Decision: N. (The answer does not

mention Harry 's age.)
7 ...
8 [$optional_context]
9 Question: [$question]

10 Answer: [$response]
11 Decision:

Figure 1: The attention-eliciting prompt used in this
paper (full version deferred to the Appendix due to
space constraints). $optional_context, $question and
$response are replaced with the corresponding values of
a sample. In our experiments, $optional_context refers
to the story and conversation history that accompanies
each question in CoQA (Reddy et al., 2019).

Fig. 2 illustrates how the attention-eliciting
prompt (Fig. 1) induces varying emphases on the
same response for different questions. For instance,
when the question focuses on “when”, the section
of the response detailing the event date receives
greater attention weight across all heads. This in-
dicates that the weighting scheme introduced in
Eq. (4) effectively overweights relevant tokens and
underweights irrelevant ones, resulting in a more
contextualized version of sequence likelihood.

Besides using a prompt, a more straightforward
source of attention weights is the original generat-
ing process. Specifically, when the LM completes
generating s, we retrieve the attention for the next
token. We refer to this variant as CSL-Next, in
contrast to CSL with the prompt. Our hypothesis
is that the LM induces some internal attention on
the critical words of the generation even without an
explicit prompt asking for it, and we will explain
how to identify such attention in Section 3.3.

3.3 The Choice of Heads
While the prompt can enhance overall attention on
relevant tokens, averaging attention across heads—
even with the prompt—is unwise. Many attention

heads likely focus, for example, on ensuring gram-
matical correctness, with only a fraction dedicated
to the response. Selecting only the useful heads
from the multitude of heads (e.g., out of 1,600 in
LLaMA2-13B) remains a challenging task.

We present a systematic approach to identify
the appropriate heads. Let wh denote the atten-
tion weights from head h, and Ch

CSL the associated
confidence score computed via Eq. (4). For each
head h and a subset of the samples, we use the as-
sociated confidence Ch

CSL to predict the accuracy
of responses, and compute an AUROC (similar to
Kuhn et al., 2023), denoted as AUROCh. Notably,
we found that the “functionality” of the heads ap-
pears relatively stable: That is, if we compare the
AUROCh on two subsets of the population, the
ranking of these heads is highly consistent across
the two subsets, as shown in Fig. 3. As a result,
we propose to pick the top k = 10 heads on the
validation dataset and average the attention weights
of only these heads. The reason why we pick more
than one head is because picking only the best head
is likely affected by noise due to the size of the
validation set. In Section 4, we show that lever-
aging the attention from about k = 10 top heads
performs better than either the average attention of
all heads, or the top head.

4 Experiments

4.1 Datasets
We use the following standard benchmark datasets,
largely following the practices in Kuhn et al.
(2023); Lin et al. (2023):

• CoQA (coqa) (Reddy et al., 2019), an open-book
conversational question answering dataset. We
use the development split of coqa with 7,983
questions.

• TriviaQA (trivia) (Joshi et al., 2017), a closed-
book QA dataset. We use the validation split of
the rc.nocontext subset of trivia with 9,960
(de-duplicated) questions.

• Natural Questions (nq) (Kwiatkowski et al.,
2019), a closed-book QA dataset. We use the
validation split of nq with 3,610 questions.

Following (Lin et al., 2023), for each experiment
we use a random subset of 1,000 questions as the
validation set, and the remaining as the test set.
We report the mean and standard deviation of all
evaluation metrics (see Section 4.4) on the test set,
calculated from 10 random data splittings.
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Q: When did Neil Armstrong land on the Moon?

Who landed on the Moon with Neil Armstrong on July 20, 1969?

What did Neil Armstrong and Buzz Aldrin do on July 20, 1969?

A: On July 20, 1969︸ ︷︷ ︸
when

, Armstrong and Buzz Aldrin︸ ︷︷ ︸
who

landed on the Moon︸ ︷︷ ︸
what

for the first time in human history.
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Figure 2: Depending on the question, the attention-eliciting prompt introduced in Fig. 1 induces attention focusing
on different parts of the same response (“when”, “who” and “what”). In the plot on the right, we show the CDF of
∆attn, the change of attention weight on the corresponding concept when asked the relevant question, on all 1,024
heads of Mistral-7B. For example, for “when”, we compute ∆attn as the attention weight on “On July 20, 1969”
when asked the “when” question minus the average of the cases where the other two questions were asked. In all
cases, the attention significantly increases on the relevant tokens (p-value from one-sided t-test is at most 9e-90).
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Figure 3: Scatter plot of test vs validation AUROC for
confidence measures computed via Eq. (4) with different
heads’ attention weights, on Natural Questions (nq) with
Mistral-7B model. The ranking is highly consistent—
the best heads on the validation set continue to perform
well on the test set. In this case, the Spearman corre-
lation (Spearman, 1961) is > 97%. We can thus pick
only a small subset of the 1024 heads (or more for other
LMs) to construct the final confidence measure CCSL.

4.2 Baselines

We compare CSL (and CSL-Next) with several re-
cent confidence measures:

• Deg, a confidence score based on the degree of
similarity graph from Lin et al. (2023). Note
that this method requires sampling multiple re-
sponses, and we set the number of additional
generations to 5. We use the “Entailment” ver-
sion as suggested by Lin et al. (2023).

• P(true) (Kadavath et al., 2022), which elicits
the confidence by asking the LM itself whether
its response is correct. We use the prompt
from Kadavath et al. (2022); Lin et al. (2023).

• Sequence Likelihood (SL): This is the sequence
likelihood measure discussed in Eq. (1), and
widely in literature as a confidence score (Lin
et al., 2023; Quach et al., 2023; Huang et al.,
2024) or as a building block for predictive en-

tropy (Kuhn et al., 2023; Kadavath et al., 2022;
Malinin and Gales, 2021). We include the length-
normalized version in Eq. (2), SL(norm), as well.

• TokenSAR (Duan et al., 2023): It proposes to
estimate the relevance of each token as wi in
Eq. (4), with wi ∝ 1 − sim(s, s−i) where sim
is similarity measured by an NLI model and s−i

is the response of interest s without token i.

In addition, we also replace the sequence likelihood
used in Semantic Entropy (SE,Kuhn et al., 2023),
which is an uncertainty2 measure, with CSL, and
report results in Section 4.6

4.3 Language Model and Generation

For the base LLMs, we include the most popular
open LLMs: LLaMA2 (Touvron et al., 2023b), Mis-
tral (Jiang et al., 2023) and Gemma (Team et al.,
2024). We use the 13B version for LLaMA, and the
7B version for Mistral and Gemma due to their im-
proved performance. Response generation largely
follows Kuhn et al. (2023) with some improve-
ments: The original pipeline often removes content
after periods in abbreviations (such as “Dr.”), so
we modified the prompt to ensure each response s
ends with a newline character but keeps contents
after punctuations. Like Kuhn et al. (2023), we fo-
cus on the greedily-decoded generation s for each
question and use a temperature of 0.5 for baselines
that require additional response sampling.

4.4 Evaluation

For an effective confidence measure, low confi-
dence should correlate with a higher probability of
incorrect generation. To assess the quality of confi-

2See Lin et al. (2023) for a discussion distinguishing between
confidence and uncertainty.
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Table 1: Agreement with human annotation, on 720
sampled question-response pairs in total.

Agreement with Human (%) coqa nq trivia

accagree 98.2 91.8 98.2
accllama2 97.0 86.7 95.0
accgpt 94.1 85.8 96.6

dence measures, we adhere to established method-
ologies (Kuhn et al., 2023; Band et al., 2022). This
involves utilizing them to predict the correctness
of a generation and calculating the Area Under the
Receiver Operating Characteristic curve (AUROC)
for this prediction task. Formally, let acci represent
the indicator function 1{si correctly answers xi}.
We compute the AUROC using the confidence mea-
sure C(x·, s·) to predict acc·. This approach allows
us to systematically evaluate how well the confi-
dence measures distinguish between correct and
incorrect responses across multiple samples.

In addition to AUROC, following Lin et al.
(2023), we also report Area Under Accuracy-
Rejection Curve (AUARC) (Nadeem et al., 2009).
The Accuracy-Rejection Curve (ARC) computes
the average the accuracy when a subset of samples
is rejected based on C. As we exclude more low-
confidence samples, the accuracy of the remain-
ing samples should increase. The upper bound is
achieved by predicting only the correct s (i.e. set C
to accuracy), and the AUARC of a random predic-
tor is equal to the base accuracy without rejection.

Correctness of Generations: A critical require-
ment for computing AUROC or AUARC is a reli-
able acci, the accuracy of each response. This is
a unique challenge in UQ for NLG, and deserves
separate research. Prior work typically relies on
lexical similarity measures such as ROUGE (Kuhn
et al., 2023; Quach et al., 2023) or BLEU (Huang
et al., 2024). Lin et al. (2023) uses gpt-3.5 to eval-
uate the correctness of each response given a refer-
ence answer3, and considers anything with a rating
above 70% as correct. Inspired by (Lin et al., 2023),
we use the agreement of both LLaMA2-70B and
gpt-3.5-turbo-0125’s evaluations as acc (More
details are in Appendix B). As shown in Table 1,
this notably improves the correctness evaluation
and thus the reliability of AUROC/AUARC. We in-
clude the results using accllama2 in the Appendix D
since accagree and accgpt may not remain repro-
ducible in the future.
3The original paper uses gpt-3.5-turbo-0301 which is no
longer accessible.

4.5 Results
Table 2 presents the AUROC of different confi-
dence measures. Clearly, all the confidence base-
lines consistently detect good s over bad ones, but
CSL outperforms baselines. Similar results are
observed for AUARC in Table 3 as well: As the
LMs have good base accuracy (from the “Random”
column) for coqa and trivia, the gap between
different confidence measures is relatively small,
but generally significant. In particular, among
likelihood-based methods, it is sometimes confus-
ing whether normalized or unnormalized likelihood
should be used (Kuhn et al., 2023; Malinin and
Gales, 2021), and TokenSAR does not always out-
perform the better of the two. However, CSL con-
sistently outperforms all three. Thanks to the ad-
ditional sampling, Deg performs quite well, espe-
cially if we further increase the temperature of the
base LM (see Appendix), but in practice it could
significantly increase the computation cost as it
requires m additional generations and O(m2) simi-
larity comparisons. Finally, after the head selection
process, the difference between CSL and CSL-Next
is small, but still extremely significant if we per-
form a pooled test. The observed similar perfor-
mance is because chosen attention heads exhibit
highly correlated patterns (see Section 4.7). We rec-
ommend CSL over CSL-Next as they share similar
overhead (close to none) but the attention-eliciting
prompt is more structured compared with the more
arbitrary prompt used to generate s, and therefore
the “good” heads are likely to be more stable.

4.6 Improving Uncertainty Measures
As noted earlier, sequence likelihood is widely used
in entropy computation, which is used as an uncer-
tainty measure for NLG. Semantic Entropy (Kuhn
et al., 2023) is a state-of-the-art uncertainty mea-
sure that groups sampled generations into semantic
sets and computes the entropy over these sets. In
doing so, it uses sequence likelihood (sometimes
normalized). We simply replace it with CSL to cre-
ate a new uncertainty measure, SE+CSL. The com-
parison is shown in Table 4. SE+CSL consistently
outperforms either the normalized or the unnormal-
ized version of SE, showing potential in replacing
sequence likelihood in other domains such as con-
formal NLG (Quach et al., 2023).

4.7 Is the Improvement a Fluke?
Despite not using an explicit attention-eliciting
prompt, CSL-Next performs close to CSL, outper-
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Table 2: AUROC of using confidence measures C to predict the accuracy of responses. Methods not significantly
different from the best are in bold.

Deg (E) P(true) SL SL(norm) TokenSAR CSL CSL-Next

trivia (llama2) 81.74±0.25 64.82±0.18 88.19±0.12 87.86±0.12 87.91±0.13 89.70±0.19 89.61±0.18
trivia (gemma) 84.00±0.19 81.82±0.18 88.72±0.11 88.11±0.08 88.09±0.08 89.71±0.14 89.42±0.11
trivia (mistral) 81.85±0.30 68.78±0.28 88.81±0.15 88.64±0.14 88.74±0.13 90.76±0.18 90.73±0.15
coqa (llama2) 69.93±0.57 53.64±0.41 69.50±0.40 72.59±0.44 72.78±0.47 73.34±0.74 73.36±0.57
coqa (gemma) 70.03±0.68 55.99±0.42 70.83±0.46 71.96±0.57 72.38±0.55 73.30±0.57 73.64±0.63
coqa (mistral) 69.84±0.52 52.33±0.42 68.97±0.38 70.60±0.38 70.87±0.41 71.79±0.75 71.91±0.63
nq (llama2) 71.61±0.51 52.51±0.47 66.57±0.33 69.48±0.50 70.43±0.46 73.73±0.49 73.54±0.46
nq (gemma) 73.32±0.68 63.66±0.46 72.09±0.65 75.81±0.65 75.88±0.68 77.95±0.58 77.17±0.65
nq (mistral) 73.03±0.52 54.77±0.51 69.22±0.53 71.06±0.54 72.61±0.48 76.65±0.43 75.73±0.68

Table 3: AUARC of using confidence measures C to predict the accuracy of responses. Methods not significantly
different from the best are in bold.

Random Upper Bound Deg (E) P(true) SL SL(norm) TokenSAR CSL CSL-Next

trivia (llama2) 82.60±0.14 98.39±0.03 92.84±0.28 87.50±0.12 95.99±0.06 95.95±0.05 95.96±0.05 96.32±0.08 96.29±0.06
trivia (gemma) 78.14±0.13 97.41±0.03 91.48±0.19 91.83±0.11 94.61±0.05 94.38±0.04 94.38±0.04 94.79±0.04 94.65±0.04
trivia (mistral) 79.94±0.12 97.84±0.03 91.91±0.31 87.55±0.13 95.27±0.06 95.21±0.05 95.22±0.05 95.68±0.09 95.68±0.07
coqa (llama2) 91.36±0.17 99.62±0.01 94.71±0.22 92.24±0.18 95.69±0.13 96.09±0.14 96.17±0.14 96.26±0.18 96.26±0.16
coqa (gemma) 92.64±0.14 99.72±0.01 95.46±0.20 94.13±0.15 96.54±0.10 96.63±0.11 96.68±0.11 96.85±0.11 96.90±0.13
coqa (mistral) 92.04±0.14 99.67±0.01 95.09±0.33 92.62±0.16 95.92±0.10 96.13±0.11 96.22±0.10 96.37±0.13 96.38±0.12
nq (llama2) 56.49±0.68 88.74±0.39 70.59±1.27 57.68±0.68 70.51±0.76 71.01±0.81 71.97±0.80 73.46±0.66 73.31±0.87
nq (gemma) 47.16±0.65 82.59±0.49 62.96±0.94 57.30±0.67 65.78±0.95 66.41±0.92 67.02±0.93 67.78±1.07 66.89±1.03
nq (mistral) 52.90±0.74 86.57±0.47 67.48±1.00 56.47±0.93 69.15±0.82 69.27±0.72 70.62±0.65 72.25±0.74 71.85±0.69

Table 4: AUROC of using variants of Semantic Entropy
to predict the accuracy of responses. SE+CSL signifi-
cantly improves the original version based on vanilla
sequence likelihoods.

SE(norm) SE SE+CSL

trivia (llama2) 89.88±0.11 89.33±0.12 90.50±0.12
trivia (gemma) 90.33±0.10 90.02±0.12 90.75±0.13
trivia (mistral) 90.35±0.12 89.78±0.15 91.13±0.13
coqa (llama2) 75.26±0.33 72.50±0.34 75.58±0.51
coqa (gemma) 74.81±0.48 72.95±0.48 75.08±0.50
coqa (mistral) 74.06±0.41 71.54±0.32 74.56±0.51
nq (llama2) 74.13±0.51 69.62±0.38 76.33±0.50
nq (gemma) 77.93±0.58 73.67±0.77 79.50±0.52
nq (mistral) 75.71±0.40 71.85±0.49 78.66±0.35

forming baselines significantly. It is reasonable to
then worry that the improvement is just the result of
black-box data-mining by the head-selection step
in Section 3.3. This section presents evidence that
CSL most likely identifies meaningful concepts.

Fig. 4 shows the correlation between the wi vec-
tors used for CSL and CSL-Next—which is almost
always positive and usually close to 1. As the
prompts used to induce these attention weights are
quite different, such agreement could be taken as
preliminary evidence that these weights are “mean-
ingful” and less likely to be purely the results of
two independent black-box “fitting” processes.

Fig. 5 shows a few examples of the induced at-

1 0 1

coqa

1 0 1

triviaqa

1 0 1

nq_open

Figure 4: Histogram of the correlation between atten-
tions from CSL and CSL-Next (top 10 heads’ average).
We keep only generations with more than 2 tokens. For
most responses, the chosen heads’ attentions are highly
correlated, suggesting that both methods focus on the
same tokens, as exemplified in Fig. 5.

tention weights, illustrating how CSL makes the
confidence measure more focused on important to-
kens. Given the nature of soft attention, despite the
fact that wi chosen by Section 3 generally identifies
the important tokens and improves upon vanilla se-
quence likelihood, it is still sometimes difficult to
interpret why each token is under/over-weighted.
For interpretability reasons, a future research di-
rection might be to directly use natural language
to identify such tokens. For example, one might
directly ask the LM to list the important entities
with respect to a question. The challenge, then,
transfers to identifying the actual tokens implied
by the natural language output listing important
entities in the original s.
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Question 1: how early did he want to get there?
Response 1: an hour before the time
Question 2: What does Barwell think of him?
Response 2: he is not fit to be his guardian
Question 3: who is Susan Boyle?
Response 3: Susan Boyle is a Scottish singer who be-
came famous after appearing on the TV show "Britain’s
Got Talent" in 2009.

Figure 5: Tokens whose attention is increased are
marked (others decreased). As expected, such re-
weighting are not always interpretable, but help locating
the more relevant tokens in general.

Table 5: AUROC using heads picked from coqa. De-
spite the big distribution shift from coqa to nq/trivia,
the heads chosen on coqa still provides attention
weights that significantly improves the AUROC.

SL(norm) CSL CSL-Next

trivia (llama2) 87.86±0.12 88.59±0.85 88.37±0.87
trivia (gemma) 88.11±0.08 89.03±0.61 87.43±0.94
trivia (mistral) 88.64±0.14 89.70±1.43 88.46±1.93

nq (llama2) 69.48±0.50 70.94±1.66 70.10±2.09
nq (gemma) 75.81±0.65 77.21±1.06 74.99±1.30
nq (mistral) 71.06±0.54 72.71±3.32 72.27±2.72

Finally, if the attention weights are actually fo-
cusing on the important concepts as intended, one
might expect that they should transfer between
datasets and be more robust to distribution shifts.
In Table 5, we select heads based on validation
sets from coqa and apply them on the other two
datasets, which are quite different from coqa (e.g.
in the format of questions). CSL still provides con-
sistent performance boost, while CSL-Next some-
times lags behind SL(norm). This suggests both
the prompt and the head selection step increase the
weights on the more relevant tokens.

4.8 Ablation: Choice of Attention Heads

100 101 102 103
k

0.02

0.00

0.02

 A
UR

OC

llama2(CSL)
llama2(CSL-Next)
gemma(CSL)
gemma(CSL-Next)
mistral(CSL)
mistral(CSL-Next)

Figure 6: AUROC gain compared with SL(norm) for
different k (number of attention heads to keep), from
1 to all heads. The performance peaks around k =
10 and is stable. CSL is also consistently better than
CSL-Next- notably, when we average the attention from
all heads, CSL still outperforms SL(norm), but CSL-Next
is significantly worse.

In Fig. 6, we compute the gain in AUROC com-
pared with SL(norm) (i.e. equal weighting), keep-
ing different number of attention heads. The solid
lines represent CSL, and the dotted lines denote
CSL-Next. Note that using only one head is also
significantly better than the baseline, but perfor-
mance increases and peaks around 10 heads (some-
times more). We believe using a small number
of “good” heads can reduce the noise introduced
by using a small validation set, making CSL more
contextualized to the question.

5 Discussion and Conclusion

In this paper, we explore enhancements to the
widely used confidence measure, sequence like-
lihood, which serves as a quality metric for model
generations in selective generation and risk control
for natural language generation. We introduce Con-
textualized Sequence Likelihood, or CSL, a novel
approach that utilizes attention weights on gener-
ated tokens to re-weight the logits in sequence like-
lihood computation. This new confidence measure
surpasses existing methods across several popular
datasets and large language models by more accu-
rately predicting the accuracy of each response.

Despite these improvements, there are limita-
tions to the current approach. First, the inter-
pretability of attention weights is often obscured by
the nature of the self-attention mechanism. While
attention re-weighting generally enhances the con-
fidence measure, there are individual cases where
selected heads do not align with tokens that humans
would typically consider important in the context of
the question. As discussed in Section 4, a possible
solution involves identifying key tokens through a
language model via natural language, though this
introduces the additional challenge of matching
these words to the original response.

Another limitation is the applicability of the
current prompt, which is tailored for question-
answering and may require modifications for other
tasks. Additionally, like many baseline methods,
the current approach cannot leverage external infor-
mation for “fact-checking.” Integrating confidence
from multiple models could potentially bridge the
gap between a language model’s perceived confi-
dence and the actual correctness of a response. We
hope that future research will address these issues
and expand the toolkit available to practitioners for
assessing the reliability of large language models.
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A.1 Question-Answering Generation Prompts

We use the following prompts when generating
responses for the question-answering datasets.

CoQA:
1 Read the context and answer the

questions below.
2

3 *Context *: [$context]
4 [additional question -answer pairs]
5 *Question *: [$question]
6 *Answer *:

where additional question-answer pairs are preced-
ing turns of the conversation about the paragraph
consisting of questions and reference answers.

TriviaQA:
1 Answer these questions:
2

3 *Question *: In Scotland a bothy/bothie
is a?

4 *Answer *: House
5 *Question *: [$question]
6 *Answer *:

Natural Questions is a much harder dataset than
TriviaQA, so we use the same 5-shot prompt ver-
sion of the prompt in (Touvron et al., 2023a) (with
5 questions randomly picked from the training set).

1 Answer these questions:
2

3 *Question *: who makes up the state
council in russia

4 *Answer *: governors and presidents
5 *Question *: when does real time with

bill maher come back
6 *Answer *: November 9, 2018
7 *Question *: where did the phrase

american dream come from
8 *Answer *: the mystique regarding

frontier life
9 *Question *: what do you call a group of

eels
10 *Answer *: bed
11 *Question *: who wrote the score for

mission impossible fallout
12 *Answer *: Lorne Balfe
13 *Question *: [$question]
14 *Answer *:

A.2 Attention-eliciting Prompt

In the following, we provide the full prompt pre-
viewed in Fig. 1.

1 Read the following question with
optional context and decide if the
answer correctly answer the question
. Focus on the answer , and reply Y
or N.

2

3

4 Context: Luxor International Airport is
a airport near Luxor in Egypt (EG).
It is 353km away from the nearest

seaport (Duba). The offical IATA for
this airport is LXR.

5 Question: Luxor international airport is
in which country?

6 Answer: It is in the United States , and
its IATA is LXR.

7 Decision: N. (The airport is in Egypt ,
not the United States .)

8

9

10 Context: Harry is a good witcher.
11 Question: How old is Harry?
12 Answer: Harry practices witchcraft.
13 Decision: N. (The answer does not

mention Harry 's age.)
14

15

16 Question: What is the capital of Kenya?
17 Answer: Nairobi is the capital of Kenya.
18 Decision: Y.
19

20

21 Question: Who has won the most Premier
League titles since 2015?

22 Answer: Manchester City have win the
most Premier League title after
2015.

23 Decision: Y. (Grammar errors are
ignored .)

24

25

26 [$optional_context]
27 Question: [$question]
28 Answer: [$response]
29 Decision:

A.3 Automatic Accuracy Evaluation

For the prompts used to elicit judgment from
gpt-3.5-turbo-0125 and LLaMA2-70B, we use
the same ones from the Appendix of Lin et al.
(2023).

B Automatic Accuracy Evaluation

To verify the efficacy of automatic accuracy evalua-
tion by gpt-3.5-turbo-0125 and LLaMA2-70B,
we compare their judgements’ alignment with hu-
man annotations. Specifically, we first sample
80 (question, response) pairs for each (model,
dataset), resulting in 720 samples in total. We
then manually compare each sample’s response
with the reference answer, and decide if the gener-
ated response is correct (given the context if any).
Then, we retrieve the ratings on these 720 sam-
ples from gpt-3.5-turbo-0125 and LLaMA2-
70B, and find the thresholds that result in the high-
est agreement. The resulting accuracy-threshold
relation is illustrated in Fig. 7. From the results,
we chose 0.2 as the threshold for LLaMA2-70B
and 0.6 for gpt-3.5-turbo-0125. In other words,
denote the rating from LLaMA2-70B on a gener-
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ated response s as rllama2(s), then accllama2(s) =
1{rllama2(s) ≥ 0.2}. Note that we found 20 out of
the 720 samples hard to decide during our manual
annotation process, usually due to incorrect refer-
ence answers or intrinsic ambiguity in the ques-
tions. We ignore them during the computation of
Fig. 7.

0.0 0.2 0.4 0.6 0.8 1.0

0.80

0.85

0.90

llama2
gpt

Figure 7: Agreement with human annotation with dif-
ferent thresholds over all 720 samples.

C Temperature of Base Language Model

We include results using a high temperature of 1.0
in Tables 6 and 7. Higher temperature increases
the sampling diversity of Deg and P(true), which
increases the performance of Deg significantly, but
brings mixed results to P(true). We also note that
with 5 additional generations (6 in total) Deg is
sometimes better than CSL or CSL-Next. We repeat
the uncertainty experiments with higher tempera-
ture as well, in Table 8, and found that SE+CSL is
the most predictive of the generations’ quality at
this temperature.

The experiments here suggest that sampling
from an appropriate temperature really helps quan-
tifying the reliability of the generations, but it
should be noted that either sampling based confi-
dence measures (Deg,P(true)) or sampling-based
uncertainty measures (SE(norm),SE,SE+CSL) bear
a significantly higher computational overhead -
(m+ 1)× the generation cost and up to (m2 −m)
pairwise NLI inference, with m being the addi-
tional generations. On the other hand, CSL requires
one inference (not generation) call to the base LM
which is only a fraction of the overhead. In practice,
one might choose the best practice basing on cost
and latency tolerance as well as difference in per-
formance for the particular data distribution, and
as shown in SE+CSL, CSL could be combined with
sampling to yield better results as well.

D Results Using accllama2

We include results using accllama2 (accuracy as
judged by LLaMA2-70B) for reproducibility pur-
poses in Tables 9 and 10. Conclusions stay the
same as in the main text.

E Calibration Quality

We perform post-hoc calibration using the default
sklearn.calibration.CalibratedClassifierCV.
Fig. 8 shows the reliability diagrams (similar to
those in Kull et al. (2019)) after calibration for
CSL. The resulting probabilities are overall quite
calibrated.
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Table 6: Similar to Table 2, but with different number of generations at temperature of 1.0.

Deg (E) P(true) SL SL(norm) TokenSAR CSL CSL-Next

3 generations

trivia (llama2) 86.49±0.14 61.63±0.27 88.16±0.13 87.84±0.13 87.89±0.13 89.65±0.20 89.58±0.17
trivia (gemma) 87.00±0.12 77.87±0.17 88.83±0.11 88.10±0.09 88.07±0.09 89.73±0.16 89.43±0.10
trivia (mistral) 87.01±0.21 73.75±0.16 88.85±0.15 88.66±0.14 88.75±0.13 90.77±0.17 90.75±0.13
coqa (llama2) 72.51±0.29 53.83±0.40 69.48±0.39 72.67±0.43 72.88±0.46 73.46±0.69 73.45±0.56
coqa (gemma) 73.27±0.44 56.82±0.57 70.78±0.47 72.07±0.52 72.46±0.49 73.07±0.52 73.60±0.52
coqa (mistral) 71.86±0.57 55.04±0.47 68.98±0.38 70.61±0.38 70.89±0.41 71.79±0.74 71.91±0.63
nq (llama2) 72.47±0.50 50.33±0.55 66.64±0.35 69.48±0.50 70.41±0.46 73.83±0.52 73.59±0.48
nq (gemma) 75.78±0.68 62.57±0.41 72.09±0.65 75.81±0.65 75.88±0.68 77.96±0.57 77.19±0.63
nq (mistral) 73.76±0.70 58.65±0.51 69.22±0.53 71.06±0.54 72.61±0.48 76.65±0.43 75.73±0.68

5 generations

trivia (llama2) 88.79±0.12 61.63±0.27 88.16±0.13 87.84±0.13 87.89±0.13 89.65±0.20 89.58±0.17
trivia (gemma) 89.19±0.11 77.87±0.17 88.83±0.11 88.10±0.09 88.07±0.09 89.73±0.16 89.43±0.10
trivia (mistral) 89.39±0.21 73.75±0.16 88.85±0.15 88.66±0.14 88.75±0.13 90.77±0.17 90.75±0.13
coqa (llama2) 75.73±0.30 53.83±0.40 69.48±0.39 72.67±0.43 72.88±0.46 73.46±0.69 73.45±0.56
coqa (gemma) 76.40±0.50 56.82±0.57 70.78±0.47 72.07±0.52 72.46±0.49 73.07±0.52 73.60±0.52
coqa (mistral) 74.41±0.51 55.04±0.47 68.98±0.38 70.61±0.38 70.89±0.41 71.79±0.74 71.91±0.63
nq (llama2) 74.09±0.53 50.33±0.55 66.64±0.35 69.48±0.50 70.41±0.46 73.83±0.52 73.59±0.48
nq (gemma) 77.40±0.74 62.57±0.41 72.09±0.65 75.81±0.65 75.88±0.68 77.96±0.57 77.19±0.63
nq (mistral) 76.31±0.65 58.65±0.51 69.22±0.53 71.06±0.54 72.61±0.48 76.65±0.43 75.73±0.68

Table 7: Similar to Table 3, but with different number of generations at temperature of 1.0.

Random Upper Bound Deg (E) P(true) SL SL(norm) TokenSAR CSL CSL-Next

3 generations

trivia (llama2) 82.61±0.14 98.39±0.03 95.04±0.18 87.06±0.16 95.99±0.06 95.95±0.05 95.96±0.05 96.33±0.08 96.30±0.07
trivia (gemma) 78.11±0.12 97.41±0.03 93.52±0.12 91.01±0.11 94.62±0.05 94.37±0.04 94.37±0.04 94.79±0.04 94.66±0.04
trivia (mistral) 79.90±0.12 97.83±0.03 94.12±0.16 90.17±0.10 95.27±0.06 95.20±0.05 95.21±0.05 95.67±0.09 95.67±0.07
coqa (llama2) 91.36±0.17 99.62±0.02 95.52±0.20 92.20±0.21 95.69±0.13 96.11±0.14 96.19±0.14 96.28±0.17 96.27±0.15
coqa (gemma) 92.63±0.14 99.72±0.01 96.14±0.19 94.33±0.17 96.53±0.11 96.66±0.10 96.70±0.10 96.82±0.09 96.90±0.11
coqa (mistral) 92.04±0.14 99.67±0.01 95.80±0.26 93.06±0.19 95.92±0.10 96.13±0.11 96.22±0.10 96.37±0.14 96.39±0.11
nq (llama2) 56.48±0.68 88.74±0.39 72.37±0.89 56.84±0.70 70.50±0.77 71.00±0.81 71.95±0.80 73.49±0.67 73.28±0.86
nq (gemma) 47.16±0.65 82.59±0.49 66.59±0.87 56.54±0.78 65.78±0.95 66.41±0.92 67.02±0.93 67.78±1.07 66.89±1.03
nq (mistral) 52.90±0.74 86.57±0.47 70.09±0.84 59.77±0.52 69.15±0.82 69.27±0.72 70.62±0.65 72.24±0.74 71.83±0.67

5 generations

trivia (llama2) 82.61±0.14 98.39±0.03 95.80±0.09 87.06±0.16 95.99±0.06 95.95±0.05 95.96±0.05 96.33±0.08 96.30±0.07
trivia (gemma) 78.11±0.12 97.41±0.03 94.51±0.08 91.01±0.11 94.62±0.05 94.37±0.04 94.37±0.04 94.79±0.04 94.66±0.04
trivia (mistral) 79.90±0.12 97.83±0.03 95.15±0.11 90.17±0.10 95.27±0.06 95.20±0.05 95.21±0.05 95.67±0.09 95.67±0.07
coqa (llama2) 91.36±0.17 99.62±0.02 96.13±0.15 92.20±0.21 95.69±0.13 96.11±0.14 96.19±0.14 96.28±0.17 96.27±0.15
coqa (gemma) 92.63±0.14 99.72±0.01 96.74±0.20 94.33±0.17 96.53±0.11 96.66±0.10 96.70±0.10 96.82±0.09 96.90±0.11
coqa (mistral) 92.04±0.14 99.67±0.01 96.22±0.16 93.06±0.19 95.92±0.10 96.13±0.11 96.22±0.10 96.37±0.14 96.39±0.11
nq (llama2) 56.48±0.68 88.74±0.39 73.77±0.89 56.84±0.70 70.50±0.77 71.00±0.81 71.95±0.80 73.49±0.67 73.28±0.86
nq (gemma) 47.16±0.65 82.59±0.49 67.47±0.98 56.54±0.78 65.78±0.95 66.41±0.92 67.02±0.93 67.78±1.07 66.89±1.03
nq (mistral) 52.90±0.74 86.57±0.47 72.07±0.84 59.77±0.52 69.15±0.82 69.27±0.72 70.62±0.65 72.24±0.74 71.83±0.67
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Figure 8: Reliability diagrams of CSL. Bins with fewer than 10 samples are ignored due to noise.

Table 8: Similar to Table 4, but with different number
of generations at temperature of 1.0.

SE(norm) SE SE+CSL

3 generations

trivia (llama2) 88.18±0.11 87.90±0.08 88.99±0.13
trivia (gemma) 88.05±0.13 88.08±0.15 88.73±0.15
trivia (mistral) 88.90±0.16 88.50±0.18 89.84±0.16
coqa (llama2) 75.26±0.46 72.11±0.32 75.27±0.57
coqa (gemma) 75.42±0.38 72.81±0.36 75.25±0.42
coqa (mistral) 73.53±0.35 70.49±0.37 73.89±0.50
nq (llama2) 72.91±0.42 68.44±0.34 74.05±0.47
nq (gemma) 77.36±0.73 72.73±0.80 78.33±0.69
nq (mistral) 75.65±0.66 71.15±0.72 77.37±0.59

5 generations

trivia (llama2) 89.40±0.11 89.17±0.10 89.95±0.11
trivia (gemma) 89.32±0.09 89.31±0.12 89.82±0.12
trivia (mistral) 90.38±0.13 89.86±0.16 90.91±0.14
coqa (llama2) 77.08±0.40 73.87±0.33 77.25±0.47
coqa (gemma) 77.24±0.51 74.39±0.46 77.11±0.46
coqa (mistral) 75.65±0.31 72.58±0.29 76.04±0.50
nq (llama2) 74.45±0.37 70.33±0.35 75.90±0.41
nq (gemma) 78.31±0.54 74.17±0.69 79.33±0.57
nq (mistral) 77.02±0.68 73.17±0.65 78.82±0.55
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Table 9: Like Table 2, but using accuracy from LLaMA2-70B.

Deg (E) P(true) SL SL(norm) TokenSAR CSL CSL-Next

trivia (llama2) 80.30±0.30 63.90±0.17 86.33±0.11 85.83±0.12 85.86±0.13 87.72±0.24 87.61±0.22
trivia (gemma) 81.92±0.16 79.94±0.18 86.21±0.10 85.56±0.09 85.51±0.08 87.14±0.14 86.89±0.11
trivia (mistral) 79.95±0.25 67.67±0.27 86.33±0.13 86.14±0.13 86.23±0.11 88.31±0.18 88.22±0.13
coqa (llama2) 68.32±0.62 53.41±0.41 68.17±0.33 71.04±0.53 71.29±0.54 71.93±0.68 71.70±0.63
coqa (gemma) 69.19±0.62 54.90±0.36 69.67±0.42 70.39±0.63 70.73±0.59 71.65±0.63 71.96±0.64
coqa (mistral) 68.52±0.52 52.66±0.37 67.72±0.30 69.07±0.39 69.30±0.40 70.31±0.79 70.18±0.66
nq (llama2) 68.69±0.42 51.70±0.38 64.47±0.44 66.07±0.42 66.64±0.36 69.86±0.52 69.53±0.45
nq (gemma) 69.73±0.57 60.51±0.55 69.34±0.47 70.84±0.58 70.60±0.62 73.51±0.52 72.27±0.59
nq (mistral) 69.45±0.55 52.60±0.39 66.70±0.49 67.14±0.42 68.07±0.44 72.34±0.45 71.19±0.58

Table 10: Like Table 3, but using accuracy from LLaMA2-70B.

Random Upper Bound Deg (E) P(true) SL SL(norm) TokenSAR CSL CSL-Next

trivia (llama2) 82.71±0.13 98.41±0.03 92.48±0.20 87.25±0.13 95.60±0.06 95.51±0.05 95.49±0.05 95.91±0.06 95.86±0.07
trivia (gemma) 78.58±0.12 97.52±0.03 91.02±0.23 91.35±0.14 94.12±0.05 93.85±0.04 93.85±0.05 94.29±0.04 94.14±0.05
trivia (mistral) 80.23±0.11 97.90±0.02 91.48±0.33 87.38±0.13 94.75±0.06 94.67±0.05 94.66±0.05 95.16±0.06 95.15±0.04
coqa (llama2) 91.00±0.17 99.58±0.02 94.19±0.16 91.86±0.17 95.30±0.14 95.65±0.16 95.73±0.16 95.88±0.17 95.81±0.17
coqa (gemma) 92.14±0.15 99.68±0.01 95.10±0.26 93.39±0.15 96.09±0.11 96.12±0.14 96.18±0.13 96.35±0.12 96.39±0.14
coqa (mistral) 91.61±0.16 99.64±0.01 94.81±0.34 92.28±0.18 95.47±0.11 95.63±0.13 95.71±0.12 95.86±0.18 95.86±0.15
nq (llama2) 56.74±0.60 88.89±0.34 68.96±1.00 57.57±0.60 68.96±0.70 69.01±0.73 69.72±0.71 71.10±0.64 70.80±0.78
nq (gemma) 48.50±0.60 83.59±0.44 61.92±1.07 56.26±0.62 64.78±0.73 64.47±0.85 64.75±0.85 65.96±0.85 64.95±0.99
nq (mistral) 53.65±0.59 87.05±0.37 65.99±0.99 56.07±0.86 67.63±0.69 67.29±0.57 68.31±0.54 69.88±0.64 69.46±0.54
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