Koopman Operators and Dynamic Mode Decomposition

Shubhendu Trivedi

The University of Chicago
Toyota Technological Institute
Chicago, IL - 60637

On White Board (fill later)

- Intro to dynamical systems and Poincairé's geometric picture

On White Board (fill later)

- Intro to dynamical systems and Poincairé's geometric picture
- Definitions: Fixed points, Limit cycles, Invariant sets, Attractors, Bifurcations

On White Board (fill later)

- Intro to dynamical systems and Poincairé's geometric picture
- Definitions: Fixed points, Limit cycles, Invariant sets, Attractors, Bifurcations
- Two results: Poincairé's recurrence theorem and Bendixson's criterion

On White Board (fill later)

- Intro to dynamical systems and Poincairé's geometric picture
- Definitions: Fixed points, Limit cycles, Invariant sets, Attractors, Bifurcations
- Two results: Poincairé's recurrence theorem and Bendixson's criterion
- Problems with the geometric picture

On White Board (fill later)

- Intro to dynamical systems and Poincairé's geometric picture
- Definitions: Fixed points, Limit cycles, Invariant sets, Attractors, Bifurcations
- Two results: Poincairé's recurrence theorem and Bendixson's criterion
- Problems with the geometric picture
- Alternative picture: Dynamics of observables

On White Board (fill later)

- Intro to dynamical systems and Poincairé's geometric picture
- Definitions: Fixed points, Limit cycles, Invariant sets, Attractors, Bifurcations
- Two results: Poincairé's recurrence theorem and Bendixson's criterion
- Problems with the geometric picture
- Alternative picture: Dynamics of observables
- Two dual operators in the "dynamics of observables" picture: Perron-Frobenius operator and Koopman Operator

On White Board (fill later)

- Intro to dynamical systems and Poincairé's geometric picture
- Definitions: Fixed points, Limit cycles, Invariant sets, Attractors, Bifurcations
- Two results: Poincairé's recurrence theorem and Bendixson's criterion
- Problems with the geometric picture
- Alternative picture: Dynamics of observables
- Two dual operators in the "dynamics of observables" picture: Perron-Frobenius operator and Koopman Operator
- Next: Koopman Operator

Dynamical Systems

- Denote the state space by M

Dynamical Systems

- Denote the state space by M
- M can be an arbitrary set with no structure

Dynamical Systems

- Denote the state space by M
- M can be an arbitrary set with no structure
- The dynamics on M are specified by an iterated map $T: M \rightarrow M$

Dynamical Systems

- Denote the state space by M
- M can be an arbitrary set with no structure
- The dynamics on M are specified by an iterated map $T: M \rightarrow M$
- The abstract dynamical system is specified by the pair (M, T)

Measure Preserving Dynamical Systems

- M is a measurable space with a σ-algebra \mathfrak{B}

Measure Preserving Dynamical Systems

- M is a measurable space with a σ-algebra \mathfrak{B}
- T is \mathfrak{B} measurable

Measure Preserving Dynamical Systems

- M is a measurable space with a σ-algebra \mathfrak{B}
- T is \mathfrak{B} measurable
- T is measure preserving:

Measure Preserving Dynamical Systems

- M is a measurable space with a σ-algebra \mathfrak{B}
- T is \mathfrak{B} measurable
- T is measure preserving:
\exists an invariant measure μ, such that for any $S \in \mathfrak{B}$

Measure Preserving Dynamical Systems

- M is a measurable space with a σ-algebra \mathfrak{B}
- T is \mathfrak{B} measurable
- T is measure preserving:
\exists an invariant measure μ, such that for any $S \in \mathfrak{B}$

$$
\mu(S)=\mu\left(T^{-1} S\right)
$$

Observables on State Space

- Want to study the behaviour of observables on the state space

Observables on State Space

- Want to study the behaviour of observables on the state space
- Observable: Some $f: M \rightarrow \mathbb{C}$

Observables on State Space

- Want to study the behaviour of observables on the state space
- Observable: Some $f: M \rightarrow \mathbb{C}$
- $f \in \mathcal{F}(\mathcal{F}$ is a function space, of unspecified structure)

Observables on State Space

- Want to study the behaviour of observables on the state space
- Observable: Some $f: M \rightarrow \mathbb{C}$
- $f \in \mathcal{F}(\mathcal{F}$ is a function space, of unspecified structure)
- Concrete interpretation: Sensor probe for the dynamical system

Observables on State Space

- Want to study the behaviour of observables on the state space
- Observable: Some $f: M \rightarrow \mathbb{C}$
- $f \in \mathcal{F}(\mathcal{F}$ is a function space, of unspecified structure)
- Concrete interpretation: Sensor probe for the dynamical system
- Instead of tracking $p \rightarrow T(p) \rightarrow T^{2}(p) \rightarrow T\left(p^{3}\right) \ldots$

Observables on State Space

- Want to study the behaviour of observables on the state space
- Observable: Some $f: M \rightarrow \mathbb{C}$
- $f \in \mathcal{F}(\mathcal{F}$ is a function space, of unspecified structure)
- Concrete interpretation: Sensor probe for the dynamical system
- Instead of tracking $p \rightarrow T(p) \rightarrow T^{2}(p) \rightarrow T\left(p^{3}\right) \ldots$
- Track: $f(p) \rightarrow f(T(p)) \rightarrow f\left(T^{2}(p)\right) \rightarrow f\left(T\left(p^{3}\right)\right) \ldots$

Observables on State Space

- Want to study the behaviour of observables on the state space
- Observable: Some $f: M \rightarrow \mathbb{C}$
- $f \in \mathcal{F}(\mathcal{F}$ is a function space, of unspecified structure)
- Concrete interpretation: Sensor probe for the dynamical system
- Instead of tracking $p \rightarrow T(p) \rightarrow T^{2}(p) \rightarrow T\left(p^{3}\right) \ldots$
- Track: $f(p) \rightarrow f(T(p)) \rightarrow f\left(T^{2}(p)\right) \rightarrow f\left(T\left(p^{3}\right)\right) \ldots$
- Can describe the dynamics as:

$$
p_{n+1}=T\left(p_{n}\right) \text { and } v_{n}=f\left(p_{n}\right)
$$

Koopman Operator

- Discrete time Koopman Operator $U_{T}: \mathcal{F} \rightarrow \mathcal{F}$

$$
\left[U_{T} f\right](p)=f(T(p))
$$

Koopman Operator

- Discrete time Koopman Operator $U_{T}: \mathcal{F} \rightarrow \mathcal{F}$

$$
\left[U_{T} f\right](p)=f(T(p))
$$

- Is a composition: $U_{T} f=f \circ T$

Koopman Operator

- Discrete time Koopman Operator $U_{T}: \mathcal{F} \rightarrow \mathcal{F}$

$$
\left[U_{T} f\right](p)=f(T(p))
$$

- Is a composition: $U_{T} f=f \circ T$
- When \mathcal{F} is a vector space, U_{T} is a linear operator

Koopman Operator

- Discrete time Koopman Operator $U_{T}: \mathcal{F} \rightarrow \mathcal{F}$

$$
\left[U_{T} f\right](p)=f(T(p))
$$

- Is a composition: $U_{T} f=f \circ T$
- When \mathcal{F} is a vector space, U_{T} is a linear operator
- M is a finite set $\Longrightarrow U$ is finite dimensional, represented by a matrix

Koopman Operator

- Discrete time Koopman Operator $U_{T}: \mathcal{F} \rightarrow \mathcal{F}$

$$
\left[U_{T} f\right](p)=f(T(p))
$$

- Is a composition: $U_{T} f=f \circ T$
- When \mathcal{F} is a vector space, U_{T} is a linear operator
- M is a finite set $\Longrightarrow U$ is finite dimensional, represented by a matrix
- Generally U is infinite-dimensional

Koopman Operator

- Usually only have access to a collection of observables

$$
\left\{f_{1}, \ldots, f_{K}\right\} \subset \mathcal{F}
$$

Koopman Operator

- Usually only have access to a collection of observables

$$
\left\{f_{1}, \ldots, f_{K}\right\} \subset \mathcal{F}
$$

- f_{1}, \ldots, f_{K} could be physically relevant observables or part of the function basis for \mathcal{F}

Extended Koopman Operator

- Can extend the Koopman operator to this larger space

Extended Koopman Operator

- Can extend the Koopman operator to this larger space
- Denote $F=\left(f_{1}, \ldots, f_{K}\right)^{T} \in \mathcal{F}^{K}$

Extended Koopman Operator

- Can extend the Koopman operator to this larger space
- Denote $F=\left(f_{1}, \ldots, f_{K}\right)^{T} \in \mathcal{F}^{K}$
- Then $U_{K}: \mathcal{F}^{K} \rightarrow \mathcal{F}^{K}$

$$
\left[U_{K} F\right](p):=\left[\begin{array}{c}
{\left[U f_{1}\right](p)} \\
\vdots \\
{\left[U f_{K}\right](p)}
\end{array}\right]
$$

Extended Koopman Operator

- Can extend the Koopman operator to this larger space
- Denote $F=\left(f_{1}, \ldots, f_{K}\right)^{T} \in \mathcal{F}^{K}$
- Then $U_{K}: \mathcal{F}^{K} \rightarrow \mathcal{F}^{K}$

$$
\left[U_{K} F\right](p):=\left[\begin{array}{c}
{\left[U f_{1}\right](p)} \\
\vdots \\
{\left[U f_{K}\right](p)}
\end{array}\right]
$$

- Then $U_{K}=\bigotimes_{1}^{K} U$

Extended Koopman Operator

- Can extend the Koopman operator to this larger space
- Denote $F=\left(f_{1}, \ldots, f_{K}\right)^{T} \in \mathcal{F}^{K}$
- Then $U_{K}: \mathcal{F}^{K} \rightarrow \mathcal{F}^{K}$

$$
\left[U_{K} F\right](p):=\left[\begin{array}{c}
{\left[U f_{1}\right](p)} \\
\vdots \\
{\left[U f_{K}\right](p)}
\end{array}\right]
$$

- Then $U_{K}=\bigotimes_{1}^{K} U$
- \mathcal{F}^{K} is the space of \mathbb{C}^{K}-valued observables on the state space M

Extended Koopman Operator

- Can extend the Koopman operator to this larger space
- Denote $F=\left(f_{1}, \ldots, f_{K}\right)^{T} \in \mathcal{F}^{K}$
- Then $U_{K}: \mathcal{F}^{K} \rightarrow \mathcal{F}^{K}$

$$
\left[U_{K} F\right](p):=\left[\begin{array}{c}
{\left[U f_{1}\right](p)} \\
\vdots \\
{\left[U f_{K}\right](p)}
\end{array}\right]
$$

- Then $U_{K}=\bigotimes_{1}^{K} U$
- \mathcal{F}^{K} is the space of \mathbb{C}^{K}-valued observables on the state space M
- More generally: $F: M \rightarrow V$ where V is a vector space

Koopman Operators in Continuous Time D.S.

- Consider the continuous time dynamical system

$$
\dot{p}=T(p)
$$

Example: Cyclic Group

Setup

- Reminder: Group that can be obtained by a single generator

Setup

- Reminder: Group that can be obtained by a single generator
- Let $M=\left\{e, a, a^{2}\right\}$ be a cyclic group of order 3

Setup

- Reminder: Group that can be obtained by a single generator
- Let $M=\left\{e, a, a^{2}\right\}$ be a cyclic group of order 3
- Define $T: M \rightarrow M$ as $\mathrm{T}(\mathrm{p})=\mathrm{a} \cdot \mathrm{p}$

Setup

- Reminder: Group that can be obtained by a single generator
- Let $M=\left\{e, a, a^{2}\right\}$ be a cyclic group of order 3
- Define $T: M \rightarrow M$ as $\mathrm{T}(\mathrm{p})=\mathrm{a} \cdot \mathrm{p}$
- Entire state space is a periodic orbit with period 3

Setup

- Reminder: Group that can be obtained by a single generator
- Let $M=\left\{e, a, a^{2}\right\}$ be a cyclic group of order 3
- Define $T: M \rightarrow M$ as $\mathrm{T}(\mathrm{p})=\mathrm{a} \cdot \mathrm{p}$
- Entire state space is a periodic orbit with period 3
- Let \mathcal{F} be \mathbb{C}-valued functions on M

Setup

- Reminder: Group that can be obtained by a single generator
- Let $M=\left\{e, a, a^{2}\right\}$ be a cyclic group of order 3
- Define $T: M \rightarrow M$ as $\mathrm{T}(\mathrm{p})=\mathrm{a} \cdot \mathrm{p}$
- Entire state space is a periodic orbit with period 3
- Let \mathcal{F} be \mathbb{C}-valued functions on M
- Space of observables is \mathbb{C}^{3}

Setup

- Let f_{1}, f_{2}, f_{3} be indicator functions on e, a, a^{2} :

$$
\begin{aligned}
& f_{1}(p)= \begin{cases}1 & \text { if } p=e \\
0 & \text { if } p \neq e\end{cases} \\
& f_{2}(p)= \begin{cases}1 & \text { if } p=a \\
0 & \text { if } p \neq a\end{cases} \\
& f_{3}(p)= \begin{cases}1 & \text { if } p=a^{2} \\
0 & \text { if } p \neq a^{2}\end{cases}
\end{aligned}
$$

Setup

- Let f_{1}, f_{2}, f_{3} be indicator functions on e, a, a^{2} :

$$
\begin{aligned}
& f_{1}(p)= \begin{cases}1 & \text { if } p=e \\
0 & \text { if } p \neq e\end{cases} \\
& f_{2}(p)= \begin{cases}1 & \text { if } p=a \\
0 & \text { if } p \neq a\end{cases} \\
& f_{3}(p)= \begin{cases}1 & \text { if } p=a^{2} \\
0 & \text { if } p \neq a^{2}\end{cases}
\end{aligned}
$$

- Form a basis for \mathcal{F}

Example: Cyclic Group

- Action of the Koopman operator on this basis:

$$
\begin{aligned}
& {\left[U f_{1}\right](p)=f_{1}(a \cdot p)=f_{3}(p)} \\
& {\left[U f_{2}\right](p)=f_{2}(a \cdot p)=f_{1}(p)} \\
& {\left[U f_{3}\right](p)=f_{3}(a \cdot p)=f_{2}(p)}
\end{aligned}
$$

Example: Cyclic Group

- Action of the Koopman operator on this basis:

$$
\begin{aligned}
& {\left[U f_{1}\right](p)=f_{1}(a \cdot p)=f_{3}(p)} \\
& {\left[U f_{2}\right](p)=f_{2}(a \cdot p)=f_{1}(p)} \\
& {\left[U f_{3}\right](p)=f_{3}(a \cdot p)=f_{2}(p)}
\end{aligned}
$$

- Consider arbitrary observable $f \in \mathcal{F}$ i.e. $f=c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}$

Example: Cyclic Group

- Action of the Koopman operator on this basis:

$$
\begin{aligned}
& {\left[U f_{1}\right](p)=f_{1}(a \cdot p)=f_{3}(p)} \\
& {\left[U f_{2}\right](p)=f_{2}(a \cdot p)=f_{1}(p)} \\
& {\left[U f_{3}\right](p)=f_{3}(a \cdot p)=f_{2}(p)}
\end{aligned}
$$

- Consider arbitrary observable $f \in \mathcal{F}$ i.e. $f=c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}$
- Consider the action of the Koopman operator on f :

$$
U f=U\left(c_{1} f_{1}+c_{2} f_{2}+c_{3} f_{3}\right)=c_{1} f_{3}+c_{2} f_{1}+c_{3} f_{2}
$$

Example: Cyclic Group

- Matrix representation of the Koopman operator U in the $\left\{f_{1}, f_{2}, f_{3}\right\}$ basis:

$$
U\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
$$

Example: Linear Diagonalizable Systems

Setup

- Let $M=\mathbb{R}^{d}$, and define $T: M \rightarrow M$ as :

$$
(T(x))_{i}=\mu_{i} x_{i}
$$

Setup

- Let $M=\mathbb{R}^{d}$, and define $T: M \rightarrow M$ as :

$$
(T(x))_{i}=\mu_{i} x_{i}
$$

- $x=\left(x_{1}, \ldots, x_{d}\right)^{T} \in M$ and $\mu_{i} \in \mathbb{R}$

Setup

- Let $M=\mathbb{R}^{d}$, and define $T: M \rightarrow M$ as :

$$
(T(x))_{i}=\mu_{i} x_{i}
$$

- $x=\left(x_{1}, \ldots, x_{d}\right)^{T} \in M$ and $\mu_{i} \in \mathbb{R}$
- Let \mathcal{F} denote space of functions $\mathbb{R}^{d} \rightarrow \mathbb{C}$

Setup

- Let $M=\mathbb{R}^{d}$, and define $T: M \rightarrow M$ as :

$$
(T(x))_{i}=\mu_{i} x_{i}
$$

- $x=\left(x_{1}, \ldots, x_{d}\right)^{T} \in M$ and $\mu_{i} \in \mathbb{R}$
- Let \mathcal{F} denote space of functions $\mathbb{R}^{d} \rightarrow \mathbb{C}$
- Let $\left\{\mathbf{b}_{1} \ldots, \mathbf{b}_{d}\right\} \subset M$ be a basis for M; define $f_{i}(x)=\left\langle\mathbf{b}_{i}, x\right\rangle$

Example: Linear Diagonalizable Systems

- The action of the Koopman operator $U: \mathcal{F} \rightarrow \mathcal{F}$ on f_{i} is

$$
\left[U f_{i}\right](x)=\left\langle b_{i}, T(x)\right\rangle=\left[\begin{array}{lll}
b_{i, 1} & \ldots & b_{i, d}
\end{array}\right]\left[\begin{array}{c}
\mu_{1} x_{1} \\
\vdots \\
\mu_{d} x_{d}
\end{array}\right]
$$

Example: Linear Diagonalizable Systems

- The action of the Koopman operator $U: \mathcal{F} \rightarrow \mathcal{F}$ on f_{i} is

$$
\begin{gathered}
{\left[U f_{i}\right](x)=\left\langle b_{i}, T(x)\right\rangle=\left[\begin{array}{lll}
b_{i, 1} & \ldots & b_{i, d}
\end{array}\right]\left[\begin{array}{c}
\mu_{1} x_{1} \\
\vdots \\
\mu_{d} x_{d}
\end{array}\right]} \\
{\left[\begin{array}{ll}
U & f_{i}
\end{array}\right](x)=\left[\begin{array}{lll}
b_{i, 1} & \ldots & b_{i, d}
\end{array}\right]\left[\begin{array}{cccc}
\mu_{1} & 0 & \ldots & 0 \\
0 & \mu_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \mu_{d}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right]}
\end{gathered}
$$

Example: Linear Diagonalizable Systems

- Recall $\mathcal{F}^{d}=\bigotimes_{1}^{d} \mathcal{F}$, define U_{d} as earlier, then for $F=\left(f_{1}, \ldots, f_{d}\right)^{T}$

Example: Linear Diagonalizable Systems

- Recall $\mathcal{F}^{d}=\bigotimes_{1}^{d} \mathcal{F}$, define U_{d} as earlier, then for $F=\left(f_{1}, \ldots, f_{d}\right)^{T}$
- Then the action of the extended Koopman operator

Example: Linear Diagonalizable Systems

- Recall $\mathcal{F}^{d}=\bigotimes_{1}^{d} \mathcal{F}$, define U_{d} as earlier, then for $F=\left(f_{1}, \ldots, f_{d}\right)^{T}$
- Then the action of the extended Koopman operator

$$
\left[U_{d} F\right](x)=\left[\begin{array}{ccc}
b_{1,1} & \ldots & b_{1, d} \\
\vdots & \ddots & \vdots \\
b_{d, 1} & \ldots & b_{d, d}
\end{array}\right]\left[\begin{array}{cccc}
\mu_{1} & 0 & \ldots & 0 \\
0 & \mu_{2} & \ldots 0 & \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \mu_{d}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right]
$$

Example: Linear Diagonalizable Systems

- Recall $\mathcal{F}^{d}=\bigotimes_{1}^{d} \mathcal{F}$, define U_{d} as earlier, then for $F=\left(f_{1}, \ldots, f_{d}\right)^{T}$
- Then the action of the extended Koopman operator

$$
\left[U_{d} F\right](x)=\left[\begin{array}{ccc}
b_{1,1} & \ldots & b_{1, d} \\
\vdots & \ddots & \vdots \\
b_{d, 1} & \ldots & b_{d, d}
\end{array}\right]\left[\begin{array}{cccc}
\mu_{1} & 0 & \ldots & 0 \\
0 & \mu_{2} & \ldots 0 & \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \mu_{d}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right]
$$

- This is the action of the Koopman operator on the particular observable F, not the entire observable space \mathcal{F}

Example: Heat equation with periodic boundary conditions

Mode Analysis

Eigenfunctions and Koopman Modes

- We have put no structure on \mathcal{F} so far

Eigenfunctions and Koopman Modes

- We have put no structure on \mathcal{F} so far
- When \mathcal{F} is a vector space, the Koopman operator is linear

Eigenfunctions and Koopman Modes

- We have put no structure on \mathcal{F} so far
- When \mathcal{F} is a vector space, the Koopman operator is linear
- Interest: Study spectral properties of the Koopman Operator to probe into the dynamics of the system

Eigenfunctions and Koopman Modes

- We have put no structure on \mathcal{F} so far
- When \mathcal{F} is a vector space, the Koopman operator is linear
- Interest: Study spectral properties of the Koopman Operator to probe into the dynamics of the system
- Assume: \mathcal{F} is a Banach space

Eigenfunctions and Koopman Modes

- We have put no structure on \mathcal{F} so far
- When \mathcal{F} is a vector space, the Koopman operator is linear
- Interest: Study spectral properties of the Koopman Operator to probe into the dynamics of the system
- Assume: \mathcal{F} is a Banach space
- Assume: U is a bounded, continuous operator on \mathcal{F}

Eigenfunctions and Koopman Modes

- Let $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ be a set of eigenfunctions of U, where $n=1,2, . ., \infty$

Eigenfunctions and Koopman Modes

- Let $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ be a set of eigenfunctions of U, where $n=1,2, . ., \infty$
- For the discrete case:

Eigenfunctions and Koopman Modes

- Let $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ be a set of eigenfunctions of U, where $n=1,2, . ., \infty$
- For the discrete case:

$$
\left[U \phi_{i}\right](p)=\lambda_{i} \phi_{i}(p)
$$

Eigenfunctions and Koopman Modes

- Let $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ be a set of eigenfunctions of U, where $n=1,2, . ., \infty$
- For the discrete case:

$$
\left[U \phi_{i}\right](p)=\lambda_{i} \phi_{i}(p)
$$

- For the continuous case:

Eigenfunctions and Koopman Modes

- Let $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ be a set of eigenfunctions of U, where $n=1,2, . ., \infty$
- For the discrete case:

$$
\left[U \phi_{i}\right](p)=\lambda_{i} \phi_{i}(p)
$$

- For the continuous case:

$$
\left[U^{t} \phi_{i}\right](p)=e^{\lambda_{i} t} \phi_{i}(p)
$$

Eigenfunctions and Koopman Modes

- Let $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ be a set of eigenfunctions of U, where $n=1,2, . ., \infty$
- For the discrete case:

$$
\left[U \phi_{i}\right](p)=\lambda_{i} \phi_{i}(p)
$$

- For the continuous case:

$$
\left[U^{t} \phi_{i}\right](p)=e^{\lambda_{i} t} \phi_{i}(p)
$$

- λ^{\prime} 's are the eigenvalues of the generator U, and $\left\{e^{\lambda_{i}}\right\}$ of the Koopman semi-group

Algebraic Structure of Eigenfunctions

- Assume that \mathcal{F} is a subset of all \mathbb{C} valued functions on M

Algebraic Structure of Eigenfunctions

- Assume that \mathcal{F} is a subset of all \mathbb{C} valued functions on M
- Also assume that it forms a vector space that is closed under pointwise products of functions

Algebraic Structure of Eigenfunctions

- Assume that \mathcal{F} is a subset of all \mathbb{C} valued functions on M
- Also assume that it forms a vector space that is closed under pointwise products of functions
- \Longrightarrow set of eigenfunctions forms an abelian semigroup under pointwise products of functions

Algebraic Structure of Eigenfunctions

- Assume that \mathcal{F} is a subset of all \mathbb{C} valued functions on M
- Also assume that it forms a vector space that is closed under pointwise products of functions
- \Longrightarrow set of eigenfunctions forms an abelian semigroup under pointwise products of functions
- Concretely: If $\phi_{1}, \phi_{2} \in \mathcal{F}$ are eigenfunctions of U with eigenvalues λ_{1} and λ_{2}, then $\phi_{1} \phi_{2}$ is an eigenfunction of U with eignevalue $\lambda_{1} \lambda_{2}$

Algebraic Structure of Eigenfunctions

- If $p>0$ and ϕ is an eigenfunction with eigenvalue λ, then ϕ^{p} is an eigenfunction with eigenvalue λ^{p}

Algebraic Structure of Eigenfunctions

- If $p>0$ and ϕ is an eigenfunction with eigenvalue λ, then ϕ^{p} is an eigenfunction with eigenvalue λ^{p}
- If ϕ is an eigenfunction that vanishes nowhere and $r \in \mathbb{R}$, then ϕ^{r} is an eigenfunction with eigenvalue λ^{r}

Algebraic Structure of Eigenfunctions

- If $p>0$ and ϕ is an eigenfunction with eigenvalue λ, then ϕ^{p} is an eigenfunction with eigenvalue λ^{p}
- If ϕ is an eigenfunction that vanishes nowhere and $r \in \mathbb{R}$, then ϕ^{r} is an eigenfunction with eigenvalue λ^{r}
- Eigenfunctions that vanish nowhere form an Abelian group

Spectral Equivalence of Topologically Conjugate Systems

Proposition

Let $S: M \rightarrow M$ and $T: N \rightarrow N$ be topologically conjugate; i.e. \exists a homomorphism $h: N \rightarrow M$ such that $S \circ h=h \circ T$. If ϕ is an eigenfunction of U_{S} with eigenvalue λ, then $\phi \circ h$ is an eigenfunction of U_{T} at eigenvalue λ

Example: Linear Diagonalizable Systems

- Let $\mathbf{y}^{(k)}=\left(y_{1}^{(k)}, y_{2}^{(k)}\right)^{T}((k)$ indexes time $)$

Example: Linear Diagonalizable Systems

- Let $\mathbf{y}^{(k)}=\left(y_{1}^{(k)}, y_{2}^{(k)}\right)^{T}((k)$ indexes time)
- Let $\mathbf{y}^{(k+1)}=T \mathbf{y}^{(k)}$

Example: Linear Diagonalizable Systems

- Let $\mathbf{y}^{(k)}=\left(y_{1}^{(k)}, y_{2}^{(k)}\right)^{T}((k)$ indexes time)
- Let $\mathbf{y}^{(k+1)}=T \mathbf{y}^{(k)}$
- T is a matrix with eigenvectors v_{1}, v_{2} at eigenvalues λ_{1}, λ_{2} with $v_{i} \neq e_{j}$

Example: Linear Diagonalizable Systems

- Let $\mathbf{y}^{(k)}=\left(y_{1}^{(k)}, y_{2}^{(k)}\right)^{T}((k)$ indexes time)
- Let $\mathbf{y}^{(k+1)}=T \mathbf{y}^{(k)}$
- T is a matrix with eigenvectors v_{1}, v_{2} at eigenvalues λ_{1}, λ_{2} with $v_{i} \neq e_{j}$
- If $V=\left[v_{1} v_{2}\right]$, then with new coordinates

$$
\mathbf{x}^{(k)}=\left(x_{1}^{k}, x_{2}^{(k)}\right)^{T}=V^{-1} \mathbf{y}^{(k)}
$$

Example: Linear Diagonalizable Systems

- Let $\mathbf{y}^{(k)}=\left(y_{1}^{(k)}, y_{2}^{(k)}\right)^{T}((k)$ indexes time)
- Let $\mathbf{y}^{(k+1)}=T \mathbf{y}^{(k)}$
- T is a matrix with eigenvectors v_{1}, v_{2} at eigenvalues λ_{1}, λ_{2} with $v_{i} \neq e_{j}$
- If $V=\left[v_{1} v_{2}\right]$, then with new coordinates

$$
\mathbf{x}^{(k)}=\left(x_{1}^{k}, x_{2}^{(k)}\right)^{T}=V^{-1} \mathbf{y}^{(k)}
$$

$$
\left[\begin{array}{l}
x_{1}^{(k+1)} \\
x_{2}^{(k+1)}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}^{(k)} \\
x_{2}^{(k)}
\end{array}\right]:=\Lambda\left[\begin{array}{l}
x_{1}^{(k)} \\
x_{2}^{(k)}
\end{array}\right]
$$

Example: Linear Diagonalizable Systems

- Let $\mathbf{y}^{(k)}=\left(y_{1}^{(k)}, y_{2}^{(k)}\right)^{T}((k)$ indexes time)
- Let $\mathbf{y}^{(k+1)}=T \mathbf{y}^{(k)}$
- T is a matrix with eigenvectors v_{1}, v_{2} at eigenvalues λ_{1}, λ_{2} with $v_{i} \neq e_{j}$
- If $V=\left[v_{1} v_{2}\right]$, then with new coordinates

$$
\mathbf{x}^{(k)}=\left(x_{1}^{k}, x_{2}^{(k)}\right)^{T}=V^{-1} \mathbf{y}^{(k)}
$$

$$
\left[\begin{array}{c}
x_{1}^{(k+1)} \\
x_{2}^{(k+1)}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}^{(k)} \\
x_{2}^{(k)}
\end{array}\right]:=\Lambda\left[\begin{array}{c}
x_{1}^{(k)} \\
x_{2}^{(k)}
\end{array}\right]
$$

- Maps Λ and T are topologically conjugate by $\Lambda V^{-1}=V^{-1} T$

Example: Linear Diagonalizable Systems

- Let $\mathbf{y}^{(k)}=\left(y_{1}^{(k)}, y_{2}^{(k)}\right)^{T}((k)$ indexes time)
- Let $\mathbf{y}^{(k+1)}=T \mathbf{y}^{(k)}$
- T is a matrix with eigenvectors v_{1}, v_{2} at eigenvalues λ_{1}, λ_{2} with $v_{i} \neq e_{j}$
- If $V=\left[v_{1} v_{2}\right]$, then with new coordinates

$$
\mathbf{x}^{(k)}=\left(x_{1}^{k}, x_{2}^{(k)}\right)^{T}=V^{-1} \mathbf{y}^{(k)}
$$

$$
\left[\begin{array}{l}
x_{1}^{(k+1)} \\
x_{2}^{(k+1)}
\end{array}\right]=\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{c}
x_{1}^{(k)} \\
x_{2}^{(k)}
\end{array}\right]:=\Lambda\left[\begin{array}{c}
x_{1}^{(k)} \\
x_{2}^{(k)}
\end{array}\right]
$$

- Maps Λ and T are topologically conjugate by $\Lambda V^{-1}=V^{-1} T$
- V^{-1} is now the h from the proposition

Koopman Modes

- Assume $f \in \mathcal{F}$ is an observable in the linear span of a set of eigenfunctions $\left\{\phi_{i}\right\}_{1}^{n}$, then for $c_{i}(f) \in \mathbb{C}$:

Koopman Modes

- Assume $f \in \mathcal{F}$ is an observable in the linear span of a set of eigenfunctions $\left\{\phi_{i}\right\}_{1}^{n}$, then for $c_{i}(f) \in \mathbb{C}$:

$$
f(p)=\sum_{i=1}^{n} c_{i}(f) \phi_{i}(p)
$$

Koopman Modes

- Assume $f \in \mathcal{F}$ is an observable in the linear span of a set of eigenfunctions $\left\{\phi_{i}\right\}_{1}^{n}$, then for $c_{i}(f) \in \mathbb{C}$:

$$
f(p)=\sum_{i=1}^{n} c_{i}(f) \phi_{i}(p)
$$

- Dynamics of f have a simple form:

$$
[U f](p)=f(T(p))=\sum_{i=1}^{n} c_{i}(f) \phi_{i}(T(p))=\sum_{i=1}^{n} c_{i}(f)\left[U \phi_{i}\right](p)
$$

Koopman Modes

- Assume $f \in \mathcal{F}$ is an observable in the linear span of a set of eigenfunctions $\left\{\phi_{i}\right\}_{1}^{n}$, then for $c_{i}(f) \in \mathbb{C}$:

$$
f(p)=\sum_{i=1}^{n} c_{i}(f) \phi_{i}(p)
$$

- Dynamics of f have a simple form:

$$
\begin{gathered}
{[U f](p)=f(T(p))=\sum_{i=1}^{n} c_{i}(f) \phi_{i}(T(p))=\sum_{i=1}^{n} c_{i}(f)\left[U \phi_{i}\right](p)} \\
{[U f](p)=f(T(p))=\sum_{i=1}^{n} \lambda_{i} c_{i}(f) \phi_{i}(p)}
\end{gathered}
$$

Koopman Modes

- Dynamics of f have a simple form:

$$
[U f](p)=f(T(p))=\sum_{i=1}^{n} c_{i}(f) \phi_{i}(T(p))=\sum_{i=1}^{n} c_{i}(f)\left[U \phi_{i}\right](p)
$$

Koopman Modes

- Dynamics of f have a simple form:

$$
\begin{gathered}
{[U f](p)=f(T(p))=\sum_{i=1}^{n} c_{i}(f) \phi_{i}(T(p))=\sum_{i=1}^{n} c_{i}(f)\left[U \phi_{i}\right](p)} \\
{[U f](p)=f(T(p))=\sum_{i=1}^{n} \lambda_{i} c_{i}(f) \phi_{i}(p)}
\end{gathered}
$$

Koopman Modes

- Dynamics of f have a simple form:

$$
\begin{gathered}
{[U f](p)=f(T(p))=\sum_{i=1}^{n} c_{i}(f) \phi_{i}(T(p))=\sum_{i=1}^{n} c_{i}(f)\left[U \phi_{i}\right](p)} \\
{[U f](p)=f(T(p))=\sum_{i=1}^{n} \lambda_{i} c_{i}(f) \phi_{i}(p)}
\end{gathered}
$$

- Likewise

$$
\left[U^{m} f\right](p)=\sum_{i=1}^{n} \lambda_{i}^{m} c_{i}(f) \phi_{i}(p)
$$

Koopman Modes

- Extension to vector valued observables $F=\left(f_{1}, \ldots, f_{K}\right)^{T}$, with each f_{i} in the closed linear span of eigenfunctions:

Koopman Modes

- Extension to vector valued observables $F=\left(f_{1}, \ldots, f_{K}\right)^{T}$, with each f_{i} in the closed linear span of eigenfunctions:

$$
\left[U^{k} F\right](p)=\sum_{i=1}^{n} \lambda_{i}^{m} \phi_{i}(p)\left[\begin{array}{c}
c_{i}\left(f_{1}\right) \\
\vdots \\
c_{i}\left(f_{K}\right)
\end{array}\right]
$$

Koopman Modes

- Extension to vector valued observables $F=\left(f_{1}, \ldots, f_{K}\right)^{T}$, with each f_{i} in the closed linear span of eigenfunctions:

$$
\left[U^{k} F\right](p)=\sum_{i=1}^{n} \lambda_{i}^{m} \phi_{i}(p)\left[\begin{array}{c}
c_{i}\left(f_{1}\right) \\
\vdots \\
c_{i}\left(f_{K}\right)
\end{array}\right]
$$

- Written compactly:

Koopman Modes

- Extension to vector valued observables $F=\left(f_{1}, \ldots, f_{K}\right)^{T}$, with each f_{i} in the closed linear span of eigenfunctions:

$$
\left[U^{k} F\right](p)=\sum_{i=1}^{n} \lambda_{i}^{m} \phi_{i}(p)\left[\begin{array}{c}
c_{i}\left(f_{1}\right) \\
\vdots \\
c_{i}\left(f_{K}\right)
\end{array}\right]
$$

- Written compactly:

$$
\left[U^{k} F\right](p)=\sum_{i=1}^{n} \lambda_{i}^{m} \phi_{i} C_{i}(F)
$$

Koopman Mode

Definition

Let ϕ_{i} be an eigenfunction for the Koopman operator corresponding to eigenvalue λ_{i}. For a vector valued observable $F: M \rightarrow V$, the Koopman mode $C_{i}(F)$, corresponding to ϕ_{i} is the vector of coefficients of the projection of F onto $\operatorname{span}\left\{\phi_{i}\right\}$

Computation of Koopman Modes: Theory

Theorem (Yosida)

Let \mathcal{F} be a Banach space and $U: \mathcal{F} \rightarrow \mathcal{F}$. Assume $\|U\| \leq 1$. Let λ be an eigenvalue of U such that $|\lambda|=1$. Let $\tilde{U}=\lambda^{-1} U$, and define:

$$
A_{K}(\tilde{U})=\frac{1}{K} \sum_{k=0}^{K-1} \tilde{U}^{k}
$$

Then A_{K} converges in the strong operator topology to the projection operator on the subspace of U-invariant function; i.e. onto the eigenspace E_{λ} corresponding to λ. That is, for all $f \in \mathcal{F}$,

$$
\lim _{K \rightarrow \infty} A_{K} f=\lim _{K \rightarrow \infty} \frac{1}{K} \sum_{k=0}^{K-1} \tilde{U}^{k} f=P_{\lambda} f
$$

where $P_{\lambda}: \mathcal{F} \rightarrow E_{\lambda}$ is a projection operator.

Special Case

- Consider the case when the eigenvalues are simple and $\left|\lambda_{1}\right|=\cdots=\left|\lambda_{\ell}\right|=1$ and $\left|\lambda_{n}\right|<1$ for $n>\ell$

Special Case

- Consider the case when the eigenvalues are simple and $\left|\lambda_{1}\right|=\cdots=\left|\lambda_{\ell}\right|=1$ and $\left|\lambda_{n}\right|<1$ for $n>\ell$
- Then, $\lambda_{j}=e^{i 2 \pi \omega_{j}}$ for some real ω_{j}, when $j \leq \ell$

Special Case

- Consider the case when the eigenvalues are simple and $\left|\lambda_{1}\right|=\cdots=\left|\lambda_{\ell}\right|=1$ and $\left|\lambda_{n}\right|<1$ for $n>\ell$
- Then, $\lambda_{j}=e^{i 2 \pi \omega_{j}}$ for some real ω_{j}, when $j \leq \ell$
- For vector valued observables, the projections take the form:

Special Case

- Consider the case when the eigenvalues are simple and $\left|\lambda_{1}\right|=\cdots=\left|\lambda_{\ell}\right|=1$ and $\left|\lambda_{n}\right|<1$ for $n>\ell$
- Then, $\lambda_{j}=e^{i 2 \pi \omega_{j}}$ for some real ω_{j}, when $j \leq \ell$
- For vector valued observables, the projections take the form:

$$
\phi_{j} C_{j}(F)=\lim _{K \rightarrow \infty} \frac{1}{K} \sum_{k=0}^{K-1} e^{i 2 \pi \omega_{j} k}\left[U^{k} F\right]
$$

$$
\text { for } j=1, \ldots, \ell
$$

Special Case

- Consider the case when the eigenvalues are simple and $\left|\lambda_{1}\right|=\cdots=\left|\lambda_{\ell}\right|=1$ and $\left|\lambda_{n}\right|<1$ for $n>\ell$
- Then, $\lambda_{j}=e^{i 2 \pi \omega_{j}}$ for some real ω_{j}, when $j \leq \ell$
- For vector valued observables, the projections take the form:

$$
\phi_{j} C_{j}(F)=\lim _{K \rightarrow \infty} \frac{1}{K} \sum_{k=0}^{K-1} e^{i 2 \pi \omega_{j} k}\left[U^{k} F\right]
$$

for $j=1, \ldots, \ell$

- Previous theorem reduces to Fourier analysis for those eigenvalues on the unit circle.

Special Case

- Consider the case when the eigenvalues are simple and $\left|\lambda_{1}\right|=\cdots=\left|\lambda_{\ell}\right|=1$ and $\left|\lambda_{n}\right|<1$ for $n>\ell$
- Then, $\lambda_{j}=e^{i 2 \pi \omega_{j}}$ for some real ω_{j}, when $j \leq \ell$
- For vector valued observables, the projections take the form:

$$
\phi_{j} C_{j}(F)=\lim _{K \rightarrow \infty} \frac{1}{K} \sum_{k=0}^{K-1} e^{i 2 \pi \omega_{j} k}\left[U^{k} F\right]
$$

for $j=1, \ldots, \ell$

- Previous theorem reduces to Fourier analysis for those eigenvalues on the unit circle.
- When an observable is a linear combination of a finite collection of eigenfunctions corresponding to simple eigenvalues, we have an extension of the previous theorem

Theorem (Generalized Laplace Analysis)
Let $\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}$ be a finite set of simple eigenvalues for U, ordered so that $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{m}\right|$ and let ϕ_{i} be an eigenfunction corresponding to λ_{i}. For each $n \in\{1, \ldots, N\}$, assume $f_{n}: M \rightarrow \mathbb{C}$ and $f_{n} \in \operatorname{span}\left\{\phi_{1}, \ldots, \phi_{m}\right\}$. Define the vector-valued observable $F=\left(f_{1}, \ldots, f_{N}\right)^{T}$. Then the Koopman modes can be computed via:

$$
\phi_{j} C_{j}(F)=\lim _{K \rightarrow \infty} \frac{1}{K} \sum_{k=0}^{K-1} \lambda_{j}^{-k}\left[U^{k} F-\sum_{i=1}^{j-1} \lambda_{i}^{k} \phi_{i} C_{i}(F)\right]
$$

- A simple consequence of the theorem of Yosida

A Numerical Algorithm: Dynamic Mode Decomposition

Introduction

- Problem: Don't usually have access to an explicit representation of the Koopman operator

Introduction

- Problem: Don't usually have access to an explicit representation of the Koopman operator
- Can only understand its behaviour by looking at its action on an observable at only a finite number of initial conditions

Introduction

- Problem: Don't usually have access to an explicit representation of the Koopman operator
- Can only understand its behaviour by looking at its action on an observable at only a finite number of initial conditions
- Data driven approach: Have a sequence of observations of a vector-valued observable along a trajectory $\left\{T^{k} p\right\}$

Introduction

- Problem: Don't usually have access to an explicit representation of the Koopman operator
- Can only understand its behaviour by looking at its action on an observable at only a finite number of initial conditions
- Data driven approach: Have a sequence of observations of a vector-valued observable along a trajectory $\left\{T^{k} p\right\}$
- Dynamic mode decomposition: Data driven approach to approximate the modes and eigenvalues of the Koopman operator without numerically implementing a laplace transform

Introduction

- Main idea: Find the best approximation of U on some finite-dimensional subspace and compute the eigenfunctions of this finite-dimensional operator

Introduction

- Main idea: Find the best approximation of U on some finite-dimensional subspace and compute the eigenfunctions of this finite-dimensional operator
- How do we define best?

Introduction

- Fix observable $F: M \rightarrow \mathbb{C}^{m}$ and consider the cyclic subspace $\mathcal{K}_{\infty}=\operatorname{span}\left\{U^{k} F\right\}_{k=0}^{\infty}$

Introduction

- Fix observable $F: M \rightarrow \mathbb{C}^{m}$ and consider the cyclic subspace $\mathcal{K}_{\infty}=\operatorname{span}\left\{U^{k} F\right\}_{k=0}^{\infty}$
- Fix $r<\infty$ and consider the Krylov subspace $\mathcal{K}_{r}=\operatorname{span}\left\{U^{k} F\right\}_{k=0}^{r-1}$

Introduction

- Fix observable $F: M \rightarrow \mathbb{C}^{m}$ and consider the cyclic subspace $\mathcal{K}_{\infty}=\operatorname{span}\left\{U^{k} F\right\}_{k=0}^{\infty}$
- Fix $r<\infty$ and consider the Krylov subspace $\mathcal{K}_{r}=\operatorname{span}\left\{U^{k} F\right\}_{k=0}^{r-1}$
- Assume $\left\{U^{k} F\right\}_{k=0}^{r-1}$ is a linearly independent set, and forms a basis for \mathcal{K}_{r}

Introduction

- Fix observable $F: M \rightarrow \mathbb{C}^{m}$ and consider the cyclic subspace $\mathcal{K}_{\infty}=\operatorname{span}\left\{U^{k} F\right\}_{k=0}^{\infty}$
- Fix $r<\infty$ and consider the Krylov subspace $\mathcal{K}_{r}=\operatorname{span}\left\{U^{k} F\right\}_{k=0}^{r-1}$
- Assume $\left\{U^{k} F\right\}_{k=0}^{r-1}$ is a linearly independent set, and forms a basis for \mathcal{K}_{r}
- Let $P_{r}: \mathcal{F}^{m} \rightarrow \mathcal{K}_{r}$ be a projection of observations onto \mathcal{K}_{r}

Introduction

- Fix observable $F: M \rightarrow \mathbb{C}^{m}$ and consider the cyclic subspace $\mathcal{K}_{\infty}=\operatorname{span}\left\{U^{k} F\right\}_{k=0}^{\infty}$
- Fix $r<\infty$ and consider the Krylov subspace $\mathcal{K}_{r}=\operatorname{span}\left\{U^{k} F\right\}_{k=0}^{r-1}$
- Assume $\left\{U^{k} F\right\}_{k=0}^{r-1}$ is a linearly independent set, and forms a basis for \mathcal{K}_{r}
- Let $P_{r}: \mathcal{F}^{m} \rightarrow \mathcal{K}_{r}$ be a projection of observations onto \mathcal{K}_{r}
- Then $\left.P_{r} U\right|_{\mathcal{K}_{r}}: \mathcal{K}_{r} \rightarrow \mathcal{K}_{r}$ is a finite dimensional linear operator

Introduction

- $\left.P_{r} U\right|_{\mathcal{K}_{r}}$ has a matrix representation $A_{r}: \mathbb{C}^{r} \rightarrow \mathbb{C}^{r}$ in the $\left\{U^{k} F\right\}_{k=1}^{r-1}$ basis

Introduction

- $\left.P_{r} U\right|_{\mathcal{K}_{r}}$ has a matrix representation $A_{r}: \mathbb{C}^{r} \rightarrow \mathbb{C}^{r}$ in the $\left\{U^{k} F\right\}_{k=1}^{r-1}$ basis
- The matrix A_{r} depends on:

Introduction

- $\left.P_{r} U\right|_{\mathcal{K}_{r}}$ has a matrix representation $A_{r}: \mathbb{C}^{r} \rightarrow \mathbb{C}^{r}$ in the $\left\{U^{k} F\right\}_{k=1}^{r-1}$ basis
- The matrix A_{r} depends on:
- The observable (vector valued)

Introduction

- $\left.P_{r} U\right|_{\mathcal{K}_{r}}$ has a matrix representation $A_{r}: \mathbb{C}^{r} \rightarrow \mathbb{C}^{r}$ in the $\left\{U^{k} F\right\}_{k=1}^{r-1}$ basis
- The matrix A_{r} depends on:
- The observable (vector valued)
- Dimension of the Krylov subspace r

Introduction

- $\left.P_{r} U\right|_{\mathcal{K}_{r}}$ has a matrix representation $A_{r}: \mathbb{C}^{r} \rightarrow \mathbb{C}^{r}$ in the $\left\{U^{k} F\right\}_{k=1}^{r-1}$ basis
- The matrix A_{r} depends on:
- The observable (vector valued)
- Dimension of the Krylov subspace r
- The projection operator P_{r}

Introduction

- $\left.P_{r} U\right|_{\mathcal{K}_{r}}$ has a matrix representation $A_{r}: \mathbb{C}^{r} \rightarrow \mathbb{C}^{r}$ in the $\left\{U^{k} F\right\}_{k=1}^{r-1}$ basis
- The matrix A_{r} depends on:
- The observable (vector valued)
- Dimension of the Krylov subspace r
- The projection operator P_{r}
- If (λ, \mathbf{v}) is an eigenpair for A_{r} with \mathbf{v}, then $\phi=\sum_{j=0}^{r-1} v_{j}\left[U^{j} F\right]$ is an eigenfunction of $\left.P_{r} U\right|_{\mathcal{K}_{r}}$

Introduction

- $\left.P_{r} U\right|_{\mathcal{K}_{r}}$ has a matrix representation $A_{r}: \mathbb{C}^{r} \rightarrow \mathbb{C}^{r}$ in the $\left\{U^{k} F\right\}_{k=1}^{r-1}$ basis
- The matrix A_{r} depends on:
- The observable (vector valued)
- Dimension of the Krylov subspace r
- The projection operator P_{r}
- If (λ, \mathbf{v}) is an eigenpair for A_{r} with \mathbf{v}, then $\phi=\sum_{j=0}^{r-1} v_{j}\left[U^{j} F\right]$ is an eigenfunction of $\left.P_{r} U\right|_{\mathcal{K}_{r}}$
- Restricting our attention on a fixed observable F and a Krylov subspace, the problem of finding eigenvalues and Koopman modes is reduced to finding eigenvalues and eigenvectors for matrix A_{r}

Arnoldi Recap

- If we had A_{r}, we could just use the Arnoldi algorithm

Arnoldi Recap

- If we had A_{r}, we could just use the Arnoldi algorithm
- Given $A \in \mathbb{C}^{m \times m}$, want to compute eigenvectors and eigenvalues

Arnoldi Recap

- If we had A_{r}, we could just use the Arnoldi algorithm
- Given $A \in \mathbb{C}^{m \times m}$, want to compute eigenvectors and eigenvalues
- Procedure:
- Consider random $\mathbf{b} \in \mathbb{C}^{m}$ with $\|\mathbf{b}\|=1$

Arnoldi Recap

- If we had A_{r}, we could just use the Arnoldi algorithm
- Given $A \in \mathbb{C}^{m \times m}$, want to compute eigenvectors and eigenvalues
- Procedure:
- Consider random $\mathbf{b} \in \mathbb{C}^{m}$ with $\|\mathbf{b}\|=1$
- Form the Krylov subspace $\mathcal{K}_{r}=\left\{\mathbf{b}, A \mathbf{b}, A^{2} \mathbf{b}, \ldots, A^{r-1} \mathbf{b}\right\}$

Arnoldi Recap

- If we had A_{r}, we could just use the Arnoldi algorithm
- Given $A \in \mathbb{C}^{m \times m}$, want to compute eigenvectors and eigenvalues
- Procedure:
- Consider random $\mathbf{b} \in \mathbb{C}^{m}$ with $\|\mathbf{b}\|=1$
- Form the Krylov subspace $\mathcal{K}_{r}=\left\{\mathbf{b}, A \mathbf{b}, A^{2} \mathbf{b}, \ldots, A^{r-1} \mathbf{b}\right\}$
- Apply Gram-Schmidt to $\left\{A^{j} \mathbf{b}\right\}_{j=0}^{j=r-1}$ to obtain orthonormal basis $\{q j\}_{j=1}^{r}$, arranged into an orthonormal matrix Q_{r}

Arnoldi Recap

- If we had A_{r}, we could just use the Arnoldi algorithm
- Given $A \in \mathbb{C}^{m \times m}$, want to compute eigenvectors and eigenvalues
- Procedure:
- Consider random $\mathbf{b} \in \mathbb{C}^{m}$ with $\|\mathbf{b}\|=1$
- Form the Krylov subspace $\mathcal{K}_{r}=\left\{\mathbf{b}, A \mathbf{b}, A^{2} \mathbf{b}, \ldots, A^{r-1} \mathbf{b}\right\}$
- Apply Gram-Schmidt to $\left\{A^{j} \mathbf{b}\right\}_{j=0}^{j=r-1}$ to obtain orthonormal basis $\{q j\}_{j=1}^{r}$, arranged into an orthonormal matrix Q_{r}
- Normalize and orthonormalize at every step j

Arnoldi Recap

- If we had A_{r}, we could just use the Arnoldi algorithm
- Given $A \in \mathbb{C}^{m \times m}$, want to compute eigenvectors and eigenvalues
- Procedure:
- Consider random $\mathbf{b} \in \mathbb{C}^{m}$ with $\|\mathbf{b}\|=1$
- Form the Krylov subspace $\mathcal{K}_{r}=\left\{\mathbf{b}, A \mathbf{b}, A^{2} \mathbf{b}, \ldots, A^{r-1} \mathbf{b}\right\}$
- Apply Gram-Schmidt to $\left\{A^{j} \mathbf{b}\right\}_{j=0}^{j=r-1}$ to obtain orthonormal basis $\{q j\}_{j=1}^{r}$, arranged into an orthonormal matrix Q_{r}
- Normalize and orthonormalize at every step j
- $H_{r}=Q_{r}^{*} A Q_{r}$ is the orthonormal projection of A onto \mathcal{K}_{r}

Arnoldi Recap

- If we had A_{r}, we could just use the Arnoldi algorithm
- Given $A \in \mathbb{C}^{m \times m}$, want to compute eigenvectors and eigenvalues
- Procedure:
- Consider random $\mathbf{b} \in \mathbb{C}^{m}$ with $\|\mathbf{b}\|=1$
- Form the Krylov subspace $\mathcal{K}_{r}=\left\{\mathbf{b}, A \mathbf{b}, A^{2} \mathbf{b}, \ldots, A^{r-1} \mathbf{b}\right\}$
- Apply Gram-Schmidt to $\left\{A^{j} \mathbf{b}\right\}_{j=0}^{j=r-1}$ to obtain orthonormal basis $\{q j\}_{j=1}^{r}$, arranged into an orthonormal matrix Q_{r}
- Normalize and orthonormalize at every step j
- $H_{r}=Q_{r}^{*} A Q_{r}$ is the orthonormal projection of A onto \mathcal{K}_{r}
- The top r eigenvalues of H_{r} approximate that of A_{r}

Relevance to Koopman Modes?

- By using Arnoldi we have an implicit assumption

Relevance to Koopman Modes?

- By using Arnoldi we have an implicit assumption
- \exists matrix A, whose evolution $A^{k} \mathbf{b} \in \mathbb{C}^{m}$, matches that of $\left[U^{k} F\right](p) \in \mathbb{C}^{m}$

Relevance to Koopman Modes?

- By using Arnoldi we have an implicit assumption
- \exists matrix A, whose evolution $A^{k} \mathbf{b} \in \mathbb{C}^{m}$, matches that of $\left[U^{k} F\right](p) \in \mathbb{C}^{m}$
- Don't have an explicit representation of the Koopman operator, so can't use standard Arnoldi

Relevance to Koopman Modes?

- By using Arnoldi we have an implicit assumption
- \exists matrix A, whose evolution $A^{k} \mathbf{b} \in \mathbb{C}^{m}$, matches that of $\left[U^{k} F\right](p) \in \mathbb{C}^{m}$
- Don't have an explicit representation of the Koopman operator, so can't use standard Arnoldi
- Why?

Relevance to Koopman Modes?

- By using Arnoldi we have an implicit assumption
- \exists matrix A, whose evolution $A^{k} \mathbf{b} \in \mathbb{C}^{m}$, matches that of $\left[U^{k} F\right](p) \in \mathbb{C}^{m}$
- Don't have an explicit representation of the Koopman operator, so can't use standard Arnoldi
- Why?
- Need to normalize and orthonormalize at each step \Longrightarrow need to change observables F at each time step p

Relevance to Koopman Modes?

- By using Arnoldi we have an implicit assumption
- \exists matrix A, whose evolution $A^{k} \mathbf{b} \in \mathbb{C}^{m}$, matches that of $\left[U^{k} F\right](p) \in \mathbb{C}^{m}$
- Don't have an explicit representation of the Koopman operator, so can't use standard Arnoldi
- Why?
- Need to normalize and orthonormalize at each step \Longrightarrow need to change observables F at each time step p
- Another interpretation: ?

Dynamic Mode Decomposition

- Only require a sequence of vectors $\left\{\mathbf{b}_{k}\right\}_{k=0}^{r}$

Dynamic Mode Decomposition

- Only require a sequence of vectors $\left\{\mathbf{b}_{k}\right\}_{k=0}^{r}$
- Where $\mathbf{b}_{k}:=U^{k} F(p) \in \mathbb{C}^{m}$

Dynamic Mode Decomposition

- Only require a sequence of vectors $\left\{\mathbf{b}_{k}\right\}_{k=0}^{r}$
- Where $\mathbf{b}_{k}:=U^{k} F(p) \in \mathbb{C}^{m}$
- This is for some fixed $F: M \rightarrow \mathbb{C}^{m}$ and fixed $p \in M$

Dynamic Mode Decomposition

- Only require a sequence of vectors $\left\{\mathbf{b}_{k}\right\}_{k=0}^{r}$
- Where $\mathbf{b}_{k}:=U^{k} F(p) \in \mathbb{C}^{m}$
- This is for some fixed $F: M \rightarrow \mathbb{C}^{m}$ and fixed $p \in M$
- Let $K_{r}=\left[\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{r-1}\right]$

Dynamic Mode Decomposition

- Only require a sequence of vectors $\left\{\mathbf{b}_{k}\right\}_{k=0}^{r}$
- Where $\mathbf{b}_{k}:=U^{k} F(p) \in \mathbb{C}^{m}$
- This is for some fixed $F: M \rightarrow \mathbb{C}^{m}$ and fixed $p \in M$
- Let $K_{r}=\left[\mathbf{b}_{0}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{r-1}\right]$
- Think of them as point evaluations of the $\left\{U^{k} F\right\}$ basis for the Krylov subspace \mathcal{K}_{r} at point $p \in M$

Dynamic Mode Decomposition

- \mathbf{b}_{r} will not be in the span of columns of K_{r}

Dynamic Mode Decomposition

- \mathbf{b}_{r} will not be in the span of columns of K_{r}
- Let $\mathbf{b}_{r}=\sum_{j=0}^{r-1} c_{j} \mathbf{b}_{j}+\eta_{r}$

Dynamic Mode Decomposition

- \mathbf{b}_{r} will not be in the span of columns of K_{r}
- Let $\mathbf{b}_{r}=\sum_{j=0}^{r-1} c_{j} \mathbf{b}_{j}+\eta_{r}$
- The c_{j} 's are chosen to minimize the residual η_{r}

Dynamic Mode Decomposition

- \mathbf{b}_{r} will not be in the span of columns of K_{r}
- Let $\mathbf{b}_{r}=\sum_{j=0}^{r-1} c_{j} \mathbf{b}_{j}+\eta_{r}$
- The c_{j} 's are chosen to minimize the residual η_{r}
- \Longrightarrow choosing projection $P_{r} U^{r} F$ of $U^{r} F$ at point $p \in M$

Dynamic Mode Decomposition

- \mathbf{b}_{r} will not be in the span of columns of K_{r}
- Let $\mathbf{b}_{r}=\sum_{j=0}^{r-1} c_{j} \mathbf{b}_{j}+\eta_{r}$
- The c_{j} 's are chosen to minimize the residual η_{r}
- \Longrightarrow choosing projection $P_{r} U^{r} F$ of $U^{r} F$ at point $p \in M$

$$
\left\|\left[U^{r} F\right](p)-P_{r}\left[U^{r} F\right](p)\right\|_{\mathbb{C}^{m}}=\left\|\mathbf{b}_{r}-\sum_{j=0}^{r-1} c_{j} \mathbf{b}_{j}\right\|_{\mathbb{C}^{m}}
$$

Dynamic Mode Decomposition

- \mathbf{b}_{r} will not be in the span of columns of K_{r}
- Let $\mathbf{b}_{r}=\sum_{j=0}^{r-1} c_{j} \mathbf{b}_{j}+\eta_{r}$
- The c_{j} 's are chosen to minimize the residual η_{r}
- \Longrightarrow choosing projection $P_{r} U^{r} F$ of $U^{r} F$ at point $p \in M$

$$
\left\|\left[U^{r} F\right](p)-P_{r}\left[U^{r} F\right](p)\right\|_{\mathbb{C}^{m}}=\left\|\mathbf{b}_{r}-\sum_{j=0}^{r-1} c_{j} \mathbf{b}_{j}\right\|_{\mathbb{C}^{m}}
$$

- Minimize over c_{j}

Dynamic Mode Decomposition

- Since $\mathbf{b}_{r}=K_{r} \mathbf{c}+\eta_{r}$, we have:

$$
U K_{r}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}\right]=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{r-1}, K_{r} \mathbf{c}+\eta_{r}\right]
$$

Dynamic Mode Decomposition

- Since $\mathbf{b}_{r}=K_{r} \mathbf{c}+\eta_{r}$, we have:

$$
\begin{gathered}
U K_{r}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}\right]=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{r-1}, K_{r} \mathbf{c}+\eta_{r}\right] \\
U K_{r}=K_{r} A_{r}+\eta_{r} \mathbf{e}^{T}
\end{gathered}
$$

Dynamic Mode Decomposition

- Since $\mathbf{b}_{r}=K_{r} \mathbf{c}+\eta_{r}$, we have:

$$
\begin{gathered}
U K_{r}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}\right]=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{r-1}, K_{r} \mathbf{c}+\eta_{r}\right] \\
U K_{r}=K_{r} A_{r}+\eta_{r} \mathbf{e}^{T}
\end{gathered}
$$

- With $\mathbf{e}=(0, \ldots, 0,1)^{T} \in \mathbb{C}^{m}$ and

$$
A_{r}=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & c_{0} \\
1 & 0 & \ldots & 0 & c_{1} \\
0 & 1 & \ldots & 0 & c_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & c_{r-1}
\end{array}\right]
$$

Dynamic Mode Decomposition

- Since $\mathbf{b}_{r}=K_{r} \mathbf{c}+\eta_{r}$, we have:

$$
\begin{gathered}
U K_{r}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}\right]=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{r-1}, K_{r} \mathbf{c}+\eta_{r}\right] \\
U K_{r}=K_{r} A_{r}+\eta_{r} \mathbf{e}^{T}
\end{gathered}
$$

- With $\mathbf{e}=(0, \ldots, 0,1)^{T} \in \mathbb{C}^{m}$ and

$$
A_{r}=\left[\begin{array}{ccccc}
0 & 0 & \ldots & 0 & c_{0} \\
1 & 0 & \ldots & 0 & c_{1} \\
0 & 1 & \ldots & 0 & c_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & c_{r-1}
\end{array}\right]
$$

- A_{r} is the companion matrix ; a representation of $P_{r} U$ in the $\left\{U^{k} F\right\}_{k=0}^{r-1}$ basis

Dynamic Mode Decomposition

- Diagonalize $A_{r}=V^{-1} \Lambda V$

Dynamic Mode Decomposition

- Diagonalize $A_{r}=V^{-1} \Lambda V$
- Recall:

$$
U K_{r}=K_{r} A_{r}+\eta_{r} \mathbf{e}^{T}
$$

Dynamic Mode Decomposition

- Diagonalize $A_{r}=V^{-1} \Lambda V$
- Recall:

$$
U K_{r}=K_{r} A_{r}+\eta_{r} \mathbf{e}^{T}
$$

- Substitute for A_{r} and multiply with V^{-1}

Dynamic Mode Decomposition

- Diagonalize $A_{r}=V^{-1} \Lambda V$
- Recall:

$$
U K_{r}=K_{r} A_{r}+\eta_{r} \mathbf{e}^{T}
$$

- Substitute for A_{r} and multiply with V^{-1}

$$
U K_{r} V^{-1}=K_{r} V^{-1} \Lambda+\eta_{r} \mathbf{e}^{T} V^{-1}
$$

Dynamic Mode Decomposition

- Diagonalize $A_{r}=V^{-1} \Lambda V$
- Recall:

$$
U K_{r}=K_{r} A_{r}+\eta_{r} \mathbf{e}^{T}
$$

- Substitute for A_{r} and multiply with V^{-1}

$$
U K_{r} V^{-1}=K_{r} V^{-1} \Lambda+\eta_{r} \mathbf{e}^{T} V^{-1}
$$

- Define $E:=K_{r} V^{-1}$, to get $U E=E \Lambda+\eta_{r} \mathbf{e}^{T} V^{-1}$

Dynamic Mode Decomposition

- For large m, we hope that $\left\|\eta_{r} \mathbf{e}^{T} V^{-1}\right\|$ is small

Dynamic Mode Decomposition

- For large m, we hope that $\left\|\eta_{r} \mathbf{e}^{T} V^{-1}\right\|$ is small
- Then $U E \approx E \Lambda$, and columns of E approximate some eigenvectors of U

Dynamic Mode Decomposition

- For large m, we hope that $\left\|\eta_{r} \mathbf{e}^{T} V^{-1}\right\|$ is small
- Then $U E \approx E \Lambda$, and columns of E approximate some eigenvectors of U
- Procedure described is tied to initialization

Dynamic Mode Decomposition

- For large m, we hope that $\left\|\eta_{r} \mathbf{e}^{T} V^{-1}\right\|$ is small
- Then $U E \approx E \Lambda$, and columns of E approximate some eigenvectors of U
- Procedure described is tied to initialization
- Different initial conditions will reveal different parts of the spectrum

Dynamic Mode Decomposition

- For large m, we hope that $\left\|\eta_{r} \mathbf{e}^{T} V^{-1}\right\|$ is small
- Then $U E \approx E \Lambda$, and columns of E approximate some eigenvectors of U
- Procedure described is tied to initialization
- Different initial conditions will reveal different parts of the spectrum
- If $F \notin \operatorname{span}\left\{\phi_{i}\right\}$ for some eigenfunction ϕ_{i}, then DMD will not reveal that mode

Dynamic Mode Decomposition

- For large m, we hope that $\left\|\eta_{r} \mathbf{e}^{T} V^{-1}\right\|$ is small
- Then $U E \approx E \Lambda$, and columns of E approximate some eigenvectors of U
- Procedure described is tied to initialization
- Different initial conditions will reveal different parts of the spectrum
- If $F \notin \operatorname{span}\left\{\phi_{i}\right\}$ for some eigenfunction ϕ_{i}, then DMD will not reveal that mode
- The version described is numerically ill-conditioned (columns of K_{r} can become linearly dependent)

Standard DMD

- Arrange data $\left\{\mathbf{b}_{0}, \ldots, \mathbf{b}_{r}\right\}$ into matrices

Standard DMD

- Arrange data $\left\{\mathbf{b}_{0}, \ldots, \mathbf{b}_{r}\right\}$ into matrices

$$
X=\left[\mathbf{b}_{0}, \ldots, \mathbf{b}_{r-1}\right], Y=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}\right]
$$

- Compute SVD $X=U \Sigma V^{*}$

Standard DMD

- Arrange data $\left\{\mathbf{b}_{0}, \ldots, \mathbf{b}_{r}\right\}$ into matrices

$$
X=\left[\mathbf{b}_{0}, \ldots, \mathbf{b}_{r-1}\right], Y=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}\right]
$$

- Compute SVD $X=U \Sigma V^{*}$
- Define matrix $\tilde{A}=U^{*} Y V \Sigma^{-1}$

Standard DMD

- Arrange data $\left\{\mathbf{b}_{0}, \ldots, \mathbf{b}_{r}\right\}$ into matrices

$$
X=\left[\mathbf{b}_{0}, \ldots, \mathbf{b}_{r-1}\right], Y=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}\right]
$$

- Compute SVD $X=U \Sigma V^{*}$
- Define matrix $\tilde{A}=U^{*} Y V \Sigma^{-1}$
- Compute eigenvalues and eigenvectors of $\tilde{A} ; \tilde{A} w=\lambda w$

Standard DMD

- Arrange data $\left\{\mathbf{b}_{0}, \ldots, \mathbf{b}_{r}\right\}$ into matrices

$$
X=\left[\mathbf{b}_{0}, \ldots, \mathbf{b}_{r-1}\right], Y=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}\right]
$$

- Compute SVD $X=U \Sigma V^{*}$
- Define matrix $\tilde{A}=U^{*} Y V \Sigma^{-1}$
- Compute eigenvalues and eigenvectors of $\tilde{A} ; \tilde{A} w=\lambda w$
- DMD mode corresponding to eigenvalue λ is $U w$

Exact DMD

- Limitation of previous approach: Order of vectors is critical

Exact DMD

- Limitation of previous approach: Order of vectors is critical
- Such that the vectors approximately satisfy $z_{k+1}=A z_{k}$ for unknown A

Exact DMD

- Limitation of previous approach: Order of vectors is critical
- Such that the vectors approximately satisfy $z_{k+1}=A z_{k}$ for unknown A
- Now we relax this constraint and restrict ourselves to data pairs $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{m}, \mathbf{y}_{m}\right)$

Exact DMD

- Limitation of previous approach: Order of vectors is critical
- Such that the vectors approximately satisfy $z_{k+1}=A z_{k}$ for unknown A
- Now we relax this constraint and restrict ourselves to data pairs $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{m}, \mathbf{y}_{m}\right)$
- Define X and Y as before

Exact DMD

- Limitation of previous approach: Order of vectors is critical
- Such that the vectors approximately satisfy $z_{k+1}=A z_{k}$ for unknown A
- Now we relax this constraint and restrict ourselves to data pairs $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{m}, \mathbf{y}_{m}\right)$
- Define X and Y as before
- Define operator $A=Y X^{\dagger}$

Exact DMD

- Limitation of previous approach: Order of vectors is critical
- Such that the vectors approximately satisfy $z_{k+1}=A z_{k}$ for unknown A
- Now we relax this constraint and restrict ourselves to data pairs $\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right), \ldots,\left(\mathbf{x}_{m}, \mathbf{y}_{m}\right)$
- Define X and Y as before
- Define operator $A=Y X^{\dagger}$
- The DMD modes and eigenvalues are eigenvalues and eigenvectors of A

Exact DMD

- Arrange the data pairs in matrices X, Y as before

Exact DMD

- Arrange the data pairs in matrices X, Y as before
- Compute the SVD of X, write $X=U \Sigma V^{*}$

Exact DMD

- Arrange the data pairs in matrices X, Y as before
- Compute the SVD of X, write $X=U \Sigma V^{*}$
- Define matrix $\tilde{A}=U^{*} Y V \Sigma^{-1}$

Exact DMD

- Arrange the data pairs in matrices X, Y as before
- Compute the SVD of X, write $X=U \Sigma V^{*}$
- Define matrix $\tilde{A}=U^{*} Y V \Sigma^{-1}$
- Computer eigenvalues and eigenvectors of \tilde{A}, writing $\tilde{A} w=\lambda w$. Every nonzero eigenvalue is a DMD eigenvalue

Exact DMD

- Arrange the data pairs in matrices X, Y as before
- Compute the SVD of X, write $X=U \Sigma V^{*}$
- Define matrix $\tilde{A}=U^{*} Y V \Sigma^{-1}$
- Computer eigenvalues and eigenvectors of \tilde{A}, writing $\tilde{A} w=\lambda w$. Every nonzero eigenvalue is a DMD eigenvalue
- The DMD mode corresponding to λ is given as:

$$
\Phi=\frac{1}{\lambda} Y V \Sigma^{-1} w
$$

Kernel Trick and Learning the Subspace

- Kernels
- Neural Networks

