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F R A N Z K A F K A : B E F O R E T H E L AW

Before the law sits a gatekeeper. To this gatekeeper comes a man from the country who
asks to gain entry into the law. But the gatekeeper says that he cannot grant him entry
at the moment. The man thinks about it and then asks if he will be allowed to come in
later on. “It is possible,” says the gatekeeper, “but not now.” At the moment the gate to
the law stands open, as always, and the gatekeeper walks to the side, so the man bends
over in order to see through the gate into the inside. When the gatekeeper notices that,
he laughs and says: “If it tempts you so much, try it in spite of my prohibition. But
take note: I am powerful. And I am only the most lowly gatekeeper. But from room to
room stand gatekeepers, each more powerful than the other. I can’t endure even one
glimpse of the third.” The man from the country has not expected such difficulties: the
law should always be accessible for everyone, he thinks, but as he now looks more
closely at the gatekeeper in his fur coat, at his large pointed nose and his long, thin,
black Tartar’s beard, he decides that it would be better to wait until he gets permission
to go inside. The gatekeeper gives him a stool and allows him to sit down at the side in
front of the gate. There he sits for days and years. He makes many attempts to be let in,
and he wears the gatekeeper out with his requests. The gatekeeper often interrogates
him briefly, questioning him about his homeland and many other things, but they are
indifferent questions, the kind great men put, and at the end he always tells him once
more that he cannot let him inside yet. The man, who has equipped himself with many
things for his journey, spends everything, no matter how valuable, to win over the
gatekeeper. The latter takes it all but, as he does so, says, “I am taking this only so
that you do not think you have failed to do anything.” During the many years the man
observes the gatekeeper almost continuously. He forgets the other gatekeepers, and
this one seems to him the only obstacle for entry into the law. He curses the unlucky
circumstance, in the first years thoughtlessly and out loud, later, as he grows old, he
still mumbles to himself. He becomes childish and, since in the long years studying
the gatekeeper he has come to know the fleas in his fur collar, he even asks the fleas
to help him persuade the gatekeeper. Finally his eyesight grows weak, and he does
not know whether things are really darker around him or whether his eyes are merely
deceiving him. But he recognizes now in the darkness an illumination which breaks
inextinguishably out of the gateway to the law. Now he no longer has much time to live.
Before his death he gathers in his head all his experiences of the entire time up into
one question which he has not yet put to the gatekeeper. He waves to him, since he can
no longer lift up his stiffening body. The gatekeeper has to bend way down to him, for
the great difference has changed things to the disadvantage of the man. “What do you
still want to know, then?” asks the gatekeeper. “You are insatiable.” “Everyone strives
after the law,” says the man, “so how is that in these many years no one except me has
requested entry?” The gatekeeper sees that the man is already dying and, in order to
reach his diminishing sense of hearing, he shouts at him, “Here no one else can gain
entry, since this entrance was assigned only to you. I’m going now to close it.”
[Trans. by Ian Johnston. Here, law might originate from the Hebrew word Torah, thus also having the meaning truth]



A B S T R A C T

One of the most fundamental problems in machine learning is to compare examples:
Given a pair of objects we want to return a value which indicates degree of (dis)similarity.
Similarity is often task specific, and pre-defined distances can perform poorly, leading
to work in metric learning. However, being able to learn a similarity-sensitive distance
function also presupposes access to a rich, discriminative representation for the objects
at hand. In this dissertation we present contributions towards both ends. In the first
part of the thesis, assuming good representations for the data, we present a formula-
tion for metric learning that makes a more direct attempt to optimize for the k-NN
accuracy as compared to prior work. Our approach considers the choice of k neigh-
bors as a discrete valued latent variable, and casts the metric learning problem as a
large margin structured prediction problem. We present experiments comparing to a
suite of popular metric learning methods. We also present extensions of this formula-
tion to metric learning for kNN regression, and discriminative learning of Hamming
distance. In the second part, we consider a situation where we are on a limited com-
putational budget i.e. optimizing over a space of possible metrics would be infeasible,
but access to a label aware distance metric is still desirable. We present a simple, and
computationally inexpensive approach for estimating a well motivated metric that relies
only on gradient estimates, we also discuss theoretical as well as experimental results
of using this approach in regression and multiclass settings. In the final part, we ad-
dress representational issues, considering group equivariant neural networks (GCNNs).
Equivariance to symmetry transformations is explicitly encoded in GCNNs; a classical
CNN being the simplest example. Following recent work by Kondor et. al., we present a
SO(3)-equivariant neural network architecture for spherical data, that operates entirely
in Fourier space, while using tensor products and the Clebsch-Gordan decomposition
as the only source of non-linearity. We report strong experimental results, and empha-
size the wider applicability of our approach, in that it also provides a formalism for
the design of fully Fourier neural networks that are equivariant to the action of any
continuous compact group.

Thesis Advisor: Gregory Shakhnarovich

Title: Associate Professor
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C R E D I T A S S I G N M E N T

1 Work presented in chapter 3 was joint work with Gregory Shakhnarovich and
David McAllester. G. Shakhnarovich was the primary contributor in an earlier
iteration of the work presented. The latent structural SVM formulation was origi-
nally due to D. McAllester and G. Shakhnarovich. The dissertation author was the
primary contributor in later iterations, and contributed ideas, proposed inference
procedures, refinements, carried out experiments and contributed to the write-up.
Some of the sections and figures in chapter 3 are excerpted directly from the fol-
lowing report: Shubhendu Trivedi, David McAllester, and Gregory Shakhnarovich.
"Discriminative Metric Learning by Neighborhood Gerrymandering." In: Advances
in Neural Processing Systems. 2014, pp. 3392–3400

2 Research presented in sections 4.1 and 4.2 was joint work with Behnam Neyshabur
and Gregory Shakhnarovich. The idea of using asymmetry is due to B. Neyshabur.
The dissertation author was the primary contributor and contributed ideas, did
the experimental evaluation as well as the complete write-up.

3 Work presented in section 4.3 was joint work with Gregory Shakhnarovich. The
dissertation author was the primary contributor in all aspects of the presented
work.

4 Work presented in chapter 6 was joint work with Jialei Wang, Samory Kpotufe
and Gregory Shakhnarovich. The dissertation author initiated the project with S.
Kpotufe and G. Shakhnarovich. The idea of using the expected gradient outer
product is due to G. Shakhnarovich. J. Wang and S. Kpotufe were the primary
contributors in the theoretical analysis. The dissertation author was the primary
contributor in the experimental evaluation, as well as contributed ideas for the
theoretical analysis and did part of the write-up. Some of the text and figures in
chapter 6 are excerpted directly from the following report: Shubhendu Trivedi,
Jialei Wang, Samory Kpotufe, and Gregory Shakhnarovich. “A Consistent Estima-
tor of the Expected Gradient Outerproduct.” In: Proceedings of the 30th International
Conference on Uncertainty in Artificial Intelligence. AUAI. 2014, pp. 819–828.

5 Work on the expected Jacobian outer product presented in chapter 7 was joint with
Jialei Wang. The dissertation author was the primary contributor (jointly with
J. Wang) in all aspects of the presented work and contributed to the theoretical
analysis, did the experimental evaluation and did the complete write-up. The work
also involved inputs by S. Kpotufe.

6 Work presented in chapter 8 was joint work with Risi Kondor and Zhen Lin. The
presented work is a direct consequence of a theoretical result (not part of the dis-
sertation) that appeared in the following publication: Risi Kondor and Shubhendu
Trivedi. “On the Generalization of Equivariance and Convolution in Neural Net-
works to the Action of Compact Groups.” In:Proceedings of the 35th International
Conference on Machine Learning. PMLR, 2018, pp. 2747–2755. The idea of using



the Clebsch-Gordan transform is due to R. Kondor. The dissertation author was
one of the primary contributors (jointly with R. Kondor and Z. Lin) and con-
tributed ideas, the experimental evaluation and contributed to part of the write
up. The text appearing in section 8.8 is wholly excerpted from the following re-
port: Risi Kondor, Zhen Lin, and Shubhendu Trivedi. “Clebsch-Gordan Nets: a
Fully Fourier Space Spherical Convolutional Neural Network.” arXiv:1806.09231,
Pre-print, 2018.



A C K N O W L E D G M E N T S

It feels mildly disappointing to write this section ex post facto; particularly in the anticlimactic
aftertaste following the very brief but intense period of frenzy that went into putting this dis-
sertation together. Nevertheless it is making me reflect on this journey and my time in Chicago.
I came to Chicago and to TTI after a fulfilling and productive random walk, but soon enough,
within a year, a combination of a lack of preparedness as well as a couple of extremely unusual
personal events soon threatened to turn it into a nightmare. Wherefore, it gives me satisfaction
that it turned to be a remarkable, intellectually stimulating and uplifting personal experience.
Surely, graduate school is not supposed to be easy for anyone, by definition and by design, and
it might seem like an exercise in cheap vanity to say that personal circumstance made it much
harder than it ought to have been. What I intend to convey is that though I put a lot of sweat
into this thesis, yet by itself, it does not mean anything to me. Indeed, a few months here and
there, and given the frenetic activity and pace, it just might have appeared completely different
in character and in form, or even in its topic of focus. What is important to me is what the
journey has taught me in its wake, and like most good journeys, the best parts of it:

Teach us to care and not to care
Teach us to sit still1

Therefore, I will use this section to express my gratitude to everyone who has played a major
part in it. I did wonder for a while if I were not being indulgent, immodest, or giving a sup-
posedly common experience too much weight, thus flying in the face of my alleged avowal to
stoicism. I apologize for breaking tradition and not keeping it the right measure of impersonal
and stolid. I also apologize for its length, however, my closest friends, if they were to read it
would understand why.

I will begin with my advisor: Gregory Shakhnarovich. I think it would be preposterous to
attempt to thank Greg for all that he has done for me and taught me, but I will try. I came
to Chicago after an interview with Greg; impulsively changing my mind after having decided
to enroll for graduate school in NYC. I was struck with his attention to detail: never allowing
any minor detail to be swept under the proverbial rug, in fact often refusing to move forward
till it was clarified, thus forcing me to think clearly as a result. Almost all my interactions with
Greg seemed to have an inherent didactic value, perhaps by design, since it is something that
also reflects in his excellent course. I learned a great deal from my early meetings with him,
his wisdom, his flair for fairness, good humour, straight-shooting ways and aversion to bullshit.
Other than my parents, Greg is the only person responsible for seeing me through graduate
school. Often I meandered through various UChicago departments and thus technically he never
had to care or bother, but I always knew that he had my back. I sometimes worry that I might
have frequently disappointed Greg, other than testing his patience to the limit. Because of all
that Greg has taught me and done for me, I hope I can make him proud someday. Greg was my
primary advisor for Parts I & II of this dissertation.

I am truly grateful for my interactions with Risi Kondor, who in many ways has been my second
advisor. I was drawn to Risi because of his proclivity to gravitate towards deep problems, my
own modest undergraduate training in signal processing, and his organizing a study group on
the regularity lemma–which was a major component of my master’s thesis, which I was curious
about. After that I became a regular in all his classes and group meetings, and felt lucky to be
associated with his group after summer 2013. Risi is a very deep thinker, with a wide range of

1 Ash Wednesday, T. S. Eliot



knowledge, who has always tried to rub it on to his students, for which I am grateful. Risi was
my primary advisor for part III of this dissertation.

Next I would like to thank Samory Kpotufe and Brian D. Nord. Samory was my co-advisor
for work presented in chapter 6 of this dissertation. Through him I came to appreciate classical
statistical theory and learning theory, as well as the art of thinking about machine learning
problems theoretically. It is again difficult to express how grateful I feel for my interactions with
Brian, which were both thoroughly enjoyable and uplifting. I thank him for his steady friendship
and welcoming me to his astrophysics group at UChicago of which I have been a part of since
the summer of 2017. Brian taught me a lot about problems in physics and the applicability of
machine learning to them: through his weekly group meetings, through numerous one to one
meetings as well our collaboration on a number of projects. In many ways Brian also was like
my advisor to who I usually turned towards for counsel in case of professional issues during the
last year of school as well the more prosaic side of being a grad student. I am also particularly
grateful to Brian for serving on my committee, carefully reading through multiple iterations of
this document and giving challenging comments on nearly every page.

I am also thankful to Kevin Gimpel for agreeing to serve on my committee despite the expedited
time-line, for his comments to improve the quality of his dissertation, as well as putting up with
my ever shifting deadlines with patience. I would also like to thank Rohit Nagpal for being a
great teacher, good friend and collaborator. In the stressful period of job applications when I
found myself stuck, he was generous enough to take up my problem and not only helped me
solve it, but also invested the time to teach me every week and shed my fear of representation
theory with no expectation of return.

I am grateful to my co-authors and collaborators with who I have worked on several interesting
projects during my time in Chicago (listed in chronological order): Fei Song, Yutao Wang, Gábör
N. Sárközy, Neil T. Heffernan, Gregory Shakhnavorich, David McAllester, Samory Kpotufe, Jialei
Wang, Behnam Neyshabur, Ryohei Fujimaki, Risi Kondor, Horace Pan, Truong Son Hy, Brandon
M. Anderson, Kirk Swanson, Joshua Lequieu, Zhen Lin, Rohit Nagpal, Brian D. Nord, Camille
Avestruz, João Caldeira, W. L. Kimmy Wu, Nick Huang and Kyle Story.

Amongst faculty members at TTI, I would particularly like to thank David McAllester, Karen
Livescu, Madhur Tulsiani and Yury Makarychev. David and Karen were amongst my favorite
people at the TTI. I have enjoyed almost all my interactions with David and learned a lot from
them. In the ocean of the tough crowd that is TTI in scientific matters, I found David’s encyclo-
pedic knowledge and his easy warmth refreshing and inspiring. Despite his stature, he always
listened to my very frequent and ill-posed ramblings, always patiently error-correcting and re-
framing them. I also found his constant presence in the deep learning reading group, that I
organized for 5 years, gratifying and learned a lot from his comments, as I frequently found
myself to be the presenter. I regret not picking up speed faster and not collaborating with him
more. I am grateful to Karen for help on many occasions (especially when I was required to take
a course mid-quarter). I regret not writing up my speech course project for publication, despite
her suggestion; for it would have been a fitting chapter in this dissertation. I am also thankful to
Yury for going out of his way and spending a considerable amount of time, outside the purview
of official coursework, to help improve my algorithmic thinking. I am thankful to Madhur for
his help on various occasions as the director of graduate studies, as well as helping me with my
random theory questions often.

Other than David, Greg, Karen, Kevin, Madhur and Yury, I would also like to thank other
permanent faculty members at the TTI: Sadaoki Furui, Avrim Blum, Julia Chuzhoy, Nathan
Srebro, Matthew Walter and Jinbo Xu, for their efforts in making TTI a truly lively and vibrant
unit, while maintaining the highest research standards. When I started, while it looked like a
very interesting place from the outside, I have no hesitation in saying that it was tough for
students. However, just in a few years I have seen the change as it matures, and now I see it as
an ideal for how an academic unit ought to be organized.



I have also learned a lot from my frequent interactions with the following research assistant
professors at TTI: Mohit Bansal, Srinadh Bhojanapalli, Suriya Gunasekar, Mehrdad Mahdavi,
Michael Maire, Subhransu Maji, Mesrob Ohannessian, George Papandreou, Karl Stratos and
Ryota Tomioka. In particular I would like to thank Michael and Mesrob for their help on many
occasions and Mesrob for being generous with his time, and being game for working through
problems and books together.

While I have never been a "course person"; lacking the discipline to do well, I nevertheless made
an attempt to sit through all sorts of courses that seemed interesting. In particular I learned a lot
from the fantastic courses taught by László Babai, Alexander Razborov, Gregory Shaknavorich,
David McAllester and Mary Silber. Laci is by far the best teacher I have encountered, and I made
it a point to sit through whatever he taught. Greg’s well prepared course (that I also had the priv-
ilege to TA) and his from-first-principles approach to teaching was the inspiration for my own
graduate course at UChicago when I got the opportunity to teach. David’s type theory course
was more of a philosophy course, that I found both painful and thoroughly enjoyed. Although
I was always behind by one week throughout, Mary’s dynamical systems course remains the
only course in my entire student life, where I have worked through the entire textbook.

Amongst the students at TTI, I would begin with Haris Angelidakis (Geia sou Hari! Xairomai
poly pou eisai Chicago!). I am grateful to Haris for the inspiring company and for being one of
my closest friends in Chicago. Haris was one of the few people who I could ask for help without
my pride getting in the way, and who I could always ask to come for a cigar or a walk at even
4 in the morning. My equation with Haris was such that if we did not interact even for a day,
it felt unusual and weird, and without him, my stay in Chicago would have been that much
more drab and uninteresting than what it became. I also learned a lot from our study groups
on proofs, measure theory and graph theory. I would also like to thank the early "deserters":
Kaustav Kundu, Abhishek Sen and Vikas "Monty Parbat" Garg, who made the first couple of
years pass in a jiffy. I would also like to thank Mrinalkanti Ghosh and Omar Montasser for
their frequent help. I really respected Mrinal for his command over Kolmogorov complexity
and ergodic theory and the frequent conversations about CS theory that I engaged with him. I
thank him for putting up with my frequent mood swings, and the deluge of really bad jokes
as one of my officemates. I would like to thank Behnam Neyshabur for our work together and
Rachit Nimawat for his frequent help and sharing my appreciation of the lake. I would also
like to thank Somaye Hashemifar, Avleen Bijral, Falcon Dai, Sudarshan Babu, Igor Vasiljević,
Routian Luo, Kevin Stangl, Mohammadreza Mostajabi, Shane Settle, Lifu Tu, Andrea Daniele,
Pedro Savarese, Payman Yadollahpour and Davis Yoshida for making day to day life during
grad school fun and enjoyable. Out of the various interns that have passed through TTI, I would
like to thank Akash Kumar, Abhishek Sharma and Dimitri Hanukaev. Dima has since become a
good friend and it is rare even now for a fortnight to pass without a conversation on Israeli or
Indian politics.

I used to joke in my first three years, that if my graduate training were cast as a structured
prediction problem, then TTI with its tough crowd, which I often found challenging, would con-
stitute the loss augmented inference part; while UChicago, where I felt smart, would constitute
the inference part. I have already referred to the role that Risi, Brian and Rohit have played in
my graduate career. But amongst Stats/CS/Booth students and postdocs, I would like to thank
Sabyasachi Chatterjee, who I interacted with almost daily since we worked at the same coffee
shop; Naiqing Gu for his kindness, confidence in me and introducing me to many interesting
problems in networks; Gustav Larsson for always being helpful and inspiring. I am also thank-
ful to my frequent conversations about work, life and research with Goutham Rajendran, Liwen
Zhang and Hin Yin Tsang. Out of the students in Risi’s group, I am thankful for my interactions
with Yi Ding, Brandon Anderson, Jonathan Eskreis-Winkler, Hanna Torrence, Horace Pan and
in particular Pramod Kaushik Mudrakarta.

In other reaches of UChicago and my meanderings through it, I would like to thank Ayelet Fine,
Ana Ilievska, Katie Shapiro, Alexander Belikov, Pierre Gratia and Julia Thomas. I counted Ana as



amongst my good friends in Chicago, and I always appreciated her veering every conversation
about machine learning towards humanistic implications. I thank Pierre Gratia for sharing my
obsessive love for books and Alexander Belikov for introducing me to many interesting problems
in transport and graph curvature. I consider it an honor to count Julia Thomas as amongst my
great friends. Despite being a professor (at Notre Dame) and a Japan expert, she always made
me feel like the expert, and despite being twice my age she taught me a thing or two about
youthfulness. I will miss Julia and our frequent walks circling the lake talking about literature
and science. I would also like to thank all the friends I made due to my association with Doc
Films, and Kagan Arik for being my Aikido sensei for many years, till I shattered my tarsals.

It might seem out of place for a graduate student to say so, but I also had the privilege to
interact with various students initially as a "teacher" (in capacities as TA, full instructor and
my tendency to find people to teach privately). Finding it fulfilling, I put a lot of energy into
teaching and eventually ended up learning a lot from the experience. In many cases some of
the students ended up being great friends as time went by, or my teachers and even collabo-
rators and co-authors. In particular I would like to thank Zhen Lin, who is perhaps one of the
smartest and most hardworking people I have known; Kirk Swanson, for our collaboration and
introducing me to interesting problems in glassy dynamics; Milica Popović, for her kindness
and her penchant to surprise. I consider it a great honor to be able to call her one of my great
friends; Xinguo Fan; Zimo "silent plum" Li; Nasr Maswood, for his friendship and our frequent
conversations and meetings despite his moving out of UChicago and Philip Sparks, who I find
inspiring and who makes me feel proud.

I have also had three long research visits during my PhD. I would like to thank Ryohei Fuji-
maki and Yusuke Muruoka for their mentorship and Maxine Clochard and Ákos Kovacs for the
hospitality.

Next I would like to thank all the past and present denizens of 22E; my various house-mates,
who have had a major role in making the whole PhD life enjoyable. In particular, I would like to
thank Ankan Saha, Pooya Hatami, Sarah Perou, Yuan Li, Emily Schofield, Adil Tobaa, Yael Levy,
Thomas Gao and Shubham Toshniwal. I used to really appreciate my frequent conversations
with Ankan and Pooya, usually on CS theory, mathematics and politics, extending late in the
night till early morning. I am also grateful to Yuan for his generosity and willingness to help
unpack my frequent theory questions. I am still psyched by the fact that Yael, who was a Buber
scholar, didn’t believe during the entirety of her stay that I did not study religion. I am also
grateful to Thomas and (SLT specialist) Shubham for putting up with my extremely erratic
schedules as might be expected in final year of graduate school. I also enjoyed my interactions
with Shubham, who I saw little of at TTI before we became house-mates.

I am very grateful to many of my friends who were around me most of the time I was in
Chicago. In particular, I would like to thank Srikant Veeraraghavan for his constant and steady
companionship, and our frequent and somehow unplanned adventures. I always looked forward
to my weekly meetings with Vaibhav Pandit who somehow ended up in Chicago after a long
random walk of his own, thus somehow recreating the time from our high school days. I was
always thankful for my interactions with Predrag and Milica Popović, who often, unknowingly,
provided a lot of emotional support. I would also like to thank Pramod Mudrakarta, Elyse,
Anamika Acharya, Nora Pfeiffer, Adinath Narasgond, Aniket Joglekar, Gasthi, Brenda Oord
and Gabriela Jäger.

This acknowledgment section would be incomplete if it did not include a reference to the time I
have spent in McGriffet House, where I spent as much time during graduate school as I spent at
TTI, and did a sizable chunk of the work that is in this dissertation. Being a regular, I gradually
came to know everyone who showed up there, and made many great friends. It helped that most
people there, including some Math/Stat professors, assumed I was a professor at UChicago. But
I would like to thank three in particular: Muriel Bernardi, Matt Jones and Ben Tianen. Muriel is
one of the loveliest people I have met (not just in UChicago), and I am grateful to know her. I



always looked forward to her inspiring company in midst of the madness and stress of my final
year, and I think the graduate school experience would have been severely impoverished without
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1
I N T R O D U C T I O N A N D O V E RV I E W

One of the most fundamental questions in machine learning is to compare examples:
Given a pair of objects (ξ1, ξ2), we want to automatically predict a value Ψ(ξ1, ξ2) ∈ R,
the magnitude of which indicates the degree of similarity or dissimilarity between ξ1

and ξ2. To underline the central nature of this problem, it is useful to consider the wide
range of machine learning algorithms that explicitly or implicitly rely on a notion of
pairwise similarity. Some such methods include: example based approaches such as
k nearest neighbors [59]; clustering algorithms such as k-means [175], mean-shift and
centroid based methods, spectral clustering [273]; the various flavours of kernel methods
such as support vector machines [23], kernel regression, Gaussian processes [220] etc.

The similarity between a pair of objects is customarily obtained as a function of some
pre-defined pairwise distance, which in turns depends on the nature of the objects ξ1

and ξ2. If the objects live in an explicit feature space, the Euclidean distance is a common
choice; similarly, the χ2-squared distance is frequently used if the objects reside in a
simplex; likewise, the Levenshtein distance may be employed if the objects are strings
(see [67] for an exhaustive catalog of distance measures). As might be expected, such
distances often fail to account for the quirks of a particular dataset and task at hand,
and indeed, one might expect improved performance if the distance function is instead
tailored to the task. Designing such distance functions automatically is the motivation
behind the area of metric learning [291].

In its most general form, distance metric learning leverages examples provided for the
task at hand, in order to wriggle out a better suited, task-specific distance function. For
example: If the task is clustering, and we are provided with sets of items and complete
clusterings over these sets, we would like to exploit this side information to estimate the
distance function that can help cluster future sets better. Yet another example, which is
by far most commonly addressed in the metric learning literature is when the task
is classification or regression using a nearest neighbor method. The side information
furnished to us comprises of labels of points, which are then used to learn a distance
function that can improve k-NN performance. We explicate further on the latter example
in what follows, in a relatively simple setting, to better motivate and build ground to
summarize the main contributions of this thesis.

Suppose we are working with a classification problem, which is specified by a suitable
instance space (X , d), assumed to be a metric space, and a label space Y . In particular,
we assume that X ⊂ Rd, therefore ξ1, ξ2 ∈ Rd. We also assign Ψ(ξ1, ξ2) = +1 if ξ1

and ξ2 are of the same class, and Ψ(ξ1, ξ2) = −1 otherwise. Furthermore, given a map
ξ 7→ Φ(ξ) parameterized by W , let us suppose the distance between ξ1 and ξ2 is given
as:

DW (ξ1, ξ2) = ∥Φ(ξ1;W)− Φ(ξ2;W)∥2
2
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Figure 1.1: A typical contrastive loss setup that learns mappings that are similarity sensitive

We can set the optimization so as to update parameters W such that DW (ξ1, ξ2) is
increased if Ψ(ξ1, ξ2) = −1, and DW (ξ1, ξ2) is decreased if Ψ(ξ1, ξ2) = +1. This is
illustrated in figure 1.1.

1.1 the interplay between similarity and representation learning

While the above example illustrates a simple method to learn a similarity-sensitive dis-
tance function, there are a few crucial issues that were swept under the proverbial rug,
which we unpack below.

First of all, notice that in the example we did not assume anything about the structure of
ξ1 and ξ2, except that they were points in Rd. In such a setting Φ : Rd 7→ Rp (with d = p
not necessarily true) corresponds to a mapping, such that in the transformed space
distances are more reflective of similarity. In short, we assume that we already have a
good feature representation for our data, on top of which a distance function could be
learned. Indeed, if the feature representation is poor i.e. has poor class discriminative
ability, then learning similarity sensitive distances would be hard if not impossible.

However, the objects ξ1 and ξ2 might come endowed with richer structure, as is often the
case in various applications of machine learning. For example, (ξ1, ξ2) might be a pair
of images, or a pair of sets, or a pair of spherical images, or a pair of point-clouds and so
on. In such cases Φ : ξ 7→ Rd could instead be a module that learns a representation for
the object that is inherently discriminative and models natural invariances in the data.

To drive home this point, consider the example illustrated in figure 1.1 again, but with
the modification that the objects ξ1 and ξ2 are large d × d images, and W represents the
parameters of a fully-connected feed-forward network. The system is then trained to
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be similarity sensitive as discussed. Such a system is likely to perform poorly, because
the fully connected network is unlikely to generate good representations for the images.
On the other hand, if W instead represents the parameters of a Convolutional Neural
Network (CNN) [161], the system is far more likely to succeed. That this should be
the case is not hard to see, indeed, since CNNs are known to generate extremely good
representations for images.

As illustrated by the above example, in the context of similarity learning, there are two
notions that are crucial to good performance:

1 Having a rich; discriminative representation for the type of input ξ, which models
natural invariances and symmetries in the data.

2 If the underlying task is nearest neighbor classification or regression, as is usually
the case in similarity learning, we would want to devise a loss that is a more direct
proxy to nearest neighbor performance.

Both these notions: having an appropriate representation for the data type at hand, as
well as working with the right notion of loss for the learning of similarity reinforce each
other, and can also be learned jointly end-to-end. Nevertheless, as already noted, getting
both of these aspects in order is pivotal to good performance. In this dissertation, we
make contributions towards both aspects, which we describe below, while also outlining
the organization of this document.

1.2 discriminative metric learning

In Part i of this dissertation, we wholly focus on the loss formulation for the discrimi-
native learning of similarity and distance, while ignoring representational issues. That
is, we assume that the inputs ξi ∈ Rd, and that the representation is good enough for
the task at hand.

As already discussed, often, k-NN prediction performance is the real motivation for met-
ric and similarity learning, on which there is a large literature. Typically such methods
set the problem as an optimization problem, with the metric updated in such a way that
good neighbors (say from the correct class for a query point) are pulled together, while
bad neighbors are pushed away. We utilize Chapter 2 to review some popular methods
for discriminative metric learning.

In Chapter 3, we propose a formulation for metric learning that makes a more direct
attempt to optimize for the k-NN accuracy as compared to prior work. Our approach
considers the choice of k neighbors as a discrete valued latent variable, and casts the
metric learning problem as a large margin structured prediction problem. This formu-
lation allows us to use the arsenal of techniques for structural latent support vector
machines for the problem of metric learning. We also devise procedures for exact infer-
ence and loss augmented inference in this model, and also report experimental results
for our method, comparing to a suite of popular metric learning methods.

In Chapter 4, we consider the direct loss minimization approach to metric learning
from Chapter 3 and apply it in three different settings: Asymmetric similarity learning,
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discriminative learning of Hamming distance, and metric learning for improving k-NN
regression.

1.3 metric estimation without learning

In Part ii of the dissertation we consider a somewhat different tack: Suppose ξi ∈ Rd

and that this is a good representation of the data. However, we now consider a situation
where we are on a limited computational budget i.e. optimizing over a space of possible
metrics would be infeasible. Nevertheless we still want access to a good metric that
could improve k-NN classification and regression performance as compared to the plain
Euclidean distance.

In Chapter 6, we consider the case of regression and binary classification i.e. when we
have an unknown regression function f : Rd → R, and consider the metric given by the
Expected Gradient Outer Product (EGOP)

ExG(x) ≜ Ex

(
∇ f (x) · ∇ f (x)⊤

)
.

We give a cheap estimator for the EGOP and prove that it remains statistically consistent
under mild assumptions, while also showing empirically, that using the EGOP as a
metric improves k-NN regression performance.

In Chapter 7, we consider the multi-class case i.e. when we have an unknown function
f : Rd → Sc with Sc = {y ∈ Rc|∀i yi ≥ 0, yT1 = 1}, and consider the metric given by
the Expected Jacobian Outer Product (EJOP)

EXG(X) ≜ Ex

(
J f (x)J f (x)T

)
where J f is the Jacobian of f . Like in the case of EGOP, we give a rough estimator, that
not only remains statistically consistent under reasonable assumptions, but also gives
improvements in k-NN classification performance.

1.4 group equivariant representation learning

In Part iii of this thesis we address the representational issues discussed earlier in this
chapter. Chapter ?? introduces group equivariant neural networks and makes the case
on how such neural networks exploit natural invariances in the data. We argue that
group equivariance is an useful inductive bias in many domains. We start with the sim-
ple case of planar CNNs, and then review more recent efforts on generalizing classical
CNNs in different settings. In chapter 8 we give an example of a group equivariant rep-
resentation learning module: a SO(3) equivariant spherical convolution neural network
that operates entirely in Fourier space.
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2
I N T R O D U C T I O N T O D I S C R I M I N AT I V E M E T R I C L E A R N I N G

Amongst the oldest [59] and most widely used tools in machine learning are nearest
neighbor methods (see [235] for a survey). Despite their simplicity, they are often suc-
cessful and come with attractive properties. For instance, the k-NN classifier is univer-
sally consistent [245], being the first learning rule for which this was demonstrated to
be the case. Additionally, nearest neighbor methods use local information and are in-
herently non-linear; while also being relatively resilient to label noise, since prediction
requires averaging across k labels. Moreover, it is trivial to add new classes to the data
without requiring any fresh model training.

While nearest neighor rules can often be efficacious, their performance tends to be lim-
ited by two factors: the computational cost of searching for nearest neighbors and the
choice of the metric (distance measure) defining “nearest”. The cost of searching for
neighbors can be reduced with efficient indexing (see for example [3, 19, 61]) or learn-
ing compact representations e.g. [96, 156, 207, 276]. We will defer addressing this issue
till Chapter 4. In this part of the dissertation we instead focus on the choice of the met-
ric. The metric is often taken to be Euclidean, Manhattan or χ2 distance. However, it is
well known that in many cases these choices are suboptimal in that they do not exploit
statistical regularities that can be leveraged from labeled data. Here, we focus on super-
vised metric learning. In particular, we present a method of learning a metric so as to
optimize the accuracy of the resulting nearest neighbor estimator.

Existing works on metric learning (the overwhelming majority of which is for classifi-
cation) formulate learning as an optimization task with various constraints driven by
considerations of computational feasibility and reasonable, but often vaguely justified
principles [93, 94, 129, 184, 252, 279, 280, 291]. A fundamental intuition is shared by
most of the work in this area: an ideal distance for prediction is distance in the target
space. Of course, that can not be measured, since prediction of a test example’s target
is what we want to use the similarities to begin with. Instead, one could learn a simi-
larity measure with the goal for it to be a good proxy for the target similarity. Since the
performance of kNN prediction often is the real motivation for similarity learning, the
constraints typically involve “pulling” good neighbors (from the correct class for a given
point in the case of classification) closer while “pushing” the bad neighbors farther away.
The exact formulation of “good” and “bad” varies but is defined as a combination of
proximity and agreement between targets.

To give a flavor of some of these constraints and principles in order to improve nearest
neighbor performance downstream, we review some well known metric learning algo-
rithms in what follows. Yet another purpose for doing so will also be to set the ground
for placing our approach in context. To begin to do so, we first suppose the classifica-
tion problem is specified by a suitable instance space (X , d), which is assumed to be a
metric space, and a label space Y ∈ Z+. The distance between any two points xi, xj ∈ X
is denoted as DW (xi, xj), where W are the parameters that specify the distance measure.
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Figure 2.1: An illustration of the approach to metric learning taken by [291]. Look at the text for
more details

There might be considerable freedom in deciding what W should be, it could just rep-
resent the identity matrix, a low-rank projection matrix, or the parameters of a neural
network. By far, the most popular family of metric learning algorithms involve learning
a Mahalanobis distance.

Mahalanobis Distances

Suppose xi, xj ∈ X ⊂ Rd, and W ∈ Rd×d as well as W ⪰ 0. In the context of met-
ric learning, the Mahalanobis distance has come to refer to all distances of the form

DW(xi, xj) =
√
(xi − xj)TW(xi − xj). However, its eponymous distance measure, pro-

posed in 1936 in the context of anthropometry [176], was defined in terms of a covari-

ance matrix Σ as DΣ(xi, xj) =
√
(xi, xj)TΣ−1(xi, xj). It might also be worthwhile to note,

that despite the prevalence of the term “metric learning", it is somewhat of a misnomer.
This is because DW infact defines a pseudo-metric i.e. ∀xi, xj, xk ∈ X , it satisfies:

a. DW(xi, xj) ≥ 0

b. DW(xi, xi) = 0

c. DW(xi, xj) = DW(xj, xi)

d. DW(xi, xk) ≤ DW(xi, xj) + DW(xj, xk)

There is a large body of work on similarity learning done with the stated goal of im-
proving kNN performance, which would be impossible to review justly. Therefore, we
stick to reviewing some salient approaches that also help place our own approach in
context. Some of the earliest work in what could be considered proto-metric learning
goes back to Short and Fukunaga (1981) [89], with a string of follow up works in the
90s, for example see Hastie and Tibshirani [104]. However, in much of the recent work
in the past decade and a half, the objective can be written as a combination of some sort
of regularizer on the parameters of similarity, with loss reflecting the desired “purity”
of the neighbors under learned similarity. Optimization then balances violation of these
constraints with regularization.
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Figure 2.2: An illustration of the approach to metric learning taken by [280]. We refer the reader
to the text for more details

In this sense the area of metric learning could be considered to have started with the
influential work of Xing et al. [291]. In this method, the “good” neighbors are defined
as all similarly labeled points, while “bad” neighbors are defined as all points that have
a different label. During optimization, the metric is deformed such that each class is
mapped into a ball of a fixed radius, but no separation is enforced between the classes
(see figure 2.1). Letting S and D denote the sets of pairs of similar and dissmilar points
respectively, we may write this approach as the following optimization problem:

min
W

∑
(xi ,xj)∈S

∥xi − xj∥2
W (2.1)

s. t. min
W

∑
(xi ,xj)∈D

∥xi − xj∥2
W ≥ 1 (2.2)

W ⪰ 0 (2.3)

Where, ∥ · ∥2
W is the squared Mahalanobis distance parameterized by W. Evidently, the

immediate problem with this approach is that it has little relation to the actual kNN
objective. Indeed, the k-NN objective does not require that similar points should be
clustered together, and as a consequence methods of a similar flavour optimize an ob-
jective that is much harder than what is required for good k-NN performance.

A popular family of approaches to metric learning that has a somewhat better motivated
objective than the above, are based on the Large Margin Nearest Neighbor (LMNN)
algorithm [280]. In LMNN, the constraints for each training point involve a set of pre-
defined “target neighbors” from the correct class, and “impostors” from other classes.
The optimization is such that a margin is imposed between the “target neighbors” and
the “impostors”(see figure 2.2). Such an objective may be written as:

min
L

∑
i,j:j⇝i

DL(xi, xj)
2 + µ ∑

k:yi ̸=yk

[1 + DL(xi, xj)
2 − DL(xi, xk)

2]+ (2.4)

where W = LTL; µ > 0; yi denotes the label for xi; the notation j⇝ i indicates that xj is
a “target neighbor”of xi and [z]+ = max(z, 0) denotes the hinge loss.

Despite being somewhat more suited to the underlying k-NN objective, the LMNN
objective still has some issues that could affect its performance. To begin, the set of
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target neighbors are chosen at the onset based on the euclidean distance (in absence of
a priori knowledge). Moreover as the metric is optimized, the set of “target neighbors”
is not dynamically updated. There is no reason to believe that the original choice of
neighbors based on the euclidean distance is optimal while the metric is updated. Yet
another issue is that in LMNN the target neighbors are forced to be of the same class.
In doing so it does not fully leverage the power of the kNN objective, which only needs
a majority of points to have the correct label. Extensions of LMNN [129, 279] allow for
non-linear metrics, but retain the same general flavor of constraints.

In Neighborhood Component Analysis (NCA) [94] a different kind of proxy for classifi-
cation error is used: the piecewise-constant error of the kNN rule is replaced by a soft
version. This leads to a non-convex objective that is optimized via gradient descent. To
write the objective, we denote the probability that a point xi selects xj as its neighbor by
pij. In this set up, the point xi will be assigned the class of point xj. Given W = LTL, we
can define pij as:

pij =
exp

(
− ∥Lxi − Lxj∥2

2

)
∑k ̸=i exp

(
− ∥Lxi − Lxk∥2

2

) and pii = 0 (2.5)

The probability that a point will be correctly classified is then given by:

pi = ∑
xj∈Ci

pij (2.6)

where Ci denotes the set of all points that have the same class as xi. Finally, we can write
the NCA objective (to be maximized) as follows:

Obj(L) = ∑
i

∑
xj∈Ci

pij (2.7)

One of the features of NCA is that it trades off convexity for attempting to directly opti-
mize for the choice of nearest neighbor. This issue of non-convexity was partly remedied
in [93], by optimization of a similar stochastic rule while attempting to collapse each
class to one point. While this makes the optimization convex, collapsing classes to dis-
tinct points is unrealistic in practice. Another recent extension of NCA [252] generalizes
the stochastic classification idea to kNN classification with k > 1. Out of all the methods
reviewed so far, k-NCA is the only method that comes closest to optimize directly for
the k-NN task loss.

There is also a wide plethora of metric learning methods that optimize for some kind
of ranking loss. We discuss two examples here. In Metric Learning to Rank (MLR)[184],
the constraints involve all the points: the goal is to push all the correct matches in front
of all the incorrect ones. The idea essentially is: given a query point and a metric pa-
rameterized by W finding the distance with the database points should sort them in
such a way that good neighbors end up in the front. While important for retrieval, this
is again not the same as requiring correct classification. In addition to global optimiza-
tion constraints on the rankings (such as mean average precision for target class), the
authors allow localized evaluation criteria such as Precision at k, which can be used as a
surrogate for classification accuracy for binary classification, but is a poor surrogate for
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multi-way classification. Direct use of kNN accuracy in optimization objective is briefly
mentioned in [184], but not pursued due to the difficulty in loss-augmented inference.
This is because the interleaving technique of [123] that is used to perform inference with
other losses based inherently on contingency tables, fails for the multiclass case (since
the number of data interleavings could possibly be exponential). A similar approach is
taking in [208], where the constraints are derived from triplets of points formed by a
sample, correct and incorrect neighbors. Again, these are assumed to be set statically
as an input to the algorithm, and the optimization focuses on the distance ordering
(ranking) rather than accuracy of classification.

Before concluding, we must note that in this chapter we have not reviewed any of the
deep metric learning techniques. This is because all such techniques that we are aware
of are based on a flavour of loss as one of the above, with the only difference that the
mapping of each point onto a metric space is done by a neural network. The focus and
main novelty of the work presented in the next chapter lies in its loss as compared to the
techniques discussed. Indeed, the function that is used to map the points to a suitable
metric space is an orthogonal consideration.

Having considered a general background on the metric learning problem, along with
various loss formulations that have been proposed to attack it, we now proceed to give
a formulation that attempts to give a more direct proxy for k-NN classification.
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Outline

In this chapter, we give a formulation for metric learning that facilitates a more direct
attempt to optimize for the kNN accuracy as compared to previous work. We also show
that our formulation makes it natural to apply standard learning methods for structural
latent support vector machines (SVMs) to the problem of supervised metric learning.
While we test this approach for the case of Mahalanobis metric learning, as emphasized
in the previous chapter, the focus here is on obtaining a better proxy for the k-NN loss
rather than the nature of mapping.

To achieve our stated goal of formulating the metric learning problem such that it is
more direct in optimizing for the underlying task: k-NN accuracy, we consider looking
at the nearest neighbor problem a bit differently.

In the kNN prediction problem, given a query point and fixing the underlying metric,
there is an implicit hidden variable: the choice of k “neighbors”. The inference of the
predicted label from these k examples is trivial: by simple majority vote among the
associated labels for classification, and by taking a weighted average in the case of
regression. In the case of classification, given a query point, there can possibly exist a
very large number of choices of k points that might correspond to zero loss: any set of
k points with the majority of correct class will do. Whereas, in the case of regression,
there can exist a very large number of choices of k points that might correspond to a loss
less than a tolerance parameter (since zero loss would be impossible in most scenarios).
We would like a metric to “prefer” one of these “good” example sets over any set of k
neighbors which would vote for a wrong class (or in the case of regression correspond
to a high loss). Note that to win, it is not necessary for the right class to account for all
the k neighbors – it just needs to get more votes than any other class. As the number of
classes and the value of k grow, so does the space of available good (and bad) example
sets.

These considerations motivate our approach to metric learning. It is akin to the common,
albeit negatively viewed, practice of gerrymandering in drawing up borders of election
districts so as to provide advantages to desired political parties, e.g., by concentrating
voters from that party or by spreading voters of opposing parties. In our case, the
“districts” are the cells in the Voronoi diagram defined by the Mahalanobis metric, the
“parties” are the class labels voted for by the neighbors falling in each cell, and the
“desired winner” is the true label of the training points associated with the cell. This
intuition is why we refer to our method as neighborhood gerrymandering in the title.

A bit more technically, we write kNN prediction as an inference problem with a struc-
tured latent variable being the choice of k neighbors. Thus learning involves minimiz-
ing a sum of a structural latent hinge loss and a regularizer [23]. Computing structural
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latent hinge loss involves loss-adjusted inference — one must compute loss-adjusted
values of both the output value (the label) and the latent items (the set of nearest neigh-
bors). The loss augmented inference corresponds to a choice of worst k neighbors in the
sense that while having a high average similarity they also correspond to a high loss
(“worst offending set of k neighbors”). Given the inherent combinatorial considerations,
the key to such a model is efficient inference and loss augmented inference. We give an
efficient algorithm for exact inference. We also design an optimization algorithm based
on stochastic gradient descent on the surrogate loss. Our approach achieves kNN accu-
racy higher than state of the art for most of the data sets we tested on, including some
methods specialized for the relevant input domains.
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Figure 3.1: Illustration of objectives of LMNN (left) and our structured approach to “neighbor-
hood gerrymandering” (right) for k = 3. The point x of class blue is the query point.
In LMNN, the target points are the nearest neighbors of the same class, which are
points a, b and c (the circle centered at x has radius equal to th e farthest of the target
points i.e. point b). The LMNN objective will push all the points of the wrong class
that lie inside this circle out (points e, f , h, i, andj), while pushing in the target points
to enforce the margin. On the other hand, for our structured approach (right), the
circle around x has radius equal to the distance of the farthest of the three nearest
neighbors irrespective of class. Our objective only needs to ensure zero loss. This
would be achieved by pushing in point a of the correct class (blue) while pushing
out the point having the incorrect class (point f ). Note that two points of the incor-
rect class lie inside the circle (e, and f ), both being of class red. However f is pushed
out and not e since it is farther from x.

As stated toward the end of the previous chapter, although we initially restrict ourselves
to learning a Mahalanobis distance in an explicit feature space, the formulation is easily
extensible to nonlinear similarity measures such as those defined by nonlinear kernels,
provided computing the gradients of similarities with respect to metric parameters is
feasible. In such extensions, the inference and loss augmented inference steps remain
unchanged. Our formulation can also naturally handle a user-defined loss matrix on
labels rather than just a zero-one loss. We propose a series of extensions to the case of
kNN regression, Asymmetric metric learning and the discriminative learning of Ham-
ming distance in Chapter 4. The extension to regression seems particularly foreboding
given that in this case the number of “classes” is uncountable. This is attacked by both
modifying the objective suitably and presenting algorithms for inference and loss aug-
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mented inference to give a suitable approximation that is shown to perform well on
standard benchmarks.

3.1 gerrymandering in context

In chapter 2, we introduced the metric learning problem and discussed some canonical
approaches to the problem. In this short section, we hark back to some of the approaches
discussed there to put our framework in context.

1 Clustering type objectives: Such methods for learning the metric are exemplified
by the work of Xing et al. [291]. In such approaches, “good” neighbors for a given
query point are all points that have a similar label. The metric is learned so as
to map all such “good” neighbors into a ball of fixed radius. However, the k-NN
objective does not require such clustering behaviour for good performance. In that
sense our approach is more direct in leveraging the k-NN objective.

2 LMNN type objectives: As discussed earlier, in LMNN type algorithms [280], for
a query point, the “good” neighbors are a set of “target neighbors” which are a)
predefined and b) are all of the same class. In a way, the role of “target neighbors”
in LMNN is not quite unlike the “best correct set of k neighbors” (h∗ in Section 3.3)
in our method. Moreover, in LMNN type methods, the“target neighbors” are pre-
defined based on the Eucidean metric and then fixed throughout learning. In our
method, the set of “good” neighbors h∗ are dynamically updated as the metric is
learned. Yet another departure in our approach to that of LMNN is that for good
k-NN performance, we don’t need all the “good” neighbors to be of the same class.
In our method we provide inference procedures that ensure leveraging the k-NN
objective more directly by only focusing on having a majority of points to be of
the correct class. This is also illustrated in an example in figure 3.1.

3 NCA: Our method is similar to NCA [94] type methods in that it also trades off
convexity (details in Section 3.3) in order to directly optimize for the choice of
nearest neighbor. However, traditional NCA type algorithms focus only on 1-NN.
The work of [252] that generalizes [94] to instead focus on the right selection of
k nearest neighbors for classification is closest in spirit to our work, and as far as
we are aware the only work attempts to optimize directly for the k-NN objective.
Experimentally, we found our method gave superior performance.

4 Ranking objectives: The original inspiration for this work was metric learning
to rank[184], which optimizes for a ranking objective. As discussed this is not
the same as requiring correct classification. Moreover, as discussed the approach
of [184] fails for the multiclass case given the inference used. We take a very
different approach to loss augmented inference, using targeted inference and the
classification loss matrix, and can easily extend it to arbitrary number of classes

3.2 discriminative loss minimization for classification

In this section we formally set up the problem. Note that we first state the distance and
similarity formulation in its full generality, to illustrate that it is more widely applicable,
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and not just to the case of learning global linear projections. We then modify it to work
with the Mahalanobis distance that is eventually dealt with in the rest of this chapter,
and for which detailed experimentation is carried out.

3.2.1 Problem setup

We are given N training examples X = {x1, . . . , xN}, represented by a “native” feature
map, xi ∈ Rd, and their class labels y = [y1, . . . , yN ]

T, with yi ∈ [R], where [R] stands
for the set {1, . . . , R}. We are also given the loss matrix Λ with Λ(r, r′) being the loss
incurred by predicting r′ when the correct class is r. We assume Λ(r, r) = 0, and ∀(r, r′),
Λ(r, r′) ≥ 0. Most generally, we are interested in squared distances defined as:

DW (x, xi) = ∥Φ(x;W)− Φ(xi;W)∥2
2 (3.1)

Where Φ(x;W) is a map (possibly non-linear), x → Φ(x), parameterized by W . Let
h ⊂ X be a set of examples in X. For a given W we define the distance score of h w.r.t.
a point x as

SW (x, h) = − α

K ∑
xj∈h

∥Φ(x;W)− Φ(xj;W)∥2
2 + β (3.2)

where α, β and K are constants. This formulation of the distance score permits use of
the dot product to measure similarity as well, as long as it is normalized to unit length.

For the rest of this chapter, we are interested in the Mahalanobis metrics

DW (x, xi) = (x − xi)
T W (x − xi) , (3.3)

which are parameterized by positive semidefinite d × d matrices W, which can be seen
as learning a linear map x → Lx where W = LTL, while satisfying fixed constraints
(usually to optimize for kNN performance). For a given W we define the distance score
of h w.r.t. a point x as

SW(x, h) = − ∑
xj∈h

DW
(
x, xj

)
(3.4)

Hence, the set of k nearest neighbors of x in X is

hW(x) = argmax
|h|=k

SW(x, h). (3.5)

For the remainder of this discussion, we will assume that k is known and fixed. Note
that, from any set h of k examples from X, we can predict the label of x by (simple)
majority vote:

ŷ (h) = majority{yj : xj ∈ h},

with ties resolved by a heuristic, e.g., according to 1NN vote. In particular, the kNN
classifier predicts ŷ(hW(x)). Due to this deterministic dependence between ŷ and h, we
can define the classification loss incurred by a voting classifier when using the set h as

∆(y, h) = Λ (y, ŷ(h)) . (3.6)
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3.3 learning and inference

One might want to learn W to minimize training loss

∑
i

∆ (yi, hW(xi))

However, this fails due to the intractable nature of classification loss ∆. We will follow
the usual remedy: define a tractable surrogate loss.

While already discussed earlier, here we must note again that in our formulation, the
output of the prediction is a structured object hW, for which we eventually report the de-
terministically computed ŷ. Structured prediction problems usually involve loss which
is a generalization of the hinge loss; intuitively, it penalizes the gap between score of the
correct structured output and the score of the “worst offending” incorrect output (the
one with the highest score and highest ∆).

However, in our case, we have an additional complication in that there is no single
correct output h, since in general many choices of h would lead to correct ŷ and zero
classification loss: any h in which the majority votes for the right class. Ideally, we want
SW to prefer at least one of these correct hs over all incorrect hs.

This intuition leads to the following surrogate loss definition:

L(x, y, W) = max
h

[SW(x, h) + ∆(y, h)] (3.7)

− max
h:∆(y,h)=0

SW(x, h). (3.8)

This is quite different in spirit from the notion of margin sometimes encountered in
ranking problems where we want all the correct answers to be placed ahead of all the
wrong ones. Here, we only care to put one correct answer on top; it does not matter
which one, hence the max in (3.8).

3.4 structured formulation

Our choice of the loss L was motivated by intuitive arguments for what might corre-
spond to a better proxy for the underlying task of k-NN prediction. However, it turns
out that our problem is an instance of a familiar type of problems: latent structured
prediction [292], and thus our choice of loss can be shown to form an upper bound on
the empirical task loss ∆.

First, we note that the score SW can be written as

SW(x, h) =

〈
W,− ∑

xj∈h
(x − xj)(x − xj)

T

〉
, (3.9)

where ⟨·, ·⟩ stands for the Frobenius inner product. Defining the feature map

Ψ(x, h) ≜ − ∑
xj∈h

(x − xj)(x − xj)
T, (3.10)

we get a more compact expression ⟨W, Ψ(x, h)⟩ for (3.9).
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Going a step further, we can encode the deterministic dependence between y and h by
a so-called “compatibility” function

A(y, h) =

{
0 if y = ŷ(h)

−∞ otherwise

This notion of compatibility allows us to write the joint inference of y and (hidden) h
performed by kNN classifier as

ŷW(x), ĥW(x) = argmax
h,y

[A(y, h) + ⟨W, Ψ(x, h)⟩] . (3.11)

This is the familiar form of inference in a latent structured model [84, 292] with latent
variable h. So, notwithstanding the somewhat unusual property of our model where the
latent h completely determines the inferred y, we can show the equivalence to “normal”
latent structured prediction.

3.4.1 Learning by gradient descent

We define the objective in learning W as

min
W

∥W∥2
F + C ∑

i
L (xi, yi, W) , (3.12)

where ∥ · ∥2
F stands for Frobenius norm of a matrix.1 The regularizer is convex, but as

in other latent structured models, the loss L is non-convex due to the subtraction of the
max in (3.8). To optimize (3.12), one can use the convex-concave procedure (CCCP) [294]
which has been proposed specifically for latent SVM learning [292]. However, CCCP
tends to be slow on large problems. Furthermore, its use is complicated here due to the
requirement that W be positive semidefinite (PSD). This means that the inner loop of
CCCP includes solving a semidefinite program, making the algorithm slower still. In-
stead, we opt for a much faster, and perhaps simpler, choice: stochastic gradient descent
(SGD), described in Algorithm 1.

Algorithmus 1 : Stochastic gradient descent
Input : labeled data set (X, Y), regularization parameter C, learning rate η(·)
initialize W(0) = 0
for t = 0, . . ., while not converged do

sample i ∼ [N]

ĥi = argmaxh [SW(t)(xi, h) + ∆(yi, h)]
h∗i = argmaxh:∆(yi ,h)=0 SW(t)(xi, h)

δW =

[
∂SW(xi, ĥi)

∂W
−

∂SW(xi, h∗i )
∂W

] ∣∣∣∣∣
W(t)

W(t+1) = (1 − η(t))W(t) − CδW
project W(t+1) to PSD cone

1 We discuss other choices of regularizer in Section 3.6.
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The SGD algorithm requires solving two inference problems (ĥ and h∗), and computing
the gradient of SW which we address below.2

Algorithmus 2 : Targeted inference

Input : x, W, target class y, τ ≜ Jties forbiddenK
Output : argmaxh:ŷ(h)=y SW(x)

Let n∗ = ⌈ k+τ(R−1)
R ⌉ // min. required number of neighbors from y

h := ∅
for j = 1, . . . , n∗ do

h := h ∩ argmin
xi : yi=y,i/∈h

DW (x, xi)

for l = n∗ + 1, . . . , k do
define #(r) ≜ |{i : xi ∈ h, yi = r}| // count selected neighbors from class

r
h := h ∩ argmin

xi : yi=y, or #(yi)<#(y)−τ, i/∈h
DW (x, xi)

return h

3.4.1.1 Targeted inference of h∗i

Here we are concerned with finding the highest-scoring h constrained to be compatible
with a given target class y. We give an O(N log N) algorithm in Algorithm 2. Proof of
its correctness and complexity analysis is in section 3.4.1.4.

The intuition behind Algorithm 2 is as follows. For a given combination of R (number of
classes) and k (number of neighbors), the minimum number of neighbors from the target
class y required to allow (although not guarantee) zero loss, is n∗ (see Proposition 1 in
section 3.4.1.4). The algorithm first includes n∗ highest scoring neighbors from the target
class. The remaining k − n∗ neighbors are picked by a greedy procedure that selects the
highest scoring neighbors (which might or might not be from the target class) while
making sure that no non-target class ends up in a majority.

When using Alg. 2 to find an element in H∗, we forbid ties, i.e. set τ = 1.

3.4.1.2 Loss augmented inference ĥi

Calculating the max term in (3.7) is known as loss augmented inference. We note that

max
h′

〈
W, Ψ(x, h′)

〉
+ ∆(y, h′) = max

y′

{
max

h′∈H∗(y′)

〈
W, Ψ(x, h′)

〉
= ⟨W,Ψ(x,h∗(x,y′))⟩

+Λ(y, y′)
}

(3.13)

which immediately leads to Algorithm 3, relying on Algorithm 2. The intuition: perform
targeted inference for each class (as if that were the target class), and the choose the set
of neighbors for the class for which the loss-augmented score is the highest. In this case,
in each call to Alg. 2 we set τ = 0, i.e., we allow ties, to make sure the argmax is over
all possible h’s.

2 We note that both inference problems over h are done in leave one out settings, i.e., we impose an additional
constraint i /∈ h under the argmax, not listed in the algorithm explicitly.
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Algorithmus 3 : Loss augmented inference
Input : x, W,target class y
Output : argmaxh [SW(x, h) + ∆(y, h)]
for r ∈ {1, . . . , R} do

h(r) := h∗(x, W, r, 1) // using Alg. 2

Let Value (r) := SW(x, h(r)),+Λ(y, r)
Let r∗ = argmaxrValue (r)
return h(r

∗)

k=9, k′=3

k=9, k′=4

Figure 3.2: Inference as packing k neighbors with smallest distance while ensuring correct vote.
For more details see sections 3.4.1 and 3.4.1.3

3.4.1.3 Some more intuition behind inference procedures

While in the previous section we have provided inference procedures and section 3.4.1.4
contains the analysis and proof of correctness, in this section we briefly provide more
intuition. We can view of inference in this model as wanting to pack k neighbors with
the smallest distance, while ensuring the correct vote. For instance, suppose we want
k ≤ k′ neighbors from a target class. In that case, we start with k′ nearest neighbors from
the target class, and then proceed in the order of decreasing distance. While doing so,
we also pick neighbors from the wrong class, but such that we also ensure that do not
let any class have ≥ k′ points. This is then done for all feasible values of k′, and from
this we select the best set. This is illustrated further in figure 3.2

3.4.1.4 Analysis and Proof of correctness of Algorithm 2

First of all it is easy to see that Algorithm 2 terminates. There are k − n∗ iterations after
initialization (of the first n∗ points) and this amounts to at most a linear scan of X. We
need O(N log N) time to sort the data and then finding h∗ involves O(N), thus the
algorithm runs in time O(N log N).

We need to prove that the algorithm returns h∗ as defined earlier. First, we establish the
correctness of setting n∗:
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Proposition 1. Let R be the number of classes, and let #(h, y) be the count of neighbors from
target class y included in the assignment h. Then, ∆(y∗, h) = 0 only if #(h, y∗) ≥ n∗, where

n∗ =


⌈

k+R−1
R

⌉
if ties not allowed,⌈

k
R

⌉
if ties allowed.

We prove it below for the case with no ties; the proof when ties are allowed is very similar.

Proof. Suppose by contradiction that ∆(y∗, h) = 0 and #(h, y∗) ≤ ⌈ k+R−1
R ⌉ − 1. Then,

since no ties are allowed, for all y ̸= y∗, we have #(h, y∗) ≤ ⌈ k+R−1
R ⌉ − 2, and

∑
y

#(h, y) ≤ (R − 1)
(⌈

k + R − 1
R

⌉
− 2
)

(3.14)

+

⌈
k + R − 1

R

⌉
− 1 (3.15)

< k, (3.16)

a contradiction to |h| = k.

Next, we prove that the algorithm terminates and produces a correct result. For the
purposes of complexity analysis, we consider R (but not k) to be constant, and number
of examples from each class to be O(N).

Claim 1. Algorithm 2 terminates after at most O((N + k) log N) operations and produces an
h such that |h| = k.

Proof. The elements of X can be held in R priority queues, keyed by DW values, one
queue per class. Construction of this data structure is an O(N log N) operation, carried
out before the algorithm starts. To initialize h with n∗ values, the algorithm retrieves n∗

top elements from the priority queue for class y∗. An O(n∗ log N) operation. Then, for
each of the iterations over l, the algorithm needs to examine at most one top element
from R queues, which costs O(log N); each such iteration increases |h| by one. Thus
after k − n∗ iterations |h| = k; the total cost is thus O(k log N). Combined with the
complexity of data structure construction mentioned above, this concludes the proof.

Note that for typical scenarios in which N ≫ k, the cost will be dominated by the
N log N data structure setup.

Claim 2. Let h∗ be returned by Algorithm 2. Then,

h∗ = argmax
h:|h|=k, ∆(y∗,h)=0)

SW(x, h), (3.17)

i.e., the algorithm finds the highest scoring h with total of k neighbors among those h that attain
zero loss.
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Figure 3.3: Illustration of interpretation of the gradient update, more details in the text

Proof. From Proposition 1 we know that if #(h, y) < n∗, then h does not satisfy the
∆(x, h) = 0 condition. |h| ≥ n∗ to (3.17) without altering the definition.

We will call h “optimal for l” if

h = argmax
h:|h|=n∗+l, #(h,y)≥n∗, ∆(y∗,h))=0

SW(x, h).

We now prove by induction over l that this property is maintained through the loop
over l in the algorithm.

Let h(j) denote choice of h after j iterations of the loop, i.e., |h| = n∗ + j. Suppose that
h(l−1) is optimal for l − 1. Now the algorithm selects xa ∈ X, such that

xa = argmin
xi : yi=y, or #(yi)<#(y)−τ, xi /∈h

DW (x, xi) . (3.18)

Suppose that h(l) is not optimal for l. Then there exists an xb ∈ X for which DW (x, xb) <

DW (x, xa) such that picking xb instead of xa would produce h optimal for l. But xb is
not picked by the algorithm; this can only happen if conditions on the argmin in (3.18)
are violated, namely, if #(yb) = #(y)− τ; therefore picking xb would violate conditions
of optimality of h(l), and we get a contradiction.

It is also clear that after initialization with k highest scoring neighbors in y∗, h is optimal
for l = 0, which forms the base of induction. We conclude that h(k−n∗), i.e. the result of
the algorithm, is optimal for k − n∗, which is equivalent to definition in (3.17).

3.4.1.5 Gradient update

Finally, we need to compute the gradient of the distance score. Since it is linear in W as
shown in (3.9), we have

∂SW(x, h)
∂W

= Ψ(x, h) = − ∑
xj∈h

(x − xj)(x − xj)
T. (3.19)

Thus, the update in Alg 1 has a simple interpretation, illustrated in Fig 3.1. For every
xi ∈ h∗ \ ĥ, it “pulls” xi closer to x. For every xi ∈ ĥ \ h∗, it “pushes” it farther from
x; these push and pull refer to increase/decrease of Mahalanobis distance under the
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updated W. Any other xi, including any xi ∈ h∗ ∩ ĥ, has no influence on the update.
This is a difference of our approach from LMNN, MLR etc. This is illustrated in Figure
3.1. In particular h∗ corresponds to points a, c and e, whereas ĥ corresponds to points
c, e and f . Thus point a is pulled while point f is pushed.

Since the update does not necessarily preserve W as a PSD matrix, we enforce it by
projecting W onto the PSD cone, by zeroing negative eigenvalues. Note that since we
update (or “downdate”) W each time by matrix of rank at most 2k, the eigendecom-
position can be accomplished more efficiently than the naïve O(d3) approach, e.g., as
in [244].

Using first order methods, and in particular gradient methods for optimization of non-
convex functions, has been common across machine learning, for instance in training
deep neural networks. Despite lack (to our knowledge) of satisfactory guarantees of
convergence, these methods are often successful in practice; we will show in the next
section that this is true here as well. However, care should be taken to ensure validity
of the method, and we discuss this briefly before reporting on experiments.

A given x imposes a Voronoi-type partition of the space of W into a finite number of
cells; each cell is associated with a particular combination of ĥ(x) and h∗(x) under the
values of W in that cell. The score SW is differentiable (actually linear) on the interior
of the cell, but may be non-differentiable (though continuous) on the boundaries. Since
the boundaries between a finite number of cells form a set of measure zero, we see that
the score is differentiable almost everywhere.

3.5 experiments

We compare the error of kNN classifiers using metrics learned with our approach to that
with other learned metrics. For this evaluation we replicate the protocol in [129], using
the seven data sets in Table 3.1. For all data sets, we report error of kNN classifier for a
range of values of k; for each k, we test the metric learned for that k. Competition to our
method includes Euclidean Distance, LMNN [280], NCA, [94], ITML [63], MLR [184]
and GB-LMNN [129]. The latter learns non-linear metrics rather than Mahalanobis.

For each of the competing methods, we used the code provided by the authors. In
each case we tuned the parameters of each method, including ours, in the same cross-
validation protocol. We omit a few other methods that were consistently shown in litera-
ture to be dominated by the ones we compare to, such as χ2 distance, MLCC, M-LMNN.
We also could not include χ2-LMNN since code for it is not available; however published
results for k = 3 [129] indicate that our method would win against χ2-LMNN as well.

Isolet and USPS have a standard training/test partition, for the other five data sets, we
report the mean and standard errors of 5-fold cross validation (results for all methods
are on the same folds). We experimented with different methods for initializing our
method (given the non-convex objective), including the euclidean distance, all zeros
etc. and found the euclidean initialization to be always worse. We initialize each fold
with either the diagonal matrix learned by ReliefF [134] (which gives a scaled euclidean
distance) or all zeros depending on whether the scaled euclidean distance obtained
using ReliefF was better than unscaled euclidean distance. In each experiment, x are
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Figure 3.4: kNN errors for k=3, 7 and 11 on various datasets when the features are scaled by
z-scoring

scaled by mean and standard deviation of the training portion.3 The value of C is tuned
on on a 75%/25% split of the training portion. Results using different scaling methods
are also reported.

Our SGD algorithm stops when the running average of the surrogate loss over most
recent epoch no longer decreases substantially, or after max. number of iterations. We
use learning rate η(t) = 1/t.

The results show that our method dominates other competitors, including non-linear
metric learning methods, and in some cases achieves results significantly better than
those of the competition. The results for the initialization and set-up mention above are
illustrated in table 3.1, as well as figure 3.4

3.5.1 Runtimes using different methods

Here we include the training times in seconds for one fold of each dataset. These timings
are for a single partition, for optimal parameters for k = 7. These experiments were run
on a 12-core Intel Xeon E5-2630 v2 @ 2.60GHz and are reported in 3.2. We notice that the
approach, while competitive is quite slow due to exact inference and loss augmented

3 For Isolet we also reduce dimensionality to 172 by PCA computed on the training portion.
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k = 3

Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

d 170 256 16 800 800 800 800

N 7797 9298 20000 157 958 295 1123

C 26 10 26 10 10 10 10

Euclidean 8.66 6.18 4.79 ±0.2 75.20 ±3.0 60.13 ±1.9 56.27 ±2.5 80.5 ±4.6

LMNN 4.43 5.48 3.26 ±0.1 24.17 ±4.5 26.72 ±2.1 15.59 ±2.2 46.93 ±3.9

GB-LMNN 4.13 5.48 2.92 ±0.1 21.65 ±4.8 26.72 ±2.1 13.56 ±1.9 46.11 ±3.9

MLR 6.61 8.27 14.25 ±5.8 36.93 ±2.6 24.01 ±1.8 23.05 ±2.8 46.76 ±3.4

ITML 7.89 5.78 4.97 ±0.2 19.07 ±4.9 33.83 ±3.3 13.22 ±4.6 48.78 ±4.5

1-NCA 6.16 5.23 4.71 ±2.2 31.90 ±4.9 30.27 ±1.3 16.27 ±1.5 46.66 ±1.8

k-NCA 4.45 5.18 3.13 ±0.4 21.13 ±4.3 24.31 ±2.3 13.19 ±1.3 44.56 ±1.7

ours 4.87 5.18 2.32 ±0.1 17.18 ±4.7 21.34 ±2.5 10.85 ±3.1 43.37 ±2.4

k = 7

Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean 7.44 6.08 5.40 ±0.3 76.45 ±6.2 62.21 ±2.2 57.29 ±6.3 80.76 ±3.7

LMNN 3.78 4.9 3.58 ±0.2 25.44 ±4.3 29.23 ±2.0 14.58 ±2.2 46.75 ±2.9

GB-LMNN 3.54 4.9 2.66 ±0.1 25.44 ±4.3 29.12 ±2.1 12.45 ±4.6 46.17 ±2.8

MLR 5.64 8.27 19.92 ±6.4 33.73 ±5.5 23.17 ±2.1 18.98 ±2.9 46.85 ±4.1

ITML 7.57 5.68 5.37 ±0.5 22.32 ±2.5 31.42 ±1.9 10.85 ±3.1 51.74 ±2.8

1-NCA 6.09 5.83 5.28 ±2.5 36.94 ±2.6 29.22 ±2.7 22.03 ±6.5 45.50 ±3.0

k-NCA 4.13 5.1 3.15 ±0.2 22.78 ±3.1 23.11 ±1.9 13.04 ±2.7 43.92 ±3.1

ours 4.61 4.9 2.54 ±0.1 21.61 ±5.9 22.44 ±1.3 11.19 ±3.3 41.61 ±2.6

k = 11

Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean 8.02 6.88 5.89 ±0.4 73.87 ±2.8 64.61 ±4.2 59.66 ±5.5 81.39 ±4.2

LMNN 3.72 4.78 4.09 ±0.1 23.64 ±3.4 30.12 ±2.9 13.90 ±2.2 49.06 ±2.3

GB-LMNN 3.98 4.78 2.86 ±0.2 23.64 ±3.4 30.07 ±3.0 13.90 ±1.0 49.15 ±2.8

MLR 5.71 11.11 15.54 ±6.8 36.25 ±13.1 24.32 ±3.8 17.97 ±4.1 44.97 ±2.6

ITML 7.77 6.63 6.52 ±0.8 22.28 ±3.1 30.48 ±1.4 11.86 ±5.6 50.76 ±1.9

1-NCA 5.90 5.73 6.04 ±2.8 40.06 ±6.0 30.69 ±2.9 26.44 ±6.3 46.48 ±4.0

k-NCA 4.17 4.81 3.87 ±0.6 23.65 ±4.1 25.67 ±2.1 11.42 ±4.0 43.8 ±3.1

ours 4.11 4.98 3.05 ±0.1 22.28 ±4.9 24.11 ±3.2 11.19 ±4.4 40.76 ±1.8

Table 3.1: kNN errors for k=3, 7 and 11. Features were scaled by z-scoring.

inference, each of which are expensive steps. The run time increases linearly both in the
number of classes as well as k.
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Dataset DSLR Caltech Amazon Webcam Letters USPS Isolet

LMNN 358.11 1812.1 1545.1 518.7 179.77 782.66 1762.1

GB-LMNN 410.13 1976.4 1680.9 591.29 272.87 3672.9 2882.6

MLR 4.93 124.42 88.96 85.02 838.13 1281 33.20

MLNG 413.36 1027.6 2157.2 578.74 6657.3 3891.7 3668.9

Table 3.2: Comparison of runtimes

3.5.2 Experimental results using different feature normalizations

For the sake of completeness, we also experimented with different feature normalization
other than z-scoring to see if it impacted the results significantly. Somewhat surprisingly,
we did notice a deterioration in performance when no feature normalization was done.
We report the results for the case of no feature normalization, for the same competition
in table 3.4. We also ran the same set of experiments for the case when we did histogram
normalization. In this case obviously, we could only run experiments in the case of 4

datasets: DSLR, Amazon, Webcam and Caltech, which allowed for such normalization.
Results for experiments with such a feature normalization are reported in table 3.3

3.6 conclusion and summary of work

In this part of the dissertation we proposed a formulation of the metric learning for
kNN classifier as a structured prediction problem, with discrete latent variables rep-
resenting the selection of k neighbors. We also provided efficient algorithms for exact
inference in this model, including for loss augmented inference. While proposed in
the context of metric learning, these procedures might be of wider interest. We also
devised a stochastic gradient descent based procedure for learning in this model. The
proposed approach allows us to learn a Mahalanobis metric with an objective which
is a more direct proxy for the stated goal (improvement of classification by kNN rule)
than previously proposed similarity learning methods. Our learning algorithm is sim-
ple yet efficient, converging on all the data sets we have experimented with in run-times
significantly lesser or comparable than other methods, such as LMNN and MLR.

We used the Frobenius norm as the choice of the regularizer in our experiments. This
was motivated by the intuition of wanting to do capacity control but without biasing our
model towards any particular form. In our experiments, we have also experiments with
other schemes for regularization such as using the trace norm of W and the shrinkage
towards Euclidean distance, ∥W − I∥2

F, but found both to be inferior to ∥W∥2
F. Our

suspicion for such behavior is that often the optimal matrix that parameterizes the
distance function i.e. W corresponds to a highly anisotropic scaling of data dimensions,
and thus an initial bias towards I may be unhealthy.

The results in this section of the dissertation are restricted to learning the Mahalanobis
metric, which is an appealing choice for a number of reasons. In particular, learning such
metrics is equivalent to learning linear embedding of the data, allowing very efficient
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k = 3

Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

d 170 256 16 800 800 800 800

N 7797 9298 20000 157 958 295 1123

C 26 10 26 10 10 10 10

Euclidean - - - 26.71 ±11 37.26 ±2.3 23.39 ±5.3 58.42 ±3.7

LMNN - - - 23.53 ±7.6 26.30 ±1.6 11.53 ±6.7 43.72 ±3.5

GB-LMNN - - - 23.53 ±7.6 26.30 ±1.6 11.53 ±6.7 43.54 ±3.5

MLR - - - 24.78 ±14.2 32.35 ±4.5 14.58 ±3.5 52.18 ±2.0

ITML - - - 22.22 ±9.9 32.67 ±3.2 12.88 ±6.1 51.74 ±4.2

NCA - - - 29.84 ±8.1 33.72 ±2.1 21.36 ±4.9 54.50 ±2.0

ours - - - 21.63 ±6.1 28.08 ±2.4 14.58 ±5.4 45.33 ±2.8

k = 7

Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean - - - 32.46 ±8.3 38.2 ±1.6 27.46 ±5.9 56.9 ±2.9

LMNN - - - 26.11 ±8.6 25.47 ±1.6 10.51 ±4.9 41.77 ±4.0

GB-LMNN - - - 25.48 ±10.9 25.36 ±1.7 10.51 ±4.9 41.59 ±3.6

MLR - - - 27.94 ±9.0 30.16 ±3.0 16.95 ±3.4 49.51 ±3.6

ITML - - - 22.28 ±8.8 32.88 ±3.3 13.90 ±6.3 50.59 ±4.7

NCA - - - 37.48 ±8.2 33.09 ±1.9 23.39 ±5.3 51.74 ±2.6

ours - - - 25.65 ±7.1 27.24 ±2.7 17.29 ±5.0 44.62 ±2.6

k = 11

Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean - - - 35.02 ±8.9 37.57 ±2.3 30.51 ±4.8 56.55 ±2.4

LMNN - - - 49.64 ±5.7 24.84 ±2.1 10.17 ±3.8 43.19 ±2.7

GB-LMNN - - - 43.89 ±5.6 25.16 ±2.0 10.17 ±3.8 43.10 ±3.1

MLR - - - 28.63 ±7.7 30.48 ±2.4 17.63 ±5.3 48.18 ±3.8

ITML - - - 24.82 ±5.1 31.10 ±2.6 15.25 ±6.3 50.32 ±3.9

NCA - - - 41.37 ±4.7 32.88 ±1.5 24.07 ±8.4 51.20 ±3.9

ours - - - 31.79 ±7.2 28.49 ±2.8 17.65 ±3.5 45.95 ±4.8

Table 3.3: kNN error,for k=3, 7 and 11. Mean and standard deviation are shown for data sets
on which 5-fold partition was used. These experiments were done after histogram
normalization. Best performing methods are shown in bold. Note that the only non-
linear metric learning method in the above is GB-LMNN

methods for metric search. As mentioned in section 3.2, we can consider more general
notions of distance:

DW (x, xi) = ∥Φ(x;W)− Φ(xi;W)∥2
2
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k = 3

Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

d 170 256 16 800 800 800 800

N 7797 9298 20000 157 958 295 1123

C 26 10 26 10 10 10 10

Euclidean 8.98 5.03 4.31 ±0.2 58.01 ±5.0 56.89 ±2.4 40.34 ±4.2 74.89 ±3.2

LMNN 4.17 5.38 3.26 ±0.1 23.53 ±5.6 28.08 ±2.2 11.19 ±5.6 44.97 ±2.6

GB-LMNN 3.72 5.03 2.50 ±0.2 23.53 ±5.6 28.08 ±2.2 11.53 ±5.5 44.70 ±2.4

MLR 17.32 8.42 45.70 ±18.7 35.69 ±7.6 23.40 ±1.7 20 ±4.6 47.11 ±1.7

ITML 6.86 4.78 4.35 ±0.2 24.82 ±10.9 34.77 ±4.7 12.20 ±4.1 53.97 ±3.2

NCA 5.07 5.18 4.39 ±1.1 24.19 ±5.8 29.54 ±1.4 12.88 ±4.9 46.84 ±2.0

ours 4.11 5.13 2.24 ±0.1 21.01 ±4.1 26.20 ±2.6 13.56 ±4.6 44.54 ±2.9

k = 7

Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean 6.93 5.08 4.69 ±0.2 60.46 ±5.2 59.07 ±4.5 43.05 ±3.7 72.3 ±3.3

LMNN 4.04 5.28 3.53 ±0.2 24.15 ±9.0 28.19 ±2.8 13.56 ±4.5 43.90 ±2.4

GB-LMNN 3.72 5.03 2.32 ±0.2 24.80 ±8.1 28.29 ±3.1 13.14 ±5.8 43.54 ±2.2

MLR 23.28 8.12 33.61 ±16.8 38.17 ±10.9 23.79 ±3.9 20.34 ±2.9 45.60 ±4.8

ITML 5.90 5.23 4.93 ±0.5 23.57 ±9.6 32.46 ±3.2 11.19 ±5.7 52.63 ±3.3

NCA 5.52 4.98 5.06 ±1.1 37.58 ±5.7 31.01 ±2.0 16.81 ±5.9 43.90 ±2.4

ours 4.07 4.93 2.49 ±0.1 29.94 ±7.6 26.10 ±2.1 13.24 ±3.1 42.83 ±3.1

k = 11

Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean 7.95 5.68 5.26 ±0.2 61.71 ±6.4 61.48 ±3.7 49.15 ±3.9 73.1 ±3.6

LMNN 3.85 5.73 4.09 ±0.2 49.6 ±5.5 27.04 ±1.8 14.58 ±4.6 44.61 ±1.3

GB-LMNN 3.98 6.33 2.96 ±0.1 45.18 ±10.5 27.25 ±2.2 14.58 ±4.6 45.55 ±6.9

MLR 33.61 10.26 35.50 ±16.5 34.40 ±8.2 24.21 ±3.4 18.31 ±5.3 46.04 ±1.9

ITML 7.18 5.88 5.35 ±0.3 28.04 ±7.7 33.09 ±2.1 12.54 ±5.4 51.91 ±3.3

NCA 5.52 5.03 5.8 ±1.3 45.18 ±6.5 32.47 ±1.7 19.32 ±7.5 44.17 ±2.6

ours 3.87 4.98 2.8 ±0.2 33.00 ±5.7 26.10 ±2.7 14.24 ±6.5 45.76 ±2.9

Table 3.4: kNN error,for k=3, 7 and 11. No feature scaling was applied in these experiments.
Mean and standard deviation are shown for data sets on which 5-fold partition was
used. Best performing methods are shown in bold. Note that the only non-linear met-
ric learning method in the above is GB-LMNN.

Where Φ(x;W) is a map (possibly non-linear), x → Φ(x), parameterized by W .

In such cases, learning S when the map is non-linear can be seen as optimizing for
a kernel with discriminative objective of improving kNN performance. Such a model
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would be more expressive, and using methods for automatic differentiation should be
straightforward to optimize.

In the next chapter of this disseration, we explore some extensions of this approach.
First, we consider the case when the query and database point are mapped to different
subspaces. This was inspired by the work of Neyshabur et al. on asymmetric hashing
[203] [204]. Next, we leverage the objective for the discriminative learning of Hamming
distance, which gives us compact binary representations for fast retrieval. Lastly, we
modify the inference procedures to make the approach amenable to learn suitable met-
rics for the (harder) case of k-NN regression.





4
E X T E N S I O N S

Outline

The main contribution of the Neighborhood Gerrymandering method was primarily in its
loss and inference procedures; its use for Mahalanobis metric learning being just one use
case. In this chapter this wider applicability is demonstrated in three different settings:
Asymmetric similarity learning, metric learning when the labels are continuous and
finally learning compact binary codes that are similarity sensitive in Hamming space.

In the previous chapter, the problem of metric learning for k-NN classification was for-
mulated as a large margin structured prediction problem, with the choice of neighbors
represented by discrete latent variables. Efficient algorithms for exact inference and
loss-augmented inference in this model (dubbed as neighborhood gerrymandering) were
provided, and it was argued; with supporting experiments, that this formulation gave a
more direct proxy for nearest neighbor classification as compared to prior art in metric
learning. It was also noted that while the method was only tested in the case of learning
Mahalanobis distances for points living in an explicit feature space, the methodology
was more generally applicable.

To impress upon this point, we again consider the distance computation that might be
used:

DW (x, xi) = ∥Φ(x;W)− Φ(xi;W)∥2
2 (4.1)

Note that there is considerable freedom in choosing the map Φ(x;W), and while the
experiments reported in Chapter 3 were specifically for the Mahalanobis distance i.e.
x → Lx such that LTL = W ⪰ 0, the map x → Φ(x;W) could be non-linear, with
W representing the parameters of a deep neural network. With the same structured
formulation, the procedures for inference and loss-augmented inference would remain
the same, and the optimization would involve training a Siamese-like network while
optimizing the gerrymandering objective. This direction was explored by dissertation
author, however, in this chapter we present work on three somewhat different directions.

1 Asymmetric Similarity Computation: Note that in equation 4.1, the query point
x and the database point xi involve the same transformation parameterized by W .
But it is clear that this need not be the case, indeed, we might modify 4.1 to the
following form:

DW (x, xi) = ∥Φ(x;W)− Φ′(xi;W ′)∥2
2 (4.2)

while ensuring that Φ and Φ′ maps to the same metric space i.e. Φ, Φ′ : Rd → Rp.
In particular, we work with linear transformations: we transform the query point
as x → Ux, and the database point as x → Vx, with U, V ∈ Rd×d. This approach,
its motivation and empirical validation is discussed in section 4.1.
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2 Similarity Computation in Hamming Space: As discussed in chapter 2, near-
est neighbor methods are limited by two factors: first, the choice of the metric
defining “nearest”, and second, efficient indexing facilitating fast retrieval from
large datasets. In chapter 3, as well as in sections 4.1 and 4.3, we only focus on
the former. The latter, however, is important for the success of nearest neighbor
methods as well. This is often done by generating compact binary codes for the
data in either a supervised or unsupervised fashion. In section 4.2 we discuss an
approach that generates binary codes while optimizing for the nearest neighbor
performance in Hamming space using the gerrymandering objective. In particu-
lar, Φ : Rd → H, where H is the Hamming space, containing 2c binary codes of
length c. The Hamming space is endowed with a metric, the Hamming distance,
which implies that with a good choice of Φ, we can use the same inference proce-
dures as in chapter 3 to optimize for binary codes such that the nearest neighbor
classification performance in Hamming space is improved.

3 Metric Learning with Continuous Labels: In preceding discussions we have
worked with an instance space (X , d), which is a metric space, and a discrete
label space Y ∈ Z+. We assume an unknown, smooth function f : X → Y , and
try to optimize for the metric such that accuracy of the k-nearest neighbor clas-
sifier is improved. We now change tack and work with the case when the labels
are not discrete i.e. Y ∈ R. Therefore, the problem becomes that of optimizing
for a metric such that k-nearest neighbor regression performance improves. This
problem is also somewhat different than the previous two in that the inference
and loss-augmented inference procedures, which worked for discrete labels, are
no longer directly applicable. Thus we need to suitably modify them in order to
make inference tractable. This approach is discussed further in section 4.3.

In the following three sections, we develop the ideas outlined above in detail.

4.1 asymmetric metric learning

Recall that for some W ⪰ 0, we could factorize it as W = LTL. Thus, the squared
distance may be written as:

DW(x, xi) = (x − xi)
TW(x − xi) = ∥Lx − Lxi∥2

2 = (Lx − Lxi)
T(Lx − Lxi) (4.3)

We can thus think of the metric learning problem as learning the same projection matrix
L for both the query (denoted x) and the database points (denoted xi). In this section,
we instead consider the following alternative formulation instead:

DW(x, xi) = ∥Ux − Vxi∥2
2 = (Ux − Vxi)

T(Ux − Vxi) (4.4)

In this formulation, all the points are not subject to the same global transformation:
the query and the database points are (linearly) projected separately, thus making the
distance computation asymmetric.

The above (Eq. 4.4) may be rewritten as follows:
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DW(x, xi) =
[
x xi

]  UTU −UTV

−VTU VTV

 x

xi

 (4.5)

Therefore, the problem of learning U and V as specified in the similarity computation
of 4.4 is equivalent to learning a matrix W ∈ R2d×2d such that W ⪰ 0, with

W =

 UTU −UTV

−VTU VTV


We will return to the formulation of the metric learning problem in this setting in the
next section. But before doing so, it perhaps might be pertinent to point out the motiva-
tion for this approach.

The idea of subjecting the query and database points to different projections was in-
spired by work on hashing [203] [204], and was explored by the dissertation author
[261] with the first author of [203][204], immediately after the publication of [262]. The
main (and somewhat counterintuitive) message of [204] was the following: Usually, the
similarity S(x, xi) for query point x and database point xi, is approximated by the Ham-
ming distance between the outputs of the same hash function f (x) and f (xi), for some
f ∈ {±1}k. Now, instead of using the same hash function for both the query and
database points, suppose two distinct functions f (x) and g(xi) were used instead, then,
even in cases where the target similarity happens to be symmetric, this asymmetry in
the similarity computation affords representational advantages and reduces code length.
Thus a natural question to consider was to see if asymmetry offered any advantages in
the case of discriminative metric learning as well. With this brief background on the mo-
tivation, we now proceed to formulate the problem using the gerrymandering formalism
described in the previous chapter.

4.1.1 Formulation

Coming back to the distance computation in equations 4.4 and 4.5: given U, V ∈ Rd×d,
for any h ⊂ X with |h| = k, we can define the similarity between x and h in direct
analogy with that in the previous chapter:

SU,V(x, h) = − ∑
xi∈h

(Ux − Vxi)
T(Ux − Vxi) (4.6)

Likewise, we can use the above measure of similarity to define the following surrogate
loss for k-NN classification:

L(x, y, {U, V}) = max
h

[SU,V(x, h) + ∆(y, h)]− max
h:∆(y,h)=0

SU,V(x, h) (4.7)

Given the loss formulation, we are now left with an appropriate penalty for capacity
control. While there are many options to consider, a natural choice is to penalize for the
Frobenius norm of the full matrix W. The objective then becomes:

min
U,V

∥W∥F + C ∑
i

L(xi, yi, {U, V}) (4.8)
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The derivatives of the loss and the regularizer with respect to U (query gradient) and V
(database gradient) are worked out to be:

∂SU,V(x, h)
∂U

= −2

(
∑

xi∈h
U(xxT)− (Vxi)xT

)
(4.9)

∂SU,V(x, h)
∂V

= −2

(
∑

xi∈h
V(xixT

i )− (Ux)xT
i

)
(4.10)

∂∥W∥F

∂U
= 2(UUT)U + 4(VVT)U (4.11)

∂∥W∥F

∂V
= 2(VVT)V + 4(UUT)V (4.12)

Other possibly well motivated regularizers (that were also tried during experimentation)
are ∥UTU∥F or ∥U∥F in the update equation for U and ∥VTV∥F or ∥V∥F in the update
equation for V.

4.1.2 Optimization

With all the machinery stated and out of the way, we are finally in a position to write
how an iteration of the learning algorithm proceeds. Each iteration t of the algorithm
consists of three steps:

a. Targeted inference of h∗i for each sample xi:

h∗i = argmax
h:∆(yi ,h)=0

SU(t),V(t)(xi, h) (4.13)

This can be done by algorithm 2 in time O(N log N), but with the slight modifica-
tion of using equation 4.6 for the similarity computation instead.

b. Loss augmented inference of ĥi for each sample xi:

ĥi = argmax h
[
SU(t),V(t)(xi, h) + ∆(yi, h)

]
(4.14)

This can be done by algorithm 3, again by using 4.6 for the similarity instead.

c. Gradient updates for U and V.

U(t+1) = U(t) − η(t)

[
∂SU,V(x, ĥi)

∂U
−

∂SU,V(x, h∗i )
∂U

+ 2(UUT)U + 4(VVT)U

]

V(t+1) = V(t) − η(t)

[
∂SU,V(x, ĥi)

∂V
−

∂SU,V(x, h∗i )
∂V

+ 2(VVT)V + 4(UUT)V

]
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4.1.3 Experiments and Conclusion

The experimental setup is the same as in 3.5: We consider the same datasets, replicate
the protocol in [129], consider the same test train splits, cross validation procedure and
report k-NN errors for k = 3, 7, 11 for different methods on exactly the same folds.
However, we do not repeat the experiments for different feature normalizations other
than z-scoring, as they were consistently found to not help. This was also reflected in
the results reported in 3.5. Therefore the numbers reported in 4.1 are identical to that in
3.1, except for the last column.

The only difference as compared to 3.5 is that the initialization using ReliefF [134] was
done such that U and V were initialized to the same diagonal matrix; with the diagonal
elements being the square-root of the weights obtained by using ReliefF. The experi-
ments show no clear trend, although one thing is clear: there is marginal improvement
over [262], and at least the results obtained by using the asymmetric distance as consis-
tently better than the other methods in the competition. These results demonstrate that
using this asymmetric similarity metric in conjunction with the gerrymandering formula-
tion did slightly better than the case where the distance computation was symmetric.

4.2 hamming distance metric learning

As discussed earlier, performance of nearest neighbor classification methods are often
limited by two factors:

1 Computational cost of searching for nearest neighbors in a large database.

2 The choice of the underlying metric that defines “nearest”.

In preceding discussions in this dissertation, we have exclusively focused on address-
ing (2): the choice of metric. In this chapter we turn our attention to (1), while still
maintaining the flavor of solutions that were used to address (2).

The cost searching for nearest neighbors is usually addressed by efficient indexing and
searching for approximate nearest neighbors instead (see [3, 19, 61, 117, 157] and ref-
erences therein). The motivation for some such methods is simple: Usually for some
task, approximate nearest neighbors rather than exact nearest neighbors should be good
enough, assuming the data is well behaved. Relaxing the requirement for exact nearest
neighbors can allow for sub-linear time search, which can be substantial for extremely
large dataset sizes.

Yet another (but related to the above) approach is instead searching in Hamming space.
That is, the data is projected onto a (potentially) lower dimensional Hamming space,
where fast exact or approximate nearest neighbor search might be carried out. Needless
to say, the embeddings generated must reflect some properties of the data. To this end,
the original work on Locality Sensitive Hashing [61, 117], the codes were found using
random projections, such that two points in the Hamming space were likely to be close
if they were close in the original feature space. It has been observed that while random
projections generate codes that are faithful to the pairwise distance, the code lengths
can become prohibitively large.
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k = 3

Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

d 170 256 16 800 800 800 800

N 7797 9298 20000 157 958 295 1123

C 26 10 26 10 10 10 10

Euclidean 8.66 6.18 4.79 ±0.2 75.20 ±3.0 60.13 ±1.9 56.27 ±2.5 80.5 ±4.6

LMNN [280] 4.43 5.48 3.26 ±0.1 24.17 ±4.5 26.72 ±2.1 15.59 ±2.2 46.93 ±3.9

GB-LMNN [129] 4.13 5.48 2.92 ±0.1 21.65 ±4.8 26.72 ±2.1 13.56 ±1.9 46.11 ±3.9

MLR [184] 6.61 8.27 14.25 ±5.8 36.93 ±2.6 24.01 ±1.8 23.05 ±2.8 46.76 ±3.4

ITML [63] 7.89 5.78 4.97 ±0.2 19.07 ±4.9 33.83 ±3.3 13.22 ±4.6 48.78 ±4.5

1-NCA [94] 6.16 5.23 4.71 ±2.2 31.90 ±4.9 30.27 ±1.3 16.27 ±1.5 46.66 ±1.8

k-NCA 4.45 5.18 3.13 ±0.4 21.13 ±4.3 24.31 ±2.3 13.19 ±1.3 44.56 ±1.7

MLNG [262] 4.87 5.18 2.32 ±0.1 17.18 ±4.7 21.34 ±2.5 10.85 ±3.1 43.37 ±2.4

Asym-MLNG 4.65 5.17 2.39 ±0.1 19.01 ±3.6 23.45 ±1.9 10.53 ±4.7 43.6 ±2.1

k = 7

Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean 7.44 6.08 5.40 ±0.3 76.45 ±6.2 62.21 ±2.2 57.29 ±6.3 80.76 ±3.7

LMNN [280] 3.78 4.9 3.58 ±0.2 25.44 ±4.3 29.23 ±2.0 14.58 ±2.2 46.75 ±2.9

GB-LMNN [129] 3.54 4.9 2.66 ±0.1 25.44 ±4.3 29.12 ±2.1 12.45 ±4.6 46.17 ±2.8

MLR [184] 5.64 8.27 19.92 ±6.4 33.73 ±5.5 23.17 ±2.1 18.98 ±2.9 46.85 ±4.1

ITML [63] 7.57 5.68 5.37 ±0.5 22.32 ±2.5 31.42 ±1.9 10.85 ±3.1 51.74 ±2.8

1-NCA [94] 6.09 5.83 5.28 ±2.5 36.94 ±2.6 29.22 ±2.7 22.03 ±6.5 45.50 ±3.0

k-NCA 4.13 5.1 3.15 ±0.2 22.78 ±3.1 23.11 ±1.9 13.04 ±2.7 43.92 ±3.1

MLNG [262] 4.61 4.9 2.54 ±0.1 21.61 ±5.9 22.44 ±1.3 11.19 ±3.3 41.61 ±2.6

Asym-MLNG 4.63 4.9 2.34 ±0.1 23.65 ±3.9 23.84 ±2.8 11.4 ±2.3 41.35 ±2.2

k = 11

Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean 8.02 6.88 5.89 ±0.4 73.87 ±2.8 64.61 ±4.2 59.66 ±5.5 81.39 ±4.2

LMNN [280] 3.72 4.78 4.09 ±0.1 23.64 ±3.4 30.12 ±2.9 13.90 ±2.2 49.06 ±2.3

GB-LMNN [129] 3.98 4.78 2.86 ±0.2 23.64 ±3.4 30.07 ±3.0 13.90 ±1.0 49.15 ±2.8

MLR [184] 5.71 11.11 15.54 ±6.8 36.25 ±13.1 24.32 ±3.8 17.97 ±4.1 44.97 ±2.6

ITML [63] 7.77 6.63 6.52 ±0.8 22.28 ±3.1 30.48 ±1.4 11.86 ±5.6 50.76 ±1.9

1-NCA [94] 5.90 5.73 6.04 ±2.8 40.06 ±6.0 30.69 ±2.9 26.44 ±6.3 46.48 ±4.0

k-NCA 4.17 4.81 3.87 ±0.6 23.65 ±4.1 25.67 ±2.1 11.42 ±4.0 43.8 ±3.1

MLNG [262] 4.11 4.98 3.05 ±0.1 22.28 ±4.9 24.11 ±3.2 11.19 ±4.4 40.76 ±1.8

Asym-MLNG 4.0 4.81 2.4 ±0.1 23.78 ±4.3 24.11 ±3.9 11.1 ±3.7 43.7 ±2.7

Table 4.1: kNN errors for k=3, 7 and 11 (asymmetric metric learning versus other methods).
Features were scaled by z-scoring.
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Moreover, such approaches are completely label oblivious: the codes generated do not
reflect any semantic structure, and often the purpose of nearest neighbor search is some
downstream task-specific application (like classification). The approach to instead ma-
chine learn the binary codes such that they are similarity sensitive to the underlying
semantic structure was taken in the pioneering works of Shakhnarovich [234], the Se-
mantic Hashing or supermarket search of Salakhutdinov and Hinton [227], and Weiss et
al. [282]. To motivate machine learning of binary codes, consider we have to search an
image from a large database which is similar to a given query image. We can then ask
a number of binary questions to make search easier: Is the query a color image or a
grayscale image? Is there is a dog in the query or not? Does the query represent an
indoor scene or an outdoor scene and so on. We can think of the codes as encoding a
set of binary choices that are generated with the explicit goal to reflect label structure. If
the underlying task is k-NN classification, we would want the code to be able to reflect
the class of the image.

Following [227, 234, 282], in the last decade there has been an explosion in research in
this area of learning compact, similarity-sensitive binary codes, which is nearly impos-
sible to review. In any case, for the purpose of this chapter, it is not necessary either. For
some prominent works we direct the reader to [96, 156, 207, 276] and the references
therein, or more recent works that cite these.

To motivate our approach to the problem of learning binary codes that are similarity sen-
sitive, we first hark back to work discussed in this dissertation thus far: We considered
methods for learning the underlying metric or notion of similarity, this was achieved
by projecting the data into a real space such that the underlying nearest neighbor clas-
sification accuracy in this space was improved. Indeed, the loss function employed was
such that it was a more direct proxy to the k-NN classification error.

In this section, we suitably modify the framework proposed earlier for learning binary
codes such that nearness in the Hamming space is a better proxy for classification ac-
curacy. In other words, we learn a mapping from points in Rd to H in such a way that
the accuracy of the k-NN classifier in the Hamming space is improved, by using the
gerrymandering loss. Our main competitor in this regard is the method of Nourouzi
et al. [208], also inspired by Latent Structural SVMs, where a triplet loss was used to
learn a Hamming distance between two points that is reflective of similarity. As already
noted, the triplets are assumed to be set statically as an input to the algorithm, and the
optimization focuses on the distance ordering rather than accuracy of classification. We
use a loss function akin to that proposed in chapter 3, but now adapted for the case
of optimizing for the similarity directly in Hamming space. The gerrymandering loss
being a more direct proxy for k-NN classification performance, can perhaps aid in the
learning of compact binary codes that directly reflect nearest neighbor accuracy, and
thus is perhaps better motivated than the approach of [208]. In the next section, we
formulate the problem and our approach to attack it.

4.2.1 Formulation

We are interested in the problem of discriminative learning of Hamming distance be-
tween points. To this end, we first consider the Hamming distance between asymmetric
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linear binary hashes with code length c: Once we have used this to introduce the frame-
work, we will consider other variants, such as using non-linear binary hashes as well as
symmetric hashes.

DU,V(x, xi) =
c

∑
j=1

1sgn(Ujx) ̸=sgn(Vjxi) (4.15)

where U, V ∈ Rc∗d are the parameters of the model. For any h ∈ X, we define the
distance score of h w.r.t. a point x as:

SU,V(x, h) = hc − ∑
xi∈h

DU,V(x, xi) =

〈
sgn(Ux), ∑

xi∈h
sgn(Vxi)

〉
(4.16)

Therefore, the set of k nearest neighbors of x in X is:

hU,V(x) = argmax
|h|=k

SU,V(x, h) (4.17)

We will assume that k is known. Given any set h, we can predict the labels of x by the
majority vote among members of h. We use a surrogate loss similar to

L(x, y, {U, V}) = max
h

[SU,V(x, h) + ∆(y, h)]− max
h:∆(y,h)=0

SU,V(x, h) (4.18)

4.2.2 Optimization

Each iteration t of the algorithm consists of four steps:

a. Targeted inference of h∗i for each sample xi:

h∗i = argmax
h:∆(yi ,h)=0

SU(t),V(t)(xi, h) (4.19)

b. Loss augmented inference of ĥi for each sample xi:

ĥi = argmax
h

[
SU(t),V(t)(xi, h) + ∆(yi, h)

]
(4.20)

c. Gradient updates for U and V. Let b be the mini batch at iteration t. Since the sign
function is not differentiable, we can approximate it by another function f . In this
case, the updates will be

U(t+1) = U(t) − η ∑
xi∈b

 f ′(Uxi) ◦

 ∑
xj∈ĥi

sgn(Vxj)− ∑
xj∈h∗i

sgn(Vxj)

 x⊤i

V(t+1) = V(t) − η ∑
xi∈b

 ∑
xj∈ĥi

(
sgn(Uxi) ◦ f ′(Vxj)

)
x⊤j − ∑

xj∈h∗i

(
sgn(Uxi) ◦ f ′(Vxj)

)
x⊤j


where possible options for the function f are:

a) f (x) = x and therefore f ′(x) = 1.
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b) f (x) = tanh(x) and therefore f ′(x) = 1 − tanh2(x)

d. Normalization:

U(t+1) =
U(t+1)∥∥U(t+1)

∥∥
F

(4.21)

V(t+1) =
V(t+1)∥∥V(t+1)

∥∥
F

(4.22)

4.2.3 Symmetric Variant

We have (with W ∈ Rc∗d):

SW(x, h) = hc − ∑
xi∈h

DW(x, xi) =

〈
sgn(Wx), ∑

xi∈h
sgn(Wxi)

〉
(4.23)

Gradient:

∂SW(x, h)
∂W

=

[(
∑

xi∈h
sgn(Wxi)

)
◦ f ′(Wx)

]
x⊤ +

[
∑

xi∈h

(
sgn(Wx) ◦ f ′(Wxi)

)
x⊤i

]
(4.24)

We also add the following penalty to the objective function as suggested in [282]. This
encourages each bit, averaged over the training data, to be zero mean before quantiza-
tion

1
2
∥meanxsgn(Wx)∥2

2 (4.25)

Which adds the following term to the update of W

meanx

([
sgn(Wx) ◦ f ′(Wx)

]
x⊤
)

(4.26)

Note that we also add a term akin to 4.25 to the asymmetric variant of our algorithm in
the experiments with two additional terms suitably added in the gradient updates of U
and V.

Before we begin to describe our experiments, we first mention how we carried out
nearest neighbor search in Hamming space.

4.2.4 Distance Computation in Hamming Space

When we consider a query point x ∈ H and look for nearest neighbors in the database,
there is a high probability of a tie, especially when code lengths are shorter. We ex-
perimented with several options for tie breaking, but eventually settled on using what
is referred to in the literature as asymmetric hamming distance. Note that this nomencla-
ture is rather unfortunate given our formulation of Hamming metric learning that uses
different hash functions for the query and the database points. This notion of the asym-
metric hamming distance used in the literature (see [72, 98, 208]) for retrieving points



40 extensions

in Hamming space is quite different. We use the approach used by [208] as we found
it to consistently give superior results. For a given query x ∈ Rd, we do not binarize it
while searching for neighbors in the database. The database points however live in H.
The distance between the query and the database point is given by:

AsymH(x, xi; s) =
1
4
∥xi − tanh(Diag(s)x)∥2

2

As also observed by [208], the distance computation is relatively insensitive to the choice
of scaling parameters s ∈ Rd. However, after some experimentation, we set the scale
parameters to be such that the real valued projection of the query vector has an average
absolute value of 0.4.

4.2.5 Experiments and Conclusion

To test the efficacy of our method, we compare it directly with the experiments of [208]
on MNIST. For training, we initialize U and V (for the asymmetric case) and W (for the
symmetric case) as random gaussian matrices with mean zero and standard deviation
of 1. We stop training when the running average of the surrogate loss over the last epoch
does not decrease substantially, or when the maximum number of epochs is reached. We
use a decaying learning rate schedule as η(t) = 1

t , and set the momentum parameter
to 0.9. For training, to compare with the approach [208], we fix k to be 3 and 30 while
training our system. Finally, we set aside 10,000 points from the MNIST training set for
the purpose of tuning the regularization constant.

We compare results that report the kNN error, and compare directly with the results of
[208], as well as results reported using baseline methods that do not use binary codes
to find nearest neighbors.

We observe the following clear trends: The linear hash function used in the gerryman-
dering framework, both in the symmetric and asymmetric case performs worse than the
linear setting in [208]. We also observe that the performance improves in our case when
the code length increases, almost equaling the performance of the linear setting in [208]
at higher code lengths. It is also noticeable that the asymmetric variant consistently
gives better performance than the symmetric variant, suggesting that the asymmetry
indeed helps in learning better codes. Next, in the two-layer setting: The asymmetric
variant of the Gerrymandering loss consistently performs better than all the settings ex-
plored in [208], while the symmetric variant is comparable to [208], but usually slightly
worse. Another interesting observation is that the gerrymandering loss in the two layer
setting gives performance roughly similar as the code length increases, as contrasted to
[208] where it steadily improves. This shows that the loss is able to learn more compact
and discriminative binary codes.

In conclusion, in this section, we have presented a novel method for the discriminative
learning of Hamming distance, and on experiments demonstrated that it works better
than the competition in this space. One drawback of our method as compared to [208] is
that the inference procedures are quite expensive to solve exactly, making it quite slow.
We leave the development of approximate inference procedures for future work, which
will enable to scale our method to much larger dataset sizes.
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Hash Function/Loss k 32 bits 64 bits 128 bits

Linear/pairwise hinge 3 4.3 2.78 2.46

Linear/triplet 3 3.88 2.90 2.51

Two-Layer (tanh)/pairwise 30 1.50 1.36 1.35

Two-Layer (tanh)/triplet 30 1.45 1.29 1.20

Linear/MLNG (SH) 3 5.7 3.6 2.7

tanh/MLNG (SH) 30 2.3 2.17 1.91

Two-Layer (tanh)/MLNG (SH) 30 1.39 1.31 1.28

Linear/MLNG (ASH) 3 4.9 3.2 2.49

tanh/MLNG (ASH) 30 2.15 2.11 1.76

Two-Layer (tanh)/MLNG (ASH) 30 1.2 1.18 1.25

Table 4.2: k NN classification errors on MNIST using Hamming distance metric learning by ger-
rmandering, compared to the approach of [208]. All results reported use the distance
computation explicated in Section 4.2.4. MLNG refers to the Gerrymandering loss, SH
refers to the use of symmetric hashes, while ASH to asymmetric hashes.

4.3 metric learning for k-nn regression

To motivate this part of this chapter, we first review the basic setting in kernel regression,
and use it to motivate the work of Weinberger and Tesauro [281]. We then use this to
place our contribution in contrast.

Recall the standard regression setting: We have an unknown, smooth f : Rd → R,
that we have to estimate based on labeled data {(x1, y1), (x2, y2), . . . , (xN , yN)}, with
xi ∈ Rd and yi ∈ R. The labels are a noisy version of the actual function outputs
i.e. yi = f (xi) + ϵ, where ϵ is unknown. The task then is to use this sample to get
an estimate f̂ of f that minimizes some loss function. In the non-parametric setting,
a standard regression technique is kernel regression that predicts an output ŷi for an
input xi based on a weighted average of some of the inputs that are selected as its
neighbors, the weighing is done as a function of the distance. This is given as below:

ŷi =
N

∑
j ̸=i

w(xi, xj)yj (4.27)

To define the choice of weights w(xi, xj), we first define a kernel function K : R → R

which satisfies the following conditions:∫
K(x)dx = 1 and K(x) = K(−x)

While there is a vast literature on the choice of kernels, we content ourselves by defining
only the Gaussian kernel, which suffices for the purpose of our discussion:

K(x) = exp
(−x2

2σ2

)
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Then, for any pair of points xi and xj ∈ Rd, we can define the kernel as:

K(xi, xj) = exp
(−∥xi − xj∥2

2

2σ2

)
We can then define the weights w(xi, xj) in equation 4.27 simply as:

w(xi, xj) =
K(xi, xj)

∑N
j ̸=i K(xi, xj)

More generally, we can write the kernel for some distance function d(xi, xj)

K(xi, xj) = exp
(−d(xi − xj)

2

2σ2

)
For our familiar parameterization of d as the Mahalanobis distance i.e. d(xi, xj) =√
(xi − xj)W(xi − xj) with W ⪰ 0 and W = LTL, the kernel might be written as:

K(xi, xj) = exp
(−∥Lxi − Lxj∥

2σ2

)
(4.28)

Working with 4.28 and 4.27, optimizing for L to minimize the loss L = ∑N
i=1(yi − ŷi)

2 is
the main contribution of metric learning for kernel regression [281]. This work remains to
be the only major work in the literature that optimizes for the metric under a regression
objective. The authors in [281] consider a gaussian kernel, which facilitates computing
gradients with ease, and thus making optimization straightforward. In many scenarios,
we are interested in using k nearest neighbors, however, the problem of metric learning
in such a setting is not straightforward considering the combinatorial nature of the
problem, as well as taking into account the fact that defining sets of pairs of similar and
dissimilar points is no longer straightforward as was in the classification case (where we
could deem a pair of points to be similar if they belonged to the same class). The only
work that we are aware of that optimizes for a metric under a nearest neighbor based
regression objective is that of [130]. However, it works with a NCA [94] type objective,
minimizing the expected squared loss, and thus only working with a 1-NN regressor.
In the next section, we outline our method that attempts to bridge this gap and learns a
metric when the downstream task is k-NN regression.

4.3.1 Problem formulation and Optimization

In this section, we are interested in the problem of learning a Mahalanobis metric for
the case of k-NN regression rather than kernel regression. Note that in k-NN regression
4.27 only has a particular choice of weights, we consider the following choice: if xj is a
neighbor of xi, then w(xi, xj) =

1
k and 0 otherwise. Here, we show that with a suitable

modification of the approach proposed in 3, we can obtain an efficient metric learning
algorithm for the case of k-NN regression as well.

In order to describe the approach, we briefly state the setting again (which is similar
to 3). That is, suppose we are given N training examples X = {x1, . . . , xN} and their
outputs Y = [y1, . . . , yn]T, where xi ∈ Rd and yi ∈ R. For a subset h ⊂ X with |h| = k,
we can define its measure of similarity with a query point x as:
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SW(x, h) = − ∑
xj∈h

DW
(
x, xj

)
(4.29)

where

DW (x, xi) = (x − xi)
T W (x − xi) , (4.30)

Thus, we work with the same measure of similarity as in 3, but a departure from the
formulation occurs here as we move forward to state a reasonable objective. This is
because, in the case of regression, the outputs yi are no longer discrete, but real valued.
Therefore, unlike in 3, the loss ∆(y, h) may not necessarily be zero for any set h ⊂ X.
Note that, given h, the squared loss for a query point (x, y) is:

∆(y, h) =

(
y − 1

k ∑
xi∈h

yi

)2

(4.31)

Armed with the notion of similarity as well as the loss, we can make a first attempt to
define a loss for the task of metric learning for k-NN regression as follows. For some
γ > 0:

L(x, y, W) = max
h

[SW(x, h) + γ∆(y, h)]− max
h

[SW(x, h)− γ∆(y, h)] (4.32)

Adding the regularizer, this supplies us with the following objective

min
W

∥W∥F + C ∑
i

L(xi, yi, W) (4.33)

At first blush, the optimization for this objective is similar to the variants of the gerry-
mandering approach discussed earlier. That is,

Each iteration t of the algorithm consists of the following steps:

a. Targeted inference of h∗i for each sample xi:

h∗i = argmax
h

[SW(xi, h)− γ∆(yi, h)] (4.34)

b. Loss augmented inference of ĥi for each sample xi:

ĥi = argmax
h

[SW(xi, h) + γ∆(yi, h)] (4.35)

c. Gradient update for W.

However, for the loss defined in 4.31, this optimization is hard to solve exactly. Indeed,
we can make the following claim:

Claim 3. Given data X and corresponding labels Y, matrix W and query point xi, h ⊂ X with
|h| > 1 and γ > 0 the problem of finding h∗i and ĥi is NP Hard.
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While the proof of this claim is omitted, this can be shown by an appropriate reduction
to a modified version of the subset sum problem. We could resort to relaxations of the
above problem, and thus work with suitable approximation algorithms to optimize for
4.34 and 4.35. Instead, we work with the following simple modification to our loss:

∆̂(y, h) =
1
k ∑

xi∈h
(y − yi)

2 (4.36)

Then, we have the following modified inference problems:

h∗i = argmax
h

[
SW(xi, h)− γ∆̂(yi, h)

]
(4.37)

ĥi = argmax
h

[
SW(xi, h) + γ∆̂(yi, h)

]
(4.38)

Note that both of these problems are easy to solve: Fixing W and γ > 0, for each query
point (x, y), we simply need to sort the data in ascending order by the sum of their loss
and similarity to the query and then pick the top and bottom k points to be h∗i and ĥi
respectively.

Before proceeding to report experiments on this approach and compare it with [281], it
is instructive to see what the relation between the losses 4.31 and 4.36 is. This is made
explicit in the following claim.

Claim 4. ∆̂(y, h) upper bounds the loss ∆(y, h)

Proof. We have: ∆̂(y, h) =
1
k ∑

i∈h
(y − yi)

2

Expanding: ∆̂(y, h) =
1
k ∑

i∈h

(
y2 + y2

i − 2yyi
)
=

(
y2 +

1
k2 ∑

i∈h
y2

i ∑
i∈h

12 − 2y
k ∑

i∈h
yi

)
Now, using Cauchy Schwarz on the second term and rearranging, we have:

∆̂(y, h) ≥

y2 +

(
1
k ∑

i∈h
yi · 1

)2

− 2y
k ∑

i∈h
yi

 =

(
y − 1

k ∑
i∈h

yi

)2

or, ∆̂(y, h) ≥ ∆(y, h)

4.3.2 Alternate notions of h∗

The set h∗ may also be defined in other ways. We consider two such definitions here.
First uses the notion of an ϵ-insensitive loss (similar to the notion used in Support Vector
Regression [243]): We can define a set H where for a query (xi, yi)

Hi = {h|∆(yi, h) ≤ ϵ}

Then we may define h∗ as:

h∗ϵi = h∗i = arg max
h∈H

[SW(xi, h)] (4.39)

ϵ then becomes a hyper-parameter to be found by cross-validation.
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Yet another notion of h∗ may be defined as follows:

h∗Mi = h∗i = arg min
h

∆(yi, h) (4.40)

Note that using this definition makes the overall objective convex. The inference and
loss augmented procedures are straightforward for all these definitions.

4.3.3 Experiments

For the purpose of experimental evaluation of our approach, we make a direct compar-
ison to the experiments reported in [281] by working with the DELVE (Data for Evalu-
ating Learning in Valid Experiments) datasets 1. In particular we work with 16 datasets,
8 from the Kin family and 8 from Pumadyn family of datasets. The Kin datasets were
obtained from realistic simulations of a 8-link all robot arm, and consist of four datasets
having 8 dimensions and four 32 dimensional datasets. Likewise, the Pumadyn datasets
were obtained from the simulations of dynamics of a Puma 560 robot arm, and also
consist of four 8 dimensional and four 32 dimensional datasets. The various features
represent the torque, angular momentum, angular positions of the robotic arm, and the
output is a real number.

Each of these datasets have 8092 points. Following the protocol in [281], each dataset is
split into four disjoint training sets, each of size 1024 and one unique test set, also of
size 1024. For each training set we do a 5 fold cross validation for parameter tuning. In
the experiments reported here we use the following naming protocol: <NAME>−axy.
Where <NAME> is the name of the dataset. ’a’ denotes an integer that signifies the
dimensionality of the dataset. ’x’ takes on the character values of either’f’ or ’n’, where
’f’ denotes that the dataset is largely linear, while ’n’ denotes non-linearity. ’y’ takes on
character values of ’m’ or ’h’, where ’m’ denotes medium noise, while ’h’ denotes high
noise. Thus, for an example, the nomenclature Puma-32nh would imply we are referring
to a dataset from the Pumadyn family with 32 features, in which the regression target
is a non-linear function of the input and that the dataset has high noise.

For testing, we consider the following baselines: linear regression, a nearest neighbor
model in which the k is chosen over a range of values by cross-validation, a nearest
neighbor model in which the coordinates are weighted by ReliefF [134] and the appro-
priate value of k is chosen by cross validation, Gaussian process regression [283], the
MLKR approach of [281]. All the numbers reported are relative to a baseline method
that uses the mean of the training regression targets in case the squared error is mini-
mized (for more details on the protocol and the DELVE suite, we point the reader to the
manual [219]. For the approach in [281], we use code provided by the authors). In all
cases we minimize for the squared error.

For our approach, we work with two models: One in which the metric is learned by
optimizing for L (such that LTL = W) using the formulation implicit through equations
4.37 and 4.38, while initializing L = I. The second model is similar except that we
use the formulation described in 4.1, and initialize the matrices U and V as diagonal
matrices, where the diagonal carries the square root of the ReliefF coefficients after they

1 Available online at https://www.cs.toronto.edu/ delve/data/datasets.html

https://www.cs.toronto.edu/~delve/data/datasets.html
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Figure 4.1: Regression errors on the Kin datasets. (Here Lin stands for linear regression, Reli-
efF for kNN regression after feature weighing by ReliefF, GPR for Gaussian Process
Regression, MLKR for Metric Learning for Kernel Regression, MLNG-S for metric
learning by neighborhood gerrymandering for regression using symmetric similarity
computation, while MLNG-AS refers to the same method but with an asymmetric
notion of similarity)

are normalized to be between 0 and 1. For both these models we cross validate for the
batch size (from values 1, 3, 5, 11), the parameter γ (for values increasing logarithmically
from 0.00001 to 100), and the number of neighbors k (for values from 1, 3, 5, 7, 11, 21

and 31).
Figures 4.1 and 4.2 illustrate the results. On the ’linear’ datasets (marked with ’f’), a
recurring trend is that plain linear regression does quite well as compared to nearest
neighbors. Thus it is interesting to see that all three metric learning methods evaluated
here perform better than it. In the non-linear datasets on the other hand, all other meth-
ods other than the metric learning methods and Gaussian process regression perform
poorly. The main trend that we see in this set of experiments is that Metric Learning
for Kernel Regression [281] usually performs better than the symmetric variant of our
algorithm, while being consistently worse than the asymmetric variant with ReliefF ini-
tialization. In summary, Gaussian Process Regression and the asymmetric variant of
our algorithm consistently perform better, with our algorithm often performing slightly
better.

4.3.4 Conclusion of the Regression Experiments

In summary, in this section we proposed an approach for metric learning for k-NN Re-
gression. As noted earlier, literature on the topic is quite sparse, despite the fact that in
many settings having a good metric while the downstream task is kNN regression might
be desirable. In our experiments, we observed that the symmetric approach performs
better than most baselines while underperforming the approach of [281] and Gaus-
sian process regression, while the asymmetric approach performs at par with Gaussian
Process Regression, often out-performing it, while consistently outperforming the ap-
proach of [281]. Our algorithm has very simple and efficient inference procedures; with
the optimization for each dataset completing in a matter of a few minutes. Therefore
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Figure 4.2: Regression errors on the Puma datasets (Here Lin stands for linear regression, Reli-
efF for kNN regression after feature weighing by ReliefF, GPR for Gaussian Process
Regression, MLKR for Metric Learning for Kernel Regression, MLNG-S for metric
learning by neighborhood gerrymandering for regression using symmetric similarity
computation, while MLNG-AS refers to the same method but with an asymmetric
notion of similarity)

it is perhaps worthwhile to consider the problem of metric learning in the continuous
label setting in more detail, while also considering more applications where it could be
useful.

4.4 conclusion of part i and summary

The conclusion of the regression experiments also brings us to the conclusion of this
part of the dissertation. Below we summarize the main contributions made:

Summary of Part I

1 In Chapter 3, we presented an approach to metric learning that is more direct in
trying to optimize for the k-NN accuracy than methods previously proposed. The
approach formulates the problem of metric learning for k-NN classification as a
large margin structured prediction problem, with the choice of neighbors repre-
sented by discrete latent variables, making it natural to use machinery from latent
structural support vector machines to the task of metric learning. We also provided
exact procedures for inference and loss-augmented inference in this model, and
validated the approach by comparing to a range of Mahalanobis distance metric
learning methods.

2 In this chapter we explored the formalism explicated on in 3 in different settings.
In section 4.1, we explored an approach to similarity learning in which the simi-
larity computation is asymmetric: the query and database points are subjected to
different transformations. In section 4.2.4 we combined the approach of Chapter
3 and Section 4.1 to learn the Hamming distance such that it is a better proxy for
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k-NN classification performance. Lastly, in section 4.3, we presented an approach
to metric learning for k-NN regression that is consistently shown to perform better
than its main competitors.

Often, while doing k-NN classification and regression, we might be on a limited compu-
tational budget– we might not be able to optimize for a metric over a space of possible
metrics. However, we would still like to have access to a metric that is not completely
label agnostic, but can be estimated cheaply, as performance using simply the Euclidean
metric might be quite poor. Estimation of such a metric for improving k-NN classifica-
tion and regression performance is the focus of the next part of this dissertation.



Part II

S I N G L E PA S S M E T R I C E S T I M AT I O N
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M E T R I C E S T I M AT I O N V I A G R A D I E N T S

In the preceding part of this dissertation we proposed and worked with a more direct
approach to metric learning; direct in that it tries to optimize for the metric using a
differentiable loss that aims to be a more reasonable proxy for the underlying task:
k-NN classification or regression. In this part, we take another, if somewhat indirect
approach to the problem of identifying a good metric based only on gradient estimates
of the unknown classification or regression function f . While somewhat roundabout
from the perspective of the underlying task, this approach has the advantage that the
metric can be estimated by a single pass over the dataset, while affording significant
improvements in non-parametric regression and classification tasks. The rest of this
section is used to motivate the problem, as well as to stage ground for the following
two chapters which propose two variants of a gradient based metric estimator, which
despite their simplicity remain statistically consistent under fairly mild assumptions.

To begin, recall that in high dimensional classification and regression problems, the
task is to infer the unknown function f . We are given a set of observations (x, y)i, i =
1, 2, . . . n., with xi ∈ X ⊂ Rd and the labels yi are noisy versions of the function values
f (xi). We are interested in distance based (non-parametric) regression, which provides
our function estimate:

fn(x) =
n

∑
i=1

w(x, xi)yi

w(x, xi) depends on the distance ρ. Where ρ(x, x′) =
√
(x − x′)W(x − x′) and W ⪰ 0.

Note that, when W = I, ρ is the Euclidean distance.

The problem of estimating unknown f becomes significantly harder as d increases due
to the curse of dimensionality. To remedy this situation, several pre-processing techniques
are used, each of which rely on a suitable assumption about the data and/or about f .
For instance, a conceptually simple, yet often reasonable assumption that can be made
is that f might not vary equally along all coordinates of x. Letting f ′i = ∇ f Tei denote the
derivative along coordinate i, and ∥ f ′i ∥1,µ ≡ Ex∼µ f ′i (x), we can use the above distance
based estimator by setting ρ such that

Wi,j =

∥ f ′i ∥1,µ if i = j

0 if i ̸= j

This gradient weighting rescales the space such the ball Bρ contains more points relative
to the Euclidean ball B (figure 5.1 for an example in R2). This is the intuition pursued in
works such as [DBLP:conf/nips/KpotufeB12], [152] (which are also the inspiration for
what follows in this part of the dissertations), with an emphasis on deriving an efficient,
yet consistent estimator for the gradient. Using gradient weights for coordinate scaling
in this manner has strong theoretical grounding as is shown in these works, in that it
has the effect of reducing the regression variance, while keeping the bias in control.
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e1

e2

e1

e2

Figure 5.1: Left: Euclidean ball B which assigns equal importance to both directions e1 and e2.
Right: ball Bρ such that ∥ f ′1∥1,µ ≫ ∥ f ′2∥1,µ, giving its ellipsoidal shape. Relative to the
B; Bρ will have more mass in direction e2

While appealing in its simplicity, gradient weighing has an obvious drawback: the met-
ric only involves diagonal W. In general W ⪰ 0, need not be diagonal and may be
decomposed as W = VΣUT where U, V are orthogonal matrices. In such a case the data
would not only be rescaled but also rotated. This is illustrated in figure 5.2.

Using the above motivation to construct a covariance type matrix but only using gradi-
ents via an iterative algorithm (which involved taking the outer product of the gradients
∇ f (X) · ∇ f (X)⊤ and summing over all the points) was used by us to derive an opera-
tor, with the following property: If the function f does not vary along some direction
v ∈ Rd, then v, must lie in the nullspace of the operator. But we later discovered that
this operator was already known in the literature in a different context. To define things
clearly, put it in proper context and also outline our contributions, we first take a step
back and consider the motivation that we mentioned earlier. The unknown classification
or regression function f might not vary equally in all coordinates. We used this fact to
review the approach of [DBLP:conf/nips/KpotufeB12], [152] above.

e1

e2

e1
e2

Figure 5.2: Left: Rescaled ball Bρ which is still axis aligned but rescales the coordinates. Right:
Ball that not only rescales the data but also rotates it

This simple observation is also motivation for a plethora of variable selection methods.
In variable selection, the assumption that is used is that for f , we have f (x) = g(Px),
where P ∈ {0, 1}k×d projects X down to k < d coordinates that are most relevant to
predicting the output y. This assumption is generalized further in multi-index regres-
sion e.g.[103, 167, 213, 290]). This is done by letting P ∈ Rk×d project x down to a
k-dimensional subspace of Rd. Put differently, this is a generalization because here it is
assumed that while f might vary along all coordinates, it actually only depends on an
unknown k-dimensional subspace. Such a subspace is called a relevant subspace. The
task then becomes finding the said relevant subspace rather than chopping coordinates
since they all might be relevant in predicting the output y.
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Work to recover this relevant subspace (which is sometimes also referred to in the litera-
ture as effective dimension reduction [167]) gives rise to the expected gradient outerproduct
(EGOP):

ExG(x) ≜ Ex

(
∇ f (x) · ∇ f (x)⊤

)
.

This operator (which superficially seems similar to the Fisher information matrix) is
useful beyond the multi-index motivation mentioned above. That is, even when there
is no clearly relevant dimension-reduction P, as is usually likely in practice, one might
still expect that f does not vary equally in all directions. Therefore, beyond the use of
EGOP for dimension-reduction, we might use it instead to weight any direction v ∈ Rd

according to its relevance as captured by the average variation of f along v (encoded
in the EGOP). The weighting approach will be the main use of EGOP considered in
this work. That is, we use the EGOP in the following way: let VDV⊤ be a spectral
decomposition of the estimated EGOP, we use it to transform the input x as D1/2V⊤x.
Also, for constructing the EGOP we need to compute gradient estimates. Just as in the
case of gradient estimation, optimal estimators of the EGOP can be expensive in practice.
In this part of the thesis we also show that a simple, efficient difference based estimator
suffices in that it remains statistically consistent under mild assumptions.

It is important to note that estimating the EGOP and using it to transform the inputs
as x 7→ D1/2V⊤x and then using it for k-classification and regression does not involve
any learning. Thus this approach is related to but distinct from metric learning in that
a metric is not optimized for over a space of possible metrics parametrized by positive
semi-definite matrices. This approach is also online and cheap: we only require 2d esti-
mates of the function f at x, and can also be used for preprocessing for standard metric
learning methods. Work on the EGOP is explicated upon in Chapter 6.

As will be described later, the EGOP can be used for metric weighing in the setting
where f : Rd → R and thus only in the case of regression and binary classification. For
the multi-class case, we could treat it as a multinomial regression problem, where the
unknown function f : Rd → Sc where Sc = {y ∈ Rc|y ≥ 0, yT1 = 1}. This leads to a
similar operator based on computing the Jacobian of this vector valued function, which
we call the Expected Jacobian Outer Product (EJOP).

ExG(x) ≜ Ex

(
J f (x)J f (x)T

)
We describe metric weighing experiments for non-parametric classification and also
show that a simple estimator for the EJOP remains statistically consistent under mild
assumptions in Chapter 7.

To summarize, in this part of the thesis, we make the following contributions:

1 We describe a simple estimator for the Expected Gradient Outerproduct (EGOP)

ExG(x) ≜ Ex

(
∇ f (x) · ∇ f (x)⊤

)
.

and show that it remains statistically consistent under mild assumptions.
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2 We use the EGOP (with a spectral decomposition VDV⊤) in non-parameteric re-
gression by using it to transform the inputs as x as D1/2V⊤x and show it improves
performance in several real world datasets.

3 We extend the EGOP to the multiclass case, proposing a variant called the Ex-
pected Jacobian Outer Product (EJOP)

ExG(x) ≜ Ex

(
J f (x)J f (x)T

)
4 For the EJOP, we propose a simple estimator and also prove that it remains statis-

tically consistent under reasonable assumptions.

5 Similarly to the case of the EGOP, we use the EJOP for transforming the in-
put space and also demonstrate that it improves performance in various non-
parametric classification tasks.
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T H E E X P E C T E D G R A D I E N T O U T E R P R O D U C T

In high dimensional classification and regression problems, the task is to infer the un-
known, smooth function f : X → Y . To this end, we are provided n of functional
estimates that comprises our data. In other words, we have {(x, y)1, (x, y)2, . . . , (x, y)n},
with xi ∈ X ⊂ Rd and the labels yi ≈ f (xi) i.e. they are noisy versions of the func-
tion values. We are interested in distance based regression, which provides our function
estimate:

fn(x) =
n

∑
i=1

w(x, xi)yi

The weights w(x, xi), depend on the underlying metric. In Chapter 5 we made the case
for metric estimation from gradients in case of a restricted computational budget, where
optimizing over a space of metrics might not be feasible. In particular, in the case of
regression and binary classification, we consider the metric given by the Expected Gra-
dient Outerproduct, which is written as.

ExG(x) ≜ Ex

(
∇ f (x) · ∇ f (x)⊤

)
.

Originally proposed in the context of multi-index regression, the EGOP recovers the
average variation of f in all directions. To see this: For some v ∈ Rd, the directional
derivative at x along v is given by f ′v(x) = ∇ f (x)⊤v, in other words

E X
∣∣ f ′v(x)∣∣2 = E x

(
v⊤G(x)v

)
= v⊤ (E xG(x)) v

From the above, it follows that, if f does not vary along v, v must be in the null-space
of the EGOP matrix E XG(X), since E X | f ′v(X)|2 = 0. [288] infact show that considering
f is continuously differentiable on a compact space X , the column space of E XG(X) is
exactly the relevant subspace defined by P (recall that P is the relevant subspace defined
in Chapter 5 i.e. f (x) = g(Px) with P ∈ Rk×d, with P being the subspace most relevant
to predicting the output y)

As already discussed in Chapter 5, the EGOP is useful beyond the multi-index setting,
where its utility is to recover the relevant subspace P. That is, we might expect that in
most practical, real world settings, a clear relevant subspace might not exist. Neverthe-
less, we can still expect that f does not vary uniformly in all directions. The usefulness
of the EGOP in such settings can be to weight any direction v ∈ Rd according to its
relevance as captured by the average variation of f along v (encoded in the EGOP). It is
this weighting use of the EGOP that we will consider in this chapter.

The estimation of the EGOP can be done in various sophisticated ways, which can
however be prohibitively expensive. For instance an optimal way of estimating ∇ f (x),
and hence the EGOP, is to estimate the slope of a linear approximation to f locally at
each x = Xi in an n-sample {(Xi, Yi)}n

i=1. Local linear fits can however be prohibitively
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expensive since it involves multiplying and inverting large-dimensional matrices at all
Xi. This can render the approach impractical although it is otherwise well motivated.

One of the main messages of the work discussed in this chapter is that the EGOP does
need to be estimated optimally for the utility of it that we discussed above. That is,
it just needs to be estimated well enough to use towards improving classification and
regression. To this end, we consider the following cheap, albeit very rough estimator.
Let fn denote an initial estimate of f (we use a kernel estimate); for the i-th coordinate
of ∇ f (x), we use the rough estimate

∆t,i fn(x) =
( fn(x + tei)− fn(x − tei))

2t
, t > 0.

Now, let Gn(x) be the outer-product of the resulting gradient estimate ∇̂ fn(x), the EGOP
is estimated as E nGn(X), the empirical average of Gn. The exact procedure is given in
Section 6.2.1.

Figure 6.1: A simple illustration of the difference based gradient estimator when x ∈ R2. We
perturb the input along each coordinate, record the value of fn,h(x), and get a finite
difference estimate. The background color represents the functional values

We must first demonstrate that this rough estimator is, in fact, a sound estimator. To
this end, we show it remains a statistically consistent estimate of the EGOP under very
general distributional conditions. These assumptions being milder than the usual con-
ditions on proper gradient estimation (for detailed assumptions see Section 6.2.2). The
main consistency result and key difficulties (having to do with interdependencies in the
estimate) are discussed in Section 6.3.

We also show, through extensive experiments that preprocessing the data with this
cheap EGOP estimate can still significantly improve the performance of non-parametric
classification and regression procedures in many real-world datasets. The experimenta-
tion is described in Section 6.4. In the next Section 6.1, we first give a quick overview of
some of the relevant work and place ours in context.
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6.1 related work

The work of Kpotufe et al. [DBLP:conf/nips/KpotufeB12], [152] already briefly dis-
cussed in Chapter 5 was the direct inspiration for the work described in this chapter.
Kpotufe et al. consider estimating the coordinates f ′i of ∇ f in a similar fashion as de-
scribed here. However, there is a notable difference, in that [DBLP:conf/nips/KpotufeB12],
[152] are only concerned with a variable selection setting. That is, each coordinate i of
X is to be weighted by an estimate of E X | f ′i (X)|, which is their quantity of interest.
In this chapter we consider the more general approach of estimating the Expected Gra-
dient Outerproduct. We also study its consistency and applicability in the context of
non-parametric classification and regression.

Another body of literature, which is quite closely related to the work described in this
chapter, is in the context of methods for multi-index regression. Many methods devel-
oped for doing multi-index regression use the so-called inverse regression approach (e.g.
[167]), and many of them operate by incorporating estimates of derivate functionals of
the unknown f . These approaches can be found in works as early as [213], and typically
estimate ∇ f as the slope of local linear approximations of f .

Comparatively recent works of [194, 288] build a much clearer bridge between various
approaches to multi-index regression. In particular, they also related the EGOP to the
covariance-type matrices typically estimated in inverse regression. Besides, [194, 288]
also propose an alternative estimator for the gradient, rather than using local linear
slopes. Their approach estimates ∇ f via a regularized least-squares objective over an
Reproduced Kernel Hibert Space. This approach is still expensive, since the least-square
solution involves inverting an n × n feature matrix. In contrast our less sophisticated
approach will take time in the order of n times the time to estimate fn (in practice, we
could employ fast range search methods when fn is a fast kernel regressor).

As already described, the primary utility of the EGOP in multi-index regression is to
recover the relevant subspace given by P in the model f (x) = g(Px). The data can first
be projected to this subspace before doing predicting on the projected data.

In this chapter, we do not make a case for any particular methodology that leverages
the EGOP for preprocessing the data. Instead, our experiments focus on the use of
EGOP as a metric for distance based non-parametric regression and classification. That
is, suppose VDV⊤ is the spectral decomposition of the estimated EGOP, we then use
this to transform the input as follows x 7→ D1/2V⊤x. Our use of the EGOP does not
rely on the multi-index model holding, but rather on a more general model where P
might be a full-dimensional rotation (i.e. all directions are relevant), but g varies more
in some coordinate than in others. The diagonal element Di,i recovers E x(g′i(x))

2 where
g′i denotes coordinate i of ∇g, while V⊤ recovers P.

6.2 setup and definitions

We consider a regression or classification setting where the input X belongs to a space
X ⊂ Rd, of bounded diameter 1. The output Y is real. We are interested in the unknown
regression function f (x) ≜ E[Y|X = x] (in the case of classification with Y ∈ {0, 1}, this
is just the probability of 1 given x).
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For a vector x ∈ Rd, let ∥x∥ denote the Euclidean norm, while for a matrix A, let ∥A∥2
denote the spectral norm, i.e. the largest singular value σmax(A).

We use im(A) to denote the column space of matrix A ∈ Rn×m: im(A) = {Y ∈ Rn :
Y = Ax for some x ∈ Rm}, and the ker(A) to denote the null space of matrix A ∈ Rn×m:
ker(A) = {x ∈ Rm : Ax = 0}. We use A ◦ B to denote the entry-wise product of matrices
A and B.

As a little aside, we use both x and X to refer to d dimensional vectors (X to a matrix)
in this chapter henceforth as well as the next chapter. The purpose of latching onto
this notational freedom will be clear from the proofs, where working with x can cause
confusion.

6.2.1 Estimation procedure for the Expected Gradient Outerproduct

We let µ denote the marginal of PX,Y on X and we let µn denote its empirical counterpart
on a random sample X = {Xi}n

i=1. Given a labeled sample (X, Y) = {(Xi, Yi)}n
1 from

Pn
X,Y, we estimate the EGOP as follows.

We consider a simple kernel estimator defined below, using a Kernel K satisfying the
following admissibility conditions:

Definition 1 (Admissible Kernel). K : R+ 7→ R+ is nonincreasing, K > 0 on [0, 1), and
K(1) = 0.

Using such an admissible kernel K, and a bandwidth h > 0, we consider the regression
estimate fn,h(x) = ∑i ωi(x)Yi where

ωi(x) =
K(∥x − Xi∥ /h)

∑j K(
∥∥x − Xj

∥∥ /h)
if B(x, h) ∩ X ̸= ∅,

ωi(x) =
1
n

otherwise.

For any dimension i ∈ [d], and t > 0, we first define

∆t,i fn,h(x) ≜
fn,h(x + tei)− fn,h(x − tei)

2t
.

This is a rough estimate of the line-derivative along coordinate i. However, for a robust
estimate we also need to ensure that enough sample points contribute to the estimate.
To this end, given a confidence parameter 0 < δ < 1 (this definiton for δ is assumed in
the rest of this work), define An,i(X) as the event that

min
s∈{t,−t}

µn(B(X + sei, h/2)) ≥ 2d ln 2n + ln(4/δ)

n
.

The gradient estimate is then given by the vector

∇̂ fn,h(x) =
(

∆t,i fn,h(x) · 1An,i(x)

)
i∈[d]

.

Note that, in practice we can just replace An,i(X) with the event that the balls B(X +

sei, h), s ∈ {−t, t}, contain samples.
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Finally, define Gn(x) as the outer-product of ∇̂ fn,h(x), we estimate E XG(X) as

E nGn(X) ≜
1
n

n

∑
i=1

∇̂ fn,h(Xi) · ∇̂ fn,h(Xi)
⊤.

6.2.2 Distributional Quantities and Assumptions

For the analysis, our assumptions are quite general. In fact we could simply assume,
as is common, that µ has lower-bounded density on a compact support X , and that f
is continuously differentiable; all the assumptions below will then hold. We list these
more general detailed assumptions to better understand the minimal distributional re-
quirements for consistency of our EGOP estimator.

A1 (Noise). Let η(X) ≜ Y − f (X). We assume the following general noise model: ∀δ >

0 there exists c > 0 such that supx∈X PY|X=x (|η(x)| > c) ≤ δ. We denote by CY(δ) the
infimum over all such c. For instance, suppose η(X) has exponentially decreasing tail,
then ∀δ > 0, CY(δ) ≤ O(ln 1/δ).

Last the variance of (Y|X = x) is upper-bounded by a constant σ2
Y uniformly over

x ∈ X. The next assumption is standard for nonparametric regression/classification.
A2 (Bounded Gradient). Define the τ-envelope of X as X + B(0, τ) ≜ {z ∈ B(x, τ), x ∈ X}.

We assume there exists τ such that f is continuously differentiable on the τ-envelope
X + B(0, τ). Furthermore, for all x ∈ X + B(0, τ), we have ∥∇ f (x)∥ ≤ R for some
R > 0, and ∇ f is uniformly continuous on X + B(0, τ) (this is automatically the case if
the support X is compact).

The next assumption generalizes common smoothness assumptions: it is typically re-
quired for gradient estimation that the gradient itself be Hölder continuous (or that f
be second-order smooth). These usual assumptions imply the more general assumptions
below.

A3 (Modulus of continuity of ∇ f ). Let ϵt,i = supx∈X ,s∈[−t,t] | f ′i (x) − f ′i (x + sei)|. We

assume ϵt,i
t→0−−→ 0 which is for instance the case when ∇ f is uniformly continuous on

an envelope X + B(0, τ).
The next two assumptions capture some needed regularity conditions on the marginal µ.
To enable local approximations of ∇ f (x) over X , the marginal µ should not concentrate
on the boundary of X . This is captured in the following assumption.

A4 (Boundary of X ). Define the (t, i)-boundary of X as ∂t,i(X ) = {x : {x+ tei, x− tei} ̸⊆
X }. Define the vector µ∂t = (µ(δt,i(X )))i∈[d]. We assume that µ∂t

t→0−−→ 0. This is for
instance the case if µ has a continuous density on X .
Finally we assume that µ has mass everywhere, so that for samples X in dense regions,
X ± tei is also likely to be in a dense region.

A5 (Full-dimensionality of µ). For all x ∈ X and h > 0, we have µ(B(x, h)) ≥ Cµhd. This
is for instance the case if µ has a lower-bounded density on X .



60 the expected gradient outer product

6.3 consistency of the estimator En Gn (X ) of EX G(X )

We establish consistency by bounding ∥EnGn(X)− EXG(X)∥2 for finite sample size n.
The main technical difficulties in establishing the main result below have to do with the
fact that each gradient approximation ∆t,h fn,h(X) at a sample point X depends on all
other samples in X. These inter-dependencies are circumvented by proceeding in steps
which consider related quantities that are less sample-dependent.

Theorem 1 (Main). Assume A1, A2 and A5. Let t < τ and suppose h ≥ (log2(n/δ)/n)1/d.
There exist C = C(µ, K(·)) and N = N(µ) such that the following holds with probability at
least 1 − 2δ. Define A(n) =

√
Cd · log(n/δ) · C2

Y(δ/2n) · σ2
Y/ log2(n/δ). Suppose n ≥ N,

we have:

∥EnGn(X)]− EXG(X)∥2 ≤ 6R2
√

n

(
√

ln d +

√
ln

1
δ

)
+

(
3R + ∥ϵt∥+

√
d
(

hR + CY(δ/n)
t

))
·
[
∥ϵt∥+

√
d

t

√
A(n)
nhd + 2h2R2 + R

√d ln d
δ

2n
+ ∥µ∂t∥



Proof. Start with the decomposition

∥EnGn(X)− EXG(X)∥2 ≤∥EnG(X)− EXG(X)∥2

+∥EnGn(X)− EnG(X)∥2. (6.1)

The two terms of the r.h.s. are bounded separately in Lemma 2 and 12.

Remark. Under the additional assumptions A3 and A4, the theorem implies consistency
for t n→∞−−−→ 0, h n→∞−−−→ 0, h/t2 n→∞−−−→ 0, and (n/ log n)hdt4 n→∞−−−→ ∞, this is satisfied for
many settings, for example t ∝ h1/4, h ∝ (1/n)1/(2(d+1)).

The bound on the first term of (6.1) is a direct result of the below concentration bound
for random matrices:

Lemma 1. [125, 265]. Consider a random matrix A ∈ Rd×d with bounded spectral norm
∥A∥2 ≤ M. Let A1, A2, ..., An be i.i.d. copies of A. With probability at least 1 − δ, we have∥∥∥∥∥ 1

n

n

∑
i=1

Ai − EA

∥∥∥∥∥
2

≤ 6M√
n

(
√

ln d +

√
ln

1
δ

)
.

We apply the above concentration to the i.i.d. matrices G(X), X ∈ X, using the fact that
∥G(X)∥2 = ∥∇ f (X)∥2 ≤ R2.
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Lemma 2. Assume A2. With probability at least 1 − δ over the i.i.d sample X ≜ {Xi}n
i=1, we

have

∥EnG(X)− EXG(X)∥2 ≤ 6R2
√

n

(
√

ln d +

√
ln

1
δ

)
.

The next Lemma provides an initial bound on the second term of (6.1).

Lemma 3. Fix the sample (X, Y). We have:

∥EnGn(X)− EnG(X)∥2 ≤En∥∇ f (X)− ∇̂ fn,h(X)∥
· max

x∈X
∥∇ f (x) + ∇̂ fn,h(x)∥. (6.2)

Proof. We have by a triangle inequality ∥EnGn(X)− EnG(X)∥2 is bounded by:

En

∥∥∥(∇̂ fn,h(X) · ∇̂ fn,h(X)⊤ −∇ f (X) · ∇ f (X)⊤
)∥∥∥

2
.

To bound the r.h.s above, we use the fact that, for vectors a, b, we have

aa⊤ − bb⊤ =
1
2
(a − b)(b + a)⊤ +

1
2
(b + a)(a − b)⊤,

implying that ∥∥∥aa⊤ − bb⊤
∥∥∥

2
≤1

2

∥∥∥(a − b)(b + a)⊤
∥∥∥

2

+
1
2

∥∥∥(b + a)(a − b)⊤
∥∥∥

2

=
∥∥∥(b + a)(a − b)⊤

∥∥∥
2

since the spectral norm is invariant under matrix transposition.
We therefore have that ∥EnGn(X)− EnG(X)∥2 is at most

En∥(∇ f (X)− ∇̂ fn,h(X)) · (∇ f (X) + ∇̂ fn,h(X))⊤∥2

= En∥∇ f (X)− ∇̂ fn,h(X)∥ · ∥∇ f (X) + ∇̂ fn,h(X)∥
≤ En∥∇ f (X)− ∇̂ fn,h(X)∥ · max

x∈X
∥∇ f (x) + ∇̂ fn,h(x)∥.

Thus the matrix estimation problem is reduced to that of an average gradient estimation.
The two terms of (6.2) are bounded in the following two subsections. These sections thus
contain the bulk of the analysis. All omitted proofs are found in the supplementary.
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6.3.1 Bound on En∥∇ f (X)− ∇̂ fn,h(X)∥

The analysis of this section relies on a series of approximations. In particular we relate
the vector ∇̂ fn,h(x) to the vector

∇̂ f (x) ≜
(

∆t,i f (x) · 1An,i(x)

)
i∈[d]

.

In other words we start with the decomposition:

En∥∇ f (X)− ∇̂ fn,h(X)∥ ≤En∥∇ f (X)− ∇̂ f (X)∥
+En∥∇̂ f (X)− ∇̂ fn,h(X)∥. (6.3)

We bound each term separately in the following subsections.

6.3.1.1 Bounding En∥∇ f (X)− ∇̂ f (X)∥

We need to introduce vectors In(x) ≜
(

1An,i(x)

)
i∈[d]

, and In(x) ≜
(

1Ān,d(x)

)
i∈[d]

. We then

have:

En∥∇ f (X)− ∇̂ f (X)∥ ≤ En∥∇ f (X) ◦ In(X)∥
+En∥∇ f (X) ◦ In(X)− ∇̂ f (X)∥. (6.4)

The following lemma bounds the first term of (6.4).

Lemma 4. Assume A2 and A5. Suppose h ≥ (log2(n/δ)/n)1/d. With probability at least 1− δ

over the sample of X:

En

∥∥∥∇ f (X) ◦ In(X)
∥∥∥ ≤ R ·

√d ln d
δ

2n
+ ∥µ∂t∥

 .

Proof. By assumption, ∥∇ f (x)∥ ≤ R, so we have

En

∥∥∥∇ f (X) ◦ In(X)
∥∥∥ ≤ R · En

∥∥∥In(X)
∥∥∥ . (6.5)

We bound
∥∥∥In(X)

∥∥∥ as follows. For any i ∈ [d], define the events Ai(X) ≡ min{t,−t} µ(B(X+

sei, h/2)) ≥ 3 · 2d ln 2n+ln(4/δ)
n , and define the vector I(X) ≜

(
1Āi(X)

)
i∈[d]

.

By relative VC bounds [271], let αn = 2d ln 2n+ln(4/δ)
n , then with probability at least 1 − δ

over the choice of X, for all balls B ∈ Rd we have µ(B) ≤ µn(B) +
√

µn(B)αn + αn.
Therefore, with probability at least 1 − δ, ∀i ∈ [d] and x in the sample X, Ān,i(x) ⇒
Āi(x).
Moreover, since ∥I(X)∥ ≤

√
d, by Hoeffding’s inequality,

P(En∥I(X)∥ − EX∥I(X)∥ ≥ ϵ) ≤ e−
2nϵ2

d .
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It follows that, with probability at least 1 − δ,

En∥In(X)∥ ≤En∥I(X)∥

≤EX∥I(X)∥+

√
d ln 1

δ

2n

≤
√

EX∥I(X)∥2 +

√
d ln 1

δ

2n
, (6.6)

by Jensen’s inequality. We bound each of the d terms of EX∥I(X)∥2 = ∑i∈[d] EX1Āi(X) as
follows.
Fix any i ∈ [d]. We have EX1Āi(X) ≤ EX[1Āi(X)|X ∈ X\∂t,i(X )] + µ(∂t,i(X )). Notice that
EX[1Āi(X)|X ∈ X\∂t,i(X )] = 0 since, by assumption, µ(B(x + sei, h/2)) ≥ Cµ(h/2)d ≥
3α whenever h ≥ (log2(n/δ)/n)1/d. Hence, we have√

EX∥I(X)∥2 ≤
√

∑
i∈[d]

µ2(∂t,i(X )).

Combine this last inequality with (6.5) and (6.6) and conclude.

The second term of (6.4) is bounded in the next lemma.

Lemma 5. Fix the sample X. We have maxX∈X ∥∇ f (X) ◦ In(X)− ∇̂ f (X)∥ ≤ ∥ϵt∥.

Proof. For a given coordinate i ∈ [d], let f ′i denote the directional derivative e⊤i ∇ f along
i. Pick any x ∈ X . Since f (x + tei)− f (x − tei) =

∫ t
−t f ′i (x + sei)ds, we have

2t( f ′i (x)− ϵt,i) ≤ f (x + tei)− f (x − tei)

≤2t( f ′i (x) + ϵt,i)

Thus | 1
2t ( f (x + tei)− f (x − tei))− f ′i (x)| ≤ ϵt,i. We therefore have that ∥∇ f (x) ◦ In(x)−

∇̂ f (x)∥ equals √√√√ d

∑
i=1

(
f ′i (x) · 1An,i(x) − ∆t,i f (x) · 1An,i(x)

)2

=

√√√√ d

∑
i=1

(
1
2t
( f (x + tei)− f (x − tei))− f ′i (x)

)2

≤ ∥ϵt∥ .

The last two lemmas can then be combined using equation (6.4) into the final bound of
this subsection.

Lemma 6. Assume A2 and A5. Suppose h ≥ (log2(n/δ)/n)1/d. With probability at least 1− δ

over the sample X:

En∥∇ f (X)− ∇̂ f (X)∥ ≤R ·

√d ln d
δ

2n
+ ∥µ∂t∥


+ ∥ϵt∥ .
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6.3.1.2 Bounding En∥∇̂ f (X)− ∇̂ fn,h(X)∥

We need to consider bias and variance functionals of estimates fn,h(x). To this end we
introduce the expected estimate f̃n,h(x) = E Y|X fn,h(x) = ∑n

i=1 wi(x) f (Xi). The following
lemma bounds the bias of estimates fn,h. The proof relies on standard ideas.

Lemma 7 (Bias of fn,h). Assume A2. Let t < τ. We have for all X ∈ X, all i ∈ [d], and
s ∈ {−t, t}:

| f̃n,h(X + sei)− f (X + sei)| · 1An,i(x) ≤ hR.

Proof. Let x = X + sei. Using a Taylor approximation on f to bound | f (Xi)− f (x)|, we
have

| f̃n,h(x)− f (x)| ≤ ∑
i∈[d]

wi(x)| f (Xi)− f (x)|

≤ ∑
i∈[d]

wi(x)∥Xi − x∥ · sup
X+B(0,τ)

∥∇ f ∥

≤ hR.

The following lemma bounds the variance of estimates fn,h averaged over the sample X.
To obtain a high probability bound, we relie on results of Lemma 7 in [DBLP:conf/nips/KpotufeB12].
However in [DBLP:conf/nips/KpotufeB12], the variance of the estimator if evaluated at
a point, therefore requiring local density assumptions. The present lemma has no such
local density requirements given that we are interested in an average quantity over a
collection of points.

Lemma 8 (Average Variance). Assume A1. There exist C = C(µ, K(·)), such that the fol-
lowing holds with probability at least 1 − 2δ over the choice of the sample (X, Y). Define
A(n) =

√
Cd · ln(n/δ) · C2

Y(δ/2n) · σ2
Y, for all i ∈ [d], and all s ∈ {−t, t}:

En| f̃n,h(X + sei)− fn,h(X + sei)|2 · 1An,i(X) ≤
A(n)
nhd

Proof of Lemma 8. Fix the sample X and consider only the randomness in Y. The follow-
ing result is implicit to the proof of Lemma 7 of [DBLP:conf/nips/KpotufeB12]: with
probability at least 1 − 2δ, for all X ∈ X, i ∈ [d], and s ∈ {−t, t}, we have (where, for
simplicity, we write x = X + sei) | f̃n,h(x)− fn,h(x)|2 · 1An,i(X) is at most

Cd · log(n/δ)C2
Y(δ/2n) · σ2

Y
nµn((B(x, h/2))

.

Fix i ∈ [d] and s ∈ {−t, t}. Taking empirical expectation, we get En| f̃n,h(x)− fn,h(x)|2 is
at most √

Cd · ln(n/δ) · C2
Y(δ/2n) · σ2

Y
n ∑

j∈[n]

1
n(xj, h/2)

where xj = Xj + sei, and n(xi, h/2) = nµn(B(xi, h/2)) is the number of samples in
B(xi, h/2). Let Z ⊂ Rd denote a minimal h/4-cover of {X1, ..., Xn}. Since X has bounded
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diameter, such a cover has size at most CX (h/4)d for some CX depending on the support
X of µ.
Assume every xj is assigned to the closest z ∈ Z , where ties can be broken any way, and
write xj → z to denote such an assignment. By definition of Z, xj is contained in the ball
B(z, h/4), and we therefore have B(z, h/4) ⊂ B(xj, h/2).

Thus

∑
j∈[n]

1
n(xj, h/2)

= ∑
z∈Z

∑
xj→z

1
n(xj, h/2)

≤ ∑
z∈Z

∑
xj→z

1
n(z, h/4)

≤ ∑
z∈Z

n(z, h/4)
n(z, h/4)

= |Z| ≤ CX (h/4)−d.

Combining with the above analysis finishes the proof.

The main bound of this subsection is given in the next lemma which combines the above
bias and variance results.

Lemma 9. Assume A1 and A2. There exist C = C(µ, K(·)), such that the following holds with
probability at least 1− 2δ over the choice of (X, Y). Define A(n) =

√
Cd · ln(n/δ) ·C2

Y(δ/2n) ·
σ2

Y:

En∥∇̂ f (X)− ∇̂ fn,h(X)∥ ≤
√

d
t

√
A(n)
nhd + 2R2h2.

Proof. In what follows, we first apply Jensen’s inequality, and the fact that (a + b)2 ≤
2a2 + 2b2. We have:

En∥∇̂ f (X)− ∇̂ fn,h(X)∥

= En

(
∑

i∈[d]
|∆t,i fn,h(X)− ∆t,i f (X)|2 · 1An,i(X)

)1/2

≤
(

∑
i∈[d]

En|∆t,i fn,h(X)− ∆t,i f (X)|2 · 1An,i(X)

)1/2

≤
√

d
2t

(
max

i∈[d],s∈{−t,t}
4En| fn,h(X̃)− f (X̃)|2 · 1An,i(X)

)1/2

(6.7)

where X̃ = X + sei. Next, use the fact that for any s ∈ {−t, t}, we have the following
decomposition into variance and bias terms

| fn,h(X + sei)− f (X + sei)|2

≤ 2| fn,h(X + sei)− f̃n,h(X + sei)|2

+ 2| f̃n,h(X + sei)− f (X + sei)|2.

Combine this into (6.7) to get a bound in terms of the average bias and variance of
estimates fn,h(X + sei). Apply Lemma 7 and 8 and conclude.
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6.3.1.3 Main Result of this Section

The following theorem provides the final bound of this section on En∥∇ f (X)−∇̂ fn,h(X)∥.
It follows directly from the decomposition of equation 6.3 and Lemmas 6 and 21.

Lemma 10. Assume A1, A2 and A5. Let t < τ and suppose h ≥ (log2(n/δ)/n)1/d. With
probability at least 1 − 2δ over the choice of the sample (X, Y), we have

En∥∇ f (X)− ∇̂ fn,h(X)∥ ≤
√

d
t

√
A(n)
nhd + 2R2h2

+R

√d ln d
δ

2n
+ ∥µ∂t∥

+ ∥ϵt∥ .

6.3.2 Bounding maxX∈X ∥∇ f (X) + ∇̂ fn,h(X)∥

Lemma 11. Assume A1 and A2. With probability at least 1 − δ, we have

∥∇ f (X) + ∇̂ fn,h(X)∥ ≤3R + ∥ϵt∥

+
√

d
(

hR + CY(δ/n)
t

)
.

Proof. Fix X ∈ X.We have

∥∇ f (X) + ∇̂ fn,h(X)∥ ≤2∥∇ f (X)∥
+ ∥∇ f (x)− ∇̂ fn,h(X)∥

≤2R + ∥∇ f (X)− ∇̂ f (x)∥
+ ∥∇̂ f (X)− ∇̂ fn,h(X)∥. (6.8)

We can bound the second term of (6.8) above as follows.

∥∇ f (X)− ∇̂ f (X)∥ ≤∥∇ f (X) ◦ In(X)− ∇̂ f (X)∥
+ ∥∇ f (X) ◦ In(X)∥

≤ ∥ϵt∥+ R,

where we just applied Lemma 5.
For the third term of (6.8), ∥∇̂ f (x)− ∇̂ fn,h(x)∥ equals√

∑
i∈[d]

(|∆t,i fn,h(x)− ∆t,i f (x)| · 1An,i(x))
2.

As in the proof of Lemma 21, we decompose the above summand into bias and variance
terms, that is:

|∆t,i fn,h(x)− ∆t,i f (x)|

≤ 1
t

max
s∈{−t,t}

| f̃n,h(x + sei)− f (x + sei)|

+
1
t

max
s∈{−t,t}

| f̃n,h(x + sei)− fn,h(x + sei)|.
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By Lemma 7, | f̃n,h(x + sei)− f (x + sei)| ≤ Rh for any s ∈ {−t, t}.
Next, by definition of CY(δ/n), with probaility at least 1 − δ, for each j ∈ [n], Yj has
value within CY(δ) of f (Xj). It follows that | f̃n,h(X + sei)− fn,h(X + sei)| ≤ CY(δ/n) for
s ∈ {−t, t}.
Thus, with probability at least 1 − δ, we have

∥∇̂ f (X)− ∇̂ fn,h(X)∥ ≤
√

d
(

hR + CY(δ/n)
t

)
.

Combine these bounds in (6.8) and conclude.

6.3.3 Final Bound ∥EnGn(X)− EnG(X)∥2

We can now combine the results of the last two subsections, namely Lemma 10 and 11,
into the next lemma, using the bound of Lemma 3.

Lemma 12. Assume A1, A2 and A5. Let t < τ and suppose h ≥ (log2(n/δ)/n)1/d. With
probability at least 1 − 2δ over the choice of the sample (X, Y), we have that ∥EnGn(X) −
EnG(X)∥2 is at most(

3R + ∥ϵt∥+
√

d
(

hR + CY(δ/n)
t

))
·√d

t

√
A(n)
nhd + 2h2R2 + R

√d ln d
δ

2n
+
∥∥µ∂t

∥∥+ ∥ϵt∥

 .

6.4 experiments

In this section we describe experiments aimed at evaluating the utility of EGOP as a
metric estimation technique for regression or classification. We consider a family of
non-parametric methods that rely on the notion of distance under a given Mahalanobis
metric M, computed as (x − x′)TM(x − x′).

In this setup, we consider three choices of M: (i) identity, i.e., Euclidean distance in the
original space; (ii) the estimated gradient weights (GW) matrix as in [DBLP:conf/nips/KpotufeB12],
i.e., Euclidean distance weighted by the estimated ∆t,i fn, and (iii) the estimated EGOP
matrix EnGn(X). The latter corresponds to Euclidean distance in the original space un-
der linear transform given by [EnGn(X)]1/2. Note that a major distinction between the
metrics based on GW and EGOP is that the former only scales the Euclidean distance,
whereas the latter introduces a rotation.

Each choice of M can define the set of neighbors of an input point x in two ways: (a)
k nearest neighbors (kNN) of x for a fixed k, or (b) neighbors with distance ≤ h for a
fixed h; we will refer to this as hNN. When the task is regression, the output values of
the neighbors are simply averaged; for classification, the class label for x is decided by
majority vote among neighbors. Note that hNN corresponds to kernel regression with
the boxcar kernel.

Thus, we will consider six methods, based on combinations of the choice of metric
M and the definition of neighbhors: kNN, kNN-GW, kNN-EGOP, hNN, hNN-GW, and
hNN-EGOP.
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Figure 6.2: Synthetic data, d=50, without rotation applied after generating y from x. The figure
shows error of hNN with different metrics and the profile of derivatives recovered
by GW and EGOP. In the case when there is no rotation, the performance of GW is
similar to that returned by the EGOP

6.4.1 Synthetic Data

In order to understand the effect of varying the dependence of f on the input coordi-
nates, on the quality of the metric estimated by the EGOP as well as other approaches,
we first consider experiments on synthetic data. For the purpose of these experiments,
the output is generated as follows: We set y = ∑i sin(cixi), with the sum over all the
dimensions of xRd. The profile of the c vector is responsible for the degree upto which
the value of xi affects the output y.

We set c[1] = 50 and then c[i] = 0.6 ∗ c[i − 1] for i = 2 : 50, and sampled d = 50-
dimensional input over a bounded domain. In this data, we consider two cases: The first
denoted (R), in which the input features are transformed by a random rotation in Rd,
after y has been generated; and the second, denoted (I) in which the input features are
preserved. Under these conditions we evaluate the out of sample regression accuracy
with original metric, GW and EGOP-based metrics, for different value of n; in each
experiment, the values of h and t are tuned by cross-validation on the training set.

From the results that we can see in figures 6.2 and ?? is that reweighting examples by
either gradient weights or by using the expected gradient outerproduct helps in perfor-
mance in all cases. However, in the case when the synthetic data is rotated, as might be
expected, the performance of the case when the EGOP is used for the reweighing, is not
significantly affected as compared to the no rotation case. This is in sharp contrast to
the case of gradient weights: which is able to recover a good metric (as can be seen by
the accuracy) in the no-rotation case, however, its performance falls steeply when the
data is rotated.

In order to get some insight into the nature of the metrics that were estimated from
this synthetic data, we also plot profiles of the estimated feature relevance. For the
gradients weights approach, these are just the weights obtained. For the EGOP, we use
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Figure 6.3: Synthetic data, d=50, with rotation applied after generating y from x. As in the com-
panion figure 6.2 we show error of hNN with different metrics, along with the profile
of derivatives recovered by both GW and EGOP. The deterioration of the error per-
formance of the Gradient Weights approach after the feature space is subject to a
random rotation is noteworthy.

the eigenvalues of the matrix as a measure of feature importance. In other words, for
gradient weights this corresponds to values on the diagonal of M, and for EGOP of the
(square roots) of the eigenvalues of M. Plots in figures 6.2 and ?? also show these profiles
(sorted in descending order). By inspecting at these profiles, it is clear that the EGOP is
largely invariant to rotation of the feature space, and is much better at recovering the
relevance of the features according to what was prescribed by the c vector described
above.

6.4.2 Regression Experiments

After the experiments on synthetic data, we now present some results on real world
datasets. The name of the datasets, along with information such as their dimensionality,
number of training and test points etc., is mentioned in Table 6.1. For each data set, we
report the results averaged over ten random training/test splits.
As a measure of performance we compute for each experiment the normalized mean
squared error (nMSE): mean squared error over test set, divided by target variance over
that set. This can be interpreted as fraction of variance in the target unexplained by the
regressor.
In each experiment the input was normalized by the mean and standard deviation of
the training set. For each method, the values of h or k as wel as t (the bandwidth used
to estimate finite differences for GW and EGOP) were set by two fold cross-validation
on the training set.
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6.4.3 Classification Experiments

The setup for classification data sets is very similar for regression, except that the task is
binary classification, and the labels of the neighbors selected by each prediction method
are aggregated by simple majority vote, rather than averaging as in regression. The
performance measure of interest here is classification error. As in regression experi-
ments, we normalized the data, tuned all relevant parameters by cross validation on
training data, and repeated the entire experimental procedure ten times with random
training/test splits.

In addition to the baselines listed above, in classification experiments we consid-
ered another competitor: the popular feature relevance determination method called
ReliefF [conf/aaai/KiraR92, 149]. A highly engineered method that includes heuristics
honed over considerable time by practitioners, it has the same general form of assigning
weights to features as do GW and EGOP.
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Figure 6.4: Regression error (nMSE) as a function of training set size for Ailerons, TeleComm,
Wine data sets.

6.4.4 Results

The detailed results are reported in Tables 6.1 and 6.2. These correspond to a single
value of training set size. Plots in Figures 6.4 and 6.5 show a few representative cases
for regression and classification, respectively, of performance of different methods as a
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Figure 6.5: Classification error as a function of training set size for Musk, Gamma, IJCNN data
sets.
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Figure 6.6: Comparison of EGOP estimated by our proposed method vs. locally linear regression,
for Ailerons and Barrett1 datasets. See the text for more details including runtime

function of training set size; it is evident from these that while the performance of all
methods tends to improve if additional training data are available, the gaps methods
persist across the range of training set sizes.
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Figure 6.7: Comparison of EGOP estimated by our proposed method vs. locally linear regression
for a synthetic dataset (with rotation). This synthetic data is similar to the one used
in section 6.4.1 but with d = 12 and c = [5, 3, 1, .5, .2, .1, .08, .06, .05, .04, .03, .02].

From the results in Tables 6.1 and 6.2, we can see that the -EGOP variants dominate
the -GW ones, and that both produce gains relative to using the original metric. This is
true both for kNN and for kernel regression (hNN) methods, suggesting general utility
of EGOP-based metric, not tied to a particular non-parametric mechanism. We also see
that the metrics based on estimated EGOP are competitive with ReliefF.

6.4.5 Experiments with Local Linear Regression

As mentioned earlier in the paper, our estimator for EGOP is an alternative to an es-
timator based on computing the slope of locally linear regression (LLR) [49] over the
training data. We have compared these two estimation methods on a number of data
sets, and the results are plotted in Figure 6.6. In these experiments, the bandwidth of
LLR was tuned by a 2-fold cross-validation on the training data.

We observe that despite its simplicity, the accuracy of predictors using EGOP-based
metric estimated by our approach is competitive with or even better than the accuracy
with EGOP estimated using LLR. As the sample size increases, accuracy of LLR im-
proves. However, the computational expense of LLR-based estimator also grows with
the size of data, and in our experiments it became dramatically slower than our estima-
tor of EGOP for the larger data sizes. This confirms the intuition that our estimator is
an appealing alternative to LLR-based estimator, offering a good tradeoff of speed and
accuracy.

To impress upon the reader the computational advantage of our simple estimator over
LLR, we also report the following running times (averaged over the ten random runs)
for the same using our method and LLR respectively for the highest sample size used in
the above real world datasets: Ailerons (128.13s for delta and 347.48s for LLR), Barrett
(377.03s for delta and 1650.55s for LLR). Showing that our rough estimator is signifi-
cantly faster than Local Linear Regression while giving competitive performance. These
timings were recorded on an Intel i7 processor with CPU @ 2.40 GHz and 12 GB of
RAM.
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Table 6.1: Regression results, with ten random runs per data set.

Dataset d train/test hNN hNN-GW hNN-EGOP

Ailerons 5 3000/2000 0.3637 ± 0.0099 0.3381 ± 0.0087 0.3264 ± 0.0095

Concrete 8 730/300 0.3625 ± 0.0564 0.2525 ± 0.0417 0.2518 ± 0.0418

Housing 13 306/200 0.3033 ± 0.0681 0.2628 ± 0.0652 0.2776 ± 0.0550

Wine 11 2500/2000 0.7107 ± 0.0157 0.7056 ± 0.0184 0.6867 ± 0.0145

Barrett1 21 3000/2000 0.0914 ± 0.0106 0.0740 ± 0.0209 0.0927 ± 0.0322

Barrett5 21 3000/2000 0.0906 ± 0.0044 0.0823 ± 0.0171 0.0996 ± 0.0403

Sarcos1 21 3000/2000 0.1433 ± 0.0087 0.0913 ± 0.0054 0.1064 ± 0.0101

Sarcos5 21 3000/2000 0.1101 ± 0.0033 0.0972 ± 0.0044 0.0970 ± 0.0064

ParkinsonM 19 3000/2000 0.4234 ± 0.0386 0.3606 ± 0.0524 0.3546 ± 0.0406

ParkinsonT 19 3000/2000 0.4965 ± 0.0606 0.3980 ± 0.0738 0.4168 ± 0.0941

TeleComm 48 3000/2000 0.1079 ± 0.0099 0.0858 ± 0.0089 0.0380 ± 0.0059

Dataset kNN kNN-GW kNN-EGOP

Ailerons 0.3364 ± 0.0087 0.3161 ± 0.0058 0.3154 ± 0.0100

Concrete 0.2884 ± 0.0311 0.2040 ± 0.0234 0.2204 ± 0.0292

Housing 0.2897 ± 0.0632 0.2389 ± 0.0604 0.2546 ± 0.0550

Wine 0.6633 ± 0.0119 0.6615 ± 0.0134 0.6574 ± 0.0171

Barrett1 0.1051 ± 0.0150 0.0843 ± 0.0229 0.1136 ± 0.0510

Barrett5 0.1095 ± 0.0096 0.0984 ± 0.0244 0.1120 ± 0.0315

Sarcos1 0.1222 ± 0.0074 0.0769 ± 0.0037 0.0890 ± 0.0072

Sarcos5 0.0870 ± 0.0051 0.0779 ± 0.0026 0.0752 ± 0.0051

ParkinsonM 0.3638 ± 0.0443 0.3181 ± 0.0477 0.3211 ± 0.0479

ParkinsonT 0.4055 ± 0.0413 0.3587 ± 0.0657 0.3528 ± 0.0742

TeleComm 0.0864 ± 0.0094 0.0688 ± 0.0074 0.0289 ± 0.0031
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Table 6.2: Classification results with 3000 training/2000 testing.

Dataset d hNN hNN-GW hNN-EGOP hNN-ReliefF

Cover Type 10 0.2301 ± 0.0104 0.2176 ± 0.0105 0.2197 ± 0.0077 0.1806 ± 0.0165

Gamma 10 0.1784 ± 0.0093 0.1721 ± 0.0082 0.1658 ± 0.0076 0.1696 ± 0.0072

Page Blocks 10 0.0410 ± 0.0042 0.0387 ± 0.0085 0.0383 ± 0.0047 0.0395 ± 0.0053

Shuttle 9 0.0821 ± 0.0095 0.0297 ± 0.0327 0.0123 ± 0.0041 0.1435 ± 0.0458

Musk 166 0.0458 ± 0.0057 0.0477 ± 0.0069 0.0360 ± 0.0037 0.0434 ± 0.0061

IJCNN 22 0.0523 ± 0.0043 0.0452 ± 0.0045 0.0401 ± 0.0039 0.0510 ± 0.0067

RNA 8 0.1128 ± 0.0038 0.0710 ± 0.0048 0.0664 ± 0.0064 0.1343 ± 0.0406

Dataset kNN kNN-GW kNN-EGOP kNN-ReliefF

Cover Type 0.2279 ± 0.0091 0.2135 ± 0.0064 0.2161 ± 0.0061 0.1839 ± 0.0087

Gamma 0.1775 ± 0.0070 0.1680 ± 0.0075 0.1644 ± 0.0099 0.1623 ± 0.0063

Page Blocks 0.0349 ± 0.0042 0.0361 ± 0.0048 0.0329 ± 0.0033 0.0347 ± 0.0038

Shuttle 0.0037 ± 0.0025 0.0024 ± 0.0016 0.0021 ± 0.0011 0.0028 ± 0.0021

Musk 0.2279 ± 0.0091 0.2135 ± 0.0064 0.2161 ± 0.0061 0.1839 ± 0.0087

IJCNN 0.0540 ± 0.0061 0.0459 ± 0.0058 0.0413 ± 0.0051 0.0535 ± 0.0080

RNA 0.1042 ± 0.0063 0.0673 ± 0.0062 0.0627 ± 0.0057 0.0828 ± 0.0056
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Outline

The Expected Gradient Outer Product, which was the focal point of the previous chap-
ter, is an interesting operator that emerges naturally from the theory of multi-index
regression and effective dimension reduction. While it is straightforward to estimate while
working with an unknown regression function f : Rd → R, it is unclear how such an
operator could be estimated when the unknown regression function is vector valued
f : Rd → Rc, while retaining the original multi-index motivation. In this chapter we
give a generalization of the traditional EGOP for this case. We also show that a rough
estimator for it remains statistically consistent under natural assumptions, while also
providing gains in real world non-parametric classification tasks when used as a dis-
tance metric.

In the previous chapter, we worked with the following object, namely, the Expected
Gradient Outer Product (EGOP):

ExG(x) ≜ Ex

(
∇ f (x) · ∇ f (x)⊤

)
Where f was an unknown regression function f : Rd → R. The EGOP has the at-
tractive property that it captures the average variation of f in all directions. As has
been discussed earlier, in practice the function f might not vary equally along all co-
ordinates: some features might be more important than the others, this being the mo-
tivation for variable selection methods as well as feature weighing methods such as
[DBLP:conf/nips/KpotufeB12], [152]. More generally, even if all the features have a
bearing toward predicting the output y ∈ R, there might exist an unknown k dimen-
sional subspace on which y effectively depends upon. Such a relevant subspace can be
recovered by doing a singular value decomposition of the EGOP. Even more generally,
as might be the case frequently in practice, even a relevant subspace P might not exist.
However, the EGOP is still useful as f is unlikely to vary equally in all directions: it can
be employed to weight different directions according to their relevance. This was the
motivation for using the EGOP as a metric in the previous chapter for non-parametric
regression. Indeed, given the spectral decomposition VDV⊤ of the EGOP, we can trans-
form the input x as x 7→ D1/2V⊤x. V rotates the data, while D1/2 weighs the coordinates.
Using this transformation of the input was shown to improve regression performance
on almost all datasets.

However, as was apparent, all the experimental results reported in Chapter 6 were for
regression and binary classification. Around the time of the publication of [263], it was
unclear if a similar metric could be estimated for the multiclass case. We noticed this
to uniformly be the case in the use of the EGOP throughout the multi-index regression
literature (for instance see the the experiments reported by [288], which also involve
regression and binary classification only).



76 the expected jacobian outer product

In this part of the dissertation, we generalize the EGOP such that it can also be estimated
efficiently in the multi-class setting, and similarly be used to reweigh features in non-
parametric multi-class classification tasks. Like in the case of the EGOP, we propose a
rough estimator, which is cheap to estimate. We also prove that under similarly mild
assumptions as for the EGOP, that it remains statistically consistent. We also provide
experimental evidence that this generalization, which we call the expected Jacobian
outer product (EJOP), can give significant improvements on classification error in real-
world datasets, when used as the underlying metric in nonparametric classifiers.

Before we develop further on the EJOP, it might be instructive to first consider the
EGOP for the case of binary classification. It might not be immediately obvious to the
reader that the EGOP, which is well grounded for the case of nonparametric regression,
carries through seamlessly for binary classification. We provide reasoning below that
shows why this is the case, which also serves to motivate our approach to proposing an
estimator for the EJOP.

7.1 egop and binary classification

To demonstrate that arguments used to motivate the EGOP in the case of nonparametric
regression also work for binary classification, we first show that k-NN and ϵ-NN are
plug-in classifiers. The same reasoning also works for other nonparametric regression
methods, but we keep ourselves to nearest neighbors. For the sake of completeness, we
begin by a standard definition.

Definition 2 (Bayes Classifier). Suppose η(x) = P(Y = 1|X = x) and

f (x) =

1 if η(x) > 1
2

0 if η(x) ≤ 1
2

Then f (x) is called the Bayes classifier.

Definition 3 (Plug-in Classifier). Suppose η̂(x) is an estimate of η(x) obtained from {(xi, yi)}N
i=1,

and

f̂ (x) =

1 if η̂(x) > 1
2

0 if η̂(x) ≤ 1
2

Then f̂ (x) is called a plug-in classifier.

Consider η̂(x) = ∑N
i=1 wi1[yi = 1] with ∑N

i=1 wi = 1. If C is the set of selected neighbors.
Then, in the case of k-NN:

wi(x) =

 1
k if i ∈ C

0 otherwise

Likewise, in the case of ϵ-NN

wi(x) =

 1
|B(x,ϵ)| if i ∈ B(x, ϵ)

0 otherwise
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Proposition 2. k-NN and ϵ-NN are plug-in classifiers

Proof. The plug-in classifier might be rewritten as:

f̂ (x) = 1

(
η̂(x) >

1
2

)
u

= 1

(
N

∑
i=1

wi1[y1 = 1] >
1
2

)

= 1

(
N

∑
i=1

wi(21[y1 = 1]− 1) > 0

)

= 1

(
N

∑
i=1

wi(1[y1 = 1]− 1[y1 = 0]) > 0

)

= 1

(
N

∑
i=1

wi1[y1 = 1] >
N

∑
i=1

wi1[y1 = 0]

)

While laying out this trivial reasoning might seem unnecessarily excessive, the main
message that we want to impress upon the reader is that k-NN and ϵ-NN are plug-in
classifiers. Note that, η̂(x), which is the plug-in classifier is a regression estimate of the
Bayes classifier η(x), and it is well known that the 0-1 classification error of the plug-in
methods is related to the regression estimate (see Devroye et al. [66]). Thus the reasoning
used for non-parametric regression in the case of gradient weights[DBLP:conf/nips/KpotufeB12],
[152], EGOP [263], [288] etc., also carries to the case of binary classification; one can just
use η̂ to find the derivatives.

7.2 the multiclass case

For the multi-class case, we can consider

η̂k(x) =
N

∑
i=1

wi1[yi = k]; where
N

∑
i=1

wi = 1 and k ∈ {1, . . . , r}

and define f̂ (x) = maxk η̂k(x).

We can consider using f̂ (x) for finding derivatives, but that is prevented by the appear-
ance of the max. Alternatively, we could consider a vector valued function (c being the
number of classes)

f̃ (x) = [η̂1, . . . , η̂c]

and then use the differences to find the derivatives. The latter approach seems in direct
analogy to the case of binary classification, thus we use it to define the Jacobian Outer
Product. Note that the properties of this plug-in and whether it is similar to the standard
plug-in defined above is beyond the scope of this chapter (see Devroye et al. [66]). We
simply content ourselves with using it to define the EJOP, and this intuition is borne out
by being able to use it to prove a consistency result akin to the EGOP. We now conclude
these meanderings to better motivate the EJOP, and proceed to define it more formally
in the following section.
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7.3 the expected jacobian outerproduct

Recall that in high dimensional classification problems over Rd, the unknown (multino-
mial regression) function f could be considered to be a vector-valued function mapping
to a probability simplex Sc = {y ∈ Rc|∀i yi ≥ 0, yT1 = 1}, where c is the number of
classes. Or, more concisely, f : Rd → Sc. The prediction for some point x is then given
by: y = argmaxi=1,...,c fi(x).

For f , at point x, we can define the Jacobian as:

J f (x) =


∂ f1(x)

∂x1

∂ f2(x)
∂x1

. . . ∂ fc(x)
∂x1

...
...

. . .
...

∂ f1(x)
∂xd

∂ f2(x)
∂xd

. . . ∂ fc(x)
∂xd


We are interested in the quantity

EXG(X) = J f (x)J f (x)T

Let fn be an initial estimate of f , for which we use a kernel estimate, then for the (i, j)th

element of J f (x), we can use the following rough estimate:

∆t,i,j fn(x) =
fn,i(x + tej)− fn,i(x − tej)

2t
, t > 0

Let Jn(x) be the Jacobian estimate at x. The Jacobian outer product is then estimated as
EnJn(x)Jn(x)T, which is the empirical average of Jn(x)Jn(x)T.

Note: Many of the assumptions and notation used overlap with that employed in chap-
ter 6. We introduce new notation as needed, and if occasionally dictated for ease of
exposition, redefine some term already defined in chapter 6.

7.3.1 Function Estimate

First, we need to specify the function estimate, that is used both for the theoretical
analysis, and the experiments reported.

Again, considering c to be the number of classes, let the c dimensional vector valued
function estimate be denoted by f̄n,h(x), such that f̄n,h(x) ∈ Sc

f̄n,h(x) = [ f̄n,h,1(x), . . . , f̄n,h,c(x)] s.t. f̄n,h,i(x) > 0 and ∑
i

f̄n,h,i(x) = 1

The prediction in that case is given by:

ŷ = arg max
i

f̄n,h,i(x)

.
We use the following kernel estimate: f̄n,h,c(x) = ∑i wi1{Yi = c}, where:

wi(x) =
K(∥x − xi∥/h)

∑j K(∥x − xj∥/h)
if B(x, h) ∩ x ̸= ϕ,

wi(x) =
1
n

otherwise
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Note that for k-NN, wi(x) = 1
k and for ϵ-NN, wi(x) = 1

|B(x,h)|

While estimating gradients, we actually work with the softmaxed output

f̄n,h,i(x) =
exp( f̄n,h,i(x))

∑j exp( f̄n,h,j(x))

Additionally, in the experiments we use a temperature term in the softmax for affording
ease in gradient computation. But we omit this aspect from the discussion to keep the
theoretical analysis simple, in any case, appearance of the temperature term does not
affect any of the discussion to follow.

7.3.2 Note on the nomenclature

A natural question to ask is regarding the use of the name: Expected Jacobian Outer
Product (EJOP), as compared to simply the Expected Gradient Outer Product (EGOP),
after all we still find gradients, even in the multiclass case. We simply use different
terminology to distinguish the two cases, especially given the lack of work on effective
dimension reduction and multi-index regression for multinomial regression.

7.4 notation and setup

For a vector x ∈ Rd, we denote the euclidean norm as ∥x∥. For a matrix, we denote the
spectral norm, which is the largest singular value of the matrix σmax(A) as ∥A∥2. The
column space of a matrix A ∈ Rn×m is denoted as im(A) where im(A) = {Y ∈ Rn|Y =

Ax for some x ∈ Rm}, and ker(A) is used to denote the null space of matrix A ∈ Rn×m:
ker(A) = {x ∈ Rm|Ax = 0}. We use A ◦ B to denote the Hadamard product of matrices
A and B.

Let the estimated nonparametric function be fn,h,c(x) = ∑i ωi(x)1{yi = c}, and f̃n,h,c(x) =
∑i ωi(x)P(yi = c|xi). Our estimated gradient at dimension i is given as

∆t,i fn,h,c(x) =
fn,h,c(x + tei)− fn,h,c(x − tei)

2t
,

and the estimated and true gradients for class c are given as:

∇̂ fn,h,c(x) =


∆t,1 fn,h,c(x) · 1An,1(x)

∆t,2 fn,h,c(x) · 1An,2(x)

...

∆t,d fn,h,c(x) · 1An,d(x)

 , ∇̂ fc(x) =


∆t,1 fc(x) · 1An,1(x)

∆t,2 fc(x) · 1An,2(x)

...

∆t,d fc(x) · 1An,d(x)


Where An,i(X) is the event that enough samples contribute to the estimate ∆t,i fn,h(X):

An,i(X) ≡ min
{t,−t}

µn(B(X + sei, h/2)) ≥ 2d ln 2n + ln(4/δ)

n

and likewise

Ai(X) ≡ min
{t,−t}

µ(B(X + sei, h/2)) ≥ 3 · 2d ln 2n + ln(4/δ)

n
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note that µn, µ are empirical mass and mass of a ball, respectively.

We denote indicators of the events An,i(X) and Ai(X) in the following form

In(x) =


1An,1(x)

1An,2(x)

...

1An,d(x)

, In(x) =


1Ān,1(x)

1Ān,2(x)

...

1Ān,d(x)

, I(x) =


1A1(x)

1A2(x)

...

1Ad(x)

, I(x) =


1Ā1(x)

1Ā2(x)

...

1Ād(x)

.

Let the Jacobian matrix J f (x) ∈ Rd×c to be

J f (x) =


∂ f1(x)

∂x1

∂ f2(x)
∂x1

. . . ∂ fc(x)
∂x1

...
...

. . .
...

∂ f1(x)
∂xd

∂ f2(x)
∂xd

. . . ∂ fc(x)
∂xd


where c is the number of classes. And fk(x) = P(y = k|x), ∀k ∈ [c] represents the
conditional distribution of the class labels.

Then the Jacobian outer product matrix G(x) is G(x) = J f (x)J f (x)T.The estimated Jaco-
bian matrix is

Ĵ f (x) =
[
∇̂ fn,h,1(x) ∇̂ fn,h,2(x) . . . ∇̂ fn,h,k(x)

]
the estimated Jacobian product matrix is denoted Ĝ(x) = Ĵ f (x)Ĵ f (x)T.

7.4.1 Assumptions

The assumptions are the same as in 6.2.2, with the following modifications: first to the
bounded gradient assumption such that it extends to each class.

• Bounded Gradient: ∥∇ fk(x)∥2 ≤ R, ∀x ∈ X , k ∈ [c].

Secondly, we modify the assumption on the modulus of continuity of ∇ fk similarly
Let ϵt,k,i = supx∈X ,s∈[−t,t]

∣∣∣ ∂ fk(x)
∂xi

− ∂ fk(x+sei)
∂xi

∣∣∣ and ϵt,i = maxk ϵt,c,i, define the (t, i)-boundary
of X as ∂t,i(X ) = {x : {x + tei, x − tei} ̸⊆ X }. When µ has continues density on X and

∇ fk is uniformly continuous on X + B(0, τ), we have µ(∂t,i(X ))
t→0−−→ 0 and ϵt,k,i

t→0−−→ 0.

7.5 consistency of estimator En Ĝ(X ) of the jacobian outerproduct

EX G(X )

To show that the estimator EnĜ(X) is consistent, we proceed to bound ∥EnĜ(X) −
EXG(X)∥ for finite n, which is encapsulated in the theorem that follows. There are two
main difficulties in the proof, which are addressed by a sequence of lemmas. One has
to do with the fact that the gradient estimate at any point depends on all other points,
and second, having gradient estimates for c classes.
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Main Result

Theorem 2. Let t + h ≤ τ, and let 0 ≤ δ ≤ 1. There exist C = C(µ, K(·)) and N = N(µ)
such that the following holds with probability at least 1− 2δ. Define A(n) =

√
Cd · log(kn/δ) ·

0.25/ log2(n/δ). Let n ≥ N, we have:

∥EnĜ(X)]− EXG(X)∥2 ≤ 6R2
√

n

(
√

ln d +

√
ln

1
δ

)
+ k

3R +
√

∑
i∈[d]

ϵ2
t,i +

√
d
(

hR + 1
t

)
√d

t

√
A(n)
nhd + h2R2 + R

√d ln d
δ

2n
+
√

∑
i∈[d]

µ2(∂t,i(X ))

+
√

∑
i∈[d]

ϵ2
t,i



Proof. We begin with the following decomposition:

∥EnĜ(X)− EXG(X)∥2 ≤ ∥EnG(X)− EXG(X)∥2 + ∥EnĜ(X)− EnG(X)∥2

The first term on the right hand side i.e. ∥EnG(X) − EXG(X)∥2 is bounded using
Lemma 14; by using Lemma 15 we bound the second term ∥EnĜ(X)− EnG(X)∥2, this
is done with respect to ∑k∈[c] En∥∇ fk(X) − ∇̂ fn,h,k(X)∥2; therefore we need to bound
∑k∈[c] En∥∇ fk(X) − ∇̂ fn,h,k(X)∥2, which is done by employing Theorem 3 which con-
cludes the proof.

Remark. The theorem implies consistency for t n→∞−−−→ 0, h n→∞−−−→ 0, h/t2 n→∞−−−→ 0, and
(n/ log n)hdt4 n→∞−−−→ ∞, this is satisfied for many settings, for example t ∝ h1/4, h ∝ 1

ln n .

7.5.1 Bounding ∥EnG(X)− EXG(X)∥2

To bound this term, like in the case of the EGOP, we use the following random matrix
concentration result.

Lemma 13. [125, 265]. For the random matrix X ∈ Rd1×d2 with bounded spectral norm
∥X∥2 ≤ M, let d = min{d1, d2}, and X1, X2, ..., Xn are i.i.d. samples, with probability at
least 1 − δ, we have ∥∥∥∥∥ 1

n

n

∑
i=1

Xi − EX

∥∥∥∥∥
2

≤ 6M√
n

(
√

ln d +

√
ln

1
δ

)

Recall the bounded gradient assumption ∥G(X)∥2 = ∥∇ f (X)∥2
2 ≤ R2. Using this as-

sumption we can apply the above lemma to i.i.d matrices G(X), X ∈ X, yielding the
following lemma.

Lemma 14. With probability at least 1 − δ

∥EnG(X)− EXG(X)∥2 ≤ 6R2
√

n

(
√

ln d +

√
ln

1
δ

)
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Next we proceed to bound the second term in the decomposition mentioned in the
proof of theorem 2.

7.5.2 Bounding ∥EnĜ(X)− EnG(X)∥2

A first bound is provided by the following lemma:

Lemma 15. Exist constant c, with probability at least 1 − δ:

∥EnĜ(X)− EnG(X)∥2 ≤ ∑
k∈[c]

En∥∇ fk(X)− ∇̂ fn,h,k(X)∥2 · max
x∈X

∥∇ fk(X) + ∇̂ fn,h,k(X)∥2

Proof. First we can write the term on the l.h.s in terms of the gradients for each class:

∥EnĜ(X)− EnG(X)∥2 =∥En[Ĝ(X)− G(X)]∥2

=

∥∥∥∥∥ ∑
k∈[c]

En[∇ fk(X) · ∇ fk(X)T − ∇̂ fn,h,k(X) · ∇̂ fn,h,k(X)T]

∥∥∥∥∥
2

≤ ∑
k∈[c]

∥∥∥En[∇ fk(X) · ∇ fk(X)T − ∇̂ fn,h,k(X) · ∇̂ fn,h,k(X)T]
∥∥∥

2

next, we notice that ∇ fk(x) · ∇ fk(x)T − ∇̂ fn,h,k(x) · ∇̂ fn,h,k(x)T can be rewritten as:

∇ fk(x) · ∇ fk(x)T − ∇̂ fn,h,k(x) · ∇̂ fn,h,k(x)T =
1
2
· (∇ fk(x) + ∇̂ fn,h,k(x)) · (∇ fk(x)− ∇̂ fn,h,k(x))T

+
1
2
· (∇ fk(x)− ∇̂ fn,h,k(x)) · (∇ fk(x) + ∇̂ fn,h,k(x))T

Using this yields:

∥EnĜ(X)− EnG(X)∥2 ≤1
2 ∑

k∈[c]
∥En[(∇ fk(X) + ∇̂ fn,h,k(X)) · (∇ fk(X)− ∇̂ fn,h,k(X))T]∥2

+
1
2 ∑

k∈[c]
∥En[(∇ fk(X)− ∇̂ fn,h,k(X)) · (∇ fk(X) + ∇̂ fn,h,k(X))T]∥2

= ∑
k∈[c]

∥En[(∇ fk(X)− ∇̂ fn,h,k(X)) · (∇ fk(X) + ∇̂ fn,h,k(X))T]∥2

By using Jensen’s inequality, we have:

En[(∇ fk(X)− ∇̂ fn,h,k(X)) · (∇ fck(X) + ∇̂ fn,h,k(X))T]∥2 ≤
En∥(∇ fk(X)− ∇̂ fn,h,k(X)) · (∇ fk(X) + ∇̂ fn,h,k(X))T∥2

combining the above, gives us the following bound on ∥EnĜ(X)− EnG(X)∥2

∥EnĜ(X)− EnG(X)∥2 ≤ ∑
k∈[c]

En∥(∇ fk(X)− ∇̂ fn,h,k(X)) · (∇ fk(X) + ∇̂ fn,h,k(X))T∥2

= ∑
k∈[c]

En∥∇ fk(X)− ∇̂ fn,h,k(X)∥2 · ∥∇ fk(X) + ∇̂ fn,h,k(X)∥2.

≤ ∑
k∈[c]

En∥∇ fk(X)− ∇̂ fn,h,k(X)∥2 · max
X∈X

∥∇ fk(X) + ∇̂ fn,h,k(X)∥2.
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The above bound has a dependence on ∥∇ fk(X) + ∇̂ fn,h,k(X)∥2, which we now proceed
to bound below:

7.5.3 Bounding ∥∇ fk(X) + ∇̂ fn,h,k(X)∥2

We first bound the max term, by the following lemma:

Lemma 16. ∀c ∈ [k], we have

max
X∈X

∥∇ fk(X) + ∇̂ fn,h,k(X)∥2 ≤ 3R +
√

∑
i∈[d]

ϵ2
t,i +

√
d(

hR + 1
t

)

Proof. ∀x ∈ X, we have

∥∇ fk(x) + ∇̂ fn,h,k(x)∥2 ≤ ∥∇ fk(x)∥2 + ∥∇̂ fn,h,k(x)∥2

≤ 2∥∇ fk(x)∥2 + ∥∇ fk(x)− ∇̂ fn,h,k(x)∥2

≤ 2R + ∥∇ fk(x)− ∇̂ fk(x)∥2 + ∥∇̂ fk(x)− ∇̂ fn,h,k(x)∥2

Next, we adopt the steps as in the proof for Lemma 21, and get the following bound:

∥∇̂ fk(x)− ∇̂ fn,h,k(x)∥2 ≤
√

∑
i∈[d]

(|∆t,i fn,h,k(x)− ∆t,i fk(x)| · 1An,i(x))
2,

this is because

|∆t,i fn,h,k(x)− ∆t,i fk(x)| · 1An,i(x) ≤
1
t

max
s∈{−t,t}

| f̃n,h,k(x + sei)− fk(x + sei)| · 1An,i(x)

+
1
t

max
s∈{−t,t}

| f̃n,h,k(x + sei)− fn,h,k(x + sei)| · 1An,i(x),

we also know that

max
s∈{−t,t}

| f̃n,h,k(X + sei)− fn,h,k(X + sei)| ≤ 1.

Thus we obtain the following bound:

∥∇̂ fk(X)− ∇̂ fn,h,k(X)∥2 ≤
√

d(
hR + 1

t
)

While, we also have that

∥∇ fk(X)− ∇̂ fk(X)∥2 ≤∥∇ fk(X) ◦ In(X)− ∇̂ fk(X)∥2 + ∥∇ fk(X) ◦ In(X)∥2

≤R +
√

∑
i∈[d]

ϵ2
t,i

Combining the above completes the proof

Next we need to bound En∥∇ fk(X)− ∇̂ fn,h,k(X)∥2, which we do so in the next subsec-
tion:
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7.5.4 Bound on En∥∇ fk(X)− ∇̂ fn,h,k(X)∥2

We first decompose En∥∇ fc(X)− ∇̂ fn,h,k(X)∥2 as:

En∥∇ fk(X)− ∇̂ fn,h,k(X)∥2 ≤
En∥∇ fk(X)− ∇̂ fk(X)∥2 + En∥∇̂ fk(X)− ∇̂ fn,h,k(X)∥2

the first term in the r.h.s of the above i.e. En∥∇ fk(X)− ∇̂ fk(X)∥2 can in turn be decom-
posed as:

En∥∇ fk(X)− ∇̂ fk(X)∥2 ≤
En∥∇ fk(X) ◦ In(X)− ∇̂ fk(X)∥2 + En∥∇ fk(X) ◦ In(X)∥2

We need to bound both terms that appear on the r.h.s of the above, which we do so in
the next two subsections, starting with the second term.

7.5.4.1 Bounding En∥∇ fk(X) ◦ In(X)∥2

The bound is encapsulated in the following lemma:

Lemma 17. With probability at least 1 − δ over the choice of X:

En∥∇ fk(X) ◦ In(X)∥2 ≤ R

√d ln d
δ

2n
+
√

∑
i∈[d]

µ2(∂t,i(X ))



Proof. We begin by recalling the bounded gradient assumption: ∥∇ f (x)∥2 ≤ R, using
which we get

En∥∇ f (X) ◦ In(X)∥2 ≤ REn∥In(X)∥2

By relative VC bounds [271], if we set αn = 2d ln 2n+ln(4/δ)
n , then with probability at least

1 − δ over the choice of X, for all balls B ∈ Rd we have µ(B) ≤ µn(B) +
√

µn(B)αn +

αn. Thus, with probability at least 1 − δ, ∀i ∈ [d], Ān,i(X) ⇒ Āi(X). Moreover, since
∥I(X)∥2 ≤

√
d, then by Hoeffding’s inequality,

P(En∥I(X)∥2 − EX∥I(X)∥2 ≥ ϵ) ≤ e−
2nϵ2

d

applying the union bound, we have the following with probability at least 1 − δ

En∥In(X)∥2 ≤ En∥I(X)∥2 ≤ EX∥In(X)∥2 +

√
d ln d

δ

2n

But note that we have:

EX1Āi(X) ≤ EX[1Āi(X)|X ∈ X\∂t,i(X )] + µ(∂t,i(X ))

to see why this is true observe that EX[1Āi(X)|X ∈ X\∂t,i(X )] = 0 because µ(B(x +

sei, h/2)) ≥ Cµ(h/2)d ≥ 3α when we set h ≥ (log2(n/δ)/n)1/d.
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So, we have:

EX∥In(X)∥2 ≤
√

∑
i∈[d]

µ2(∂t,i(X ))

Thus with probability at least 1 − δ, we obtain the following:

En∥∇ fk(X) ◦ In(X)∥2 ≤ R

√d ln d
δ

2n
+
√

∑
i∈[d]

µ2(∂t,i(X ))



Next we need to bound the first term that appeared on the r.h.s. of the decomposition
of En∥∇ fk(X)− ∇̂ fk(X)∥2, reproduced below for ease of exposition:

En∥∇ fk(X)− ∇̂ fk(X)∥2 ≤
En∥∇ fk(X) ◦ In(X)− ∇̂ fk(X)∥2 + En∥∇ fk(X) ◦ In(X)∥2

7.5.4.2 Bounding En∥∇ fk(X) ◦ In(X)− ∇̂ fk(X)∥2

This bound is encapsulated in the following lemma

Lemma 18. We have

En∥∇ fk(X) ◦ In(X)− ∇̂ fk(X)∥2 ≤
√

∑
i∈[d]

ϵ2
t,c,i

Proof. We start with the simple observation regarding the envelope:

fk(x + tei)− fk(x − tei) =
∫ t

−t

∂ fk(x + sei)

∂xi
ds

using this we have

2t
(

∂ f ′k(x)
∂xi

− ϵt,k,i

)
≤ fk(x + tei)− fk(x − tei) ≤ 2t

(
∂ f ′k(x)

∂xi
+ ϵt,k,i

)
Thus we have ∣∣∣∣ 1

2t
( fc(x + tei)− fc(x − tei))−

∂ f ′c(x)
∂xi

∣∣∣∣ ≤ ϵt,c,i

using which we have the following

∥∇ fk(x) ◦ In(x)− ∇̂ fk(x)∥2 =

√√√√ d

∑
i=1

∣∣∣∣∂ f ′k(x)
∂xi

· 1An,i(x) − ∆t,i fk(x) · 1An,i(x)

∣∣∣∣2

≤

√√√√ d

∑
i=1

∣∣∣∣ 1
2t
( fk(x + tei)− fk(x − tei))−

∂ f ′k(x)
∂xi

∣∣∣∣2
≤

√
∑

i∈[d]
ϵ2

t,k,i

Taking empirical expectation on both sides finishes the proof.
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Taking a step back, recall again the decomposition of En∥∇ fc(X)− ∇̂ fn,h,k(X)∥2:

En∥∇ fk(X)− ∇̂ fn,h,k(X)∥2 ≤
En∥∇ fk(X)− ∇̂ fk(X)∥2 + En∥∇̂ fk(X)− ∇̂ fn,h,k(X)∥2

the first term in the r.h.s of the above i.e. En∥∇ fk(X)− ∇̂ fk(X)∥2 was in turn decom-
posed as:

En∥∇ fk(X)− ∇̂ fk(X)∥2 ≤
En∥∇ fk(X) ◦ In(X)− ∇̂ fk(X)∥2 + En∥∇ fk(X) ◦ In(X)∥2

The analysis in the previous subsection was bounding these two terms individually.
Now we turn our attention towards bounding En∥∇̂ fk(X)− ∇̂ fn,h,k(X)∥2

7.5.4.3 Bounding En∥∇̂ f (X)− ∇̂ fn,h(X)∥2

First we introduce a lemma which is a modification of Lemma 6 appearing in [DBLP:conf/nips/KpotufeB12]

Lemma 19. Let t + h ≤ τ. We have for all i ∈ [d], and all s ∈ {−t, t}:

| f̃n,h,c(x + sei)− fc(x + sei)| · 1An,i(x) ≤ hR

Proof. The proof follows the same logic as in [DBLP:conf/nips/KpotufeB12], with the
last step modified appropriately. To be more specific, let x = X + sei, let vi =

Xi−x
∥Xi−x∥2

,
then we have

| f̃n,h,c(x + sei)− fc(x + sei)| ≤ ∑
i∈[d]

wi(x)| f (Xi)− f (x)|

= ∑
i∈[d]

wi(x)|
∫ ∥Xi−x∥2

0
vT

i ∇ f (x + tvi)dt|

≤ ∑
i∈[d]

wi(x)∥Xi − x∥2 · max
x′∈X+B(0,τ)

∥vT
i ∇ f (x)∥2

≤ ∑
i∈[d]

wi(x)∥Xi − x∥2R

≤ hR

Lemma 20. There exist a constant C = C(µ, K(·)), such that the following holds with prob-
ability at least 1 − 2δ over the choice of X. Define A(n) = 0.25 ·

√
Cd · ln(kn/δ), for all

i ∈ [d], k ∈ [c], and all s ∈ {−t, t}:

En| f̃n,h,k(X + sei)− fn,h,k(X + sei)|2 · 1An,i(X) ≤
A(n)
nhd

Proof. The proof follows a similar line of argument as made for the proof of Lemma 7

in [DBLP:conf/nips/KpotufeB12]. First fix any k ∈ [c], Assume An,i(X) is true, and fix
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x = X + sei. Taking conditional expectation on Yn = Y1, ..., Yn given Xn = X1, ..., Xn, we
have

EYn|Xn | fn,h,k(x)− f̃n,h,k(x)|2 ≤ 0.25 · ∑
i∈[n]

(wi(x))2 ≤ 0.25 · max
i∈[n]

wi(x)

Use Yn
x to denote corresponding Yi of samples Xi ∈ B(x, h).

Next, we consider the random variable

ψ(Yn
x) = | fn,h,k(x)− f̃n,h,k(x)|2

Let Yδ denote the event that for all Yi ∈ Yn, |Yi − f (Xi)|2 ≤ 0.25. We know Yδ happens
with probability at least 1/2. Thus

PYn|Xn(ψ(Yn
x) > 2EYn|Xn ψ(Yn

x) + ϵ) ≤ PYn|Xn(ψ(Yn
x) > EYn|Xn,Yδ

ψ(Yn
x) + ϵ)

≤ PYn|Xn,Yδ
(ψ(Yn

x) > EYn|Xn,Yδ
ψ(Yn

x) + ϵ) + δ/2

By McDiarmid’s inequality, we have

PYn|Xn,Yδ
(ψ(Yn

x) > EYn|Xn,Yδ
ψ(Yn

x) + ϵ) ≤ exp

{
−2ϵ2 · δ4

Y ∑
i∈[n]

w4
i (x)

}
The number of possible sets Yn

x (over x ∈ X ) is at most the n-shattering number of balls
in Rd, using Sauer’s lemma we get the number is bounded by (2n)d+2. By union bound,
with probability at least 1 − δ, for all x ∈ X satisfying B(x, h/2)

⋂
Xn ̸= ∅,

ψ(Yn
x) ≤ 2EYn|Xn ψ(Yn

x) +
√

0.25 · (d + 2) · log(n/δ) · ∑
i∈[n]

w4
i (x)

≤ 2
√

EYn|Xn ψ2(Ynx) +
√

0.25 · (d + 2) · log(n/δ) · δ4
Y max

i∈[n]
w2

i (x)

≤
√

Cd · log(n/δ) · 0.25/n2µ2
n(B(x, h/2))

Take a union bound over k ∈ [c], and take empirical expectation, we get ∀k ∈ [c]

En| f̃n,h,k(X + sei)− fn,h,k(X + sei)|2 ≤ 0.25 ·
√

Cd · ln(cn/δ)

n ∑
i∈[n]

1
n(xi, h/2)

where n(xi, h/2) = nµn(B(xi, h/2)) is the number of points in Ball B(xi, h/2).

Let Z denote the minimum h/4 cover of {x1, ..., xn}, which means for any xi, there is
a z ∈ Z , such that xi is contained in the ball B(z, h/4). Since xi ∈ B(z, h/4), we have
B(z, h/4) ∈ B(xi, h/2). We also assume every xi is assigned to the closest z ∈ Z , and
write xi → z to denote such xi. Then we have:

∑
i∈[n]

1
n(xi, h/2)

= ∑
z∈Z

∑
xi→z

1
n(xi, h/2)

≤ ∑
z∈Z

∑
xi→z

1
n(z, h/4)

≤ ∑
z∈Z

n(z, h/4)
n(z, h/4)

= |Z| ≤ Cµ(h/4)−d

Combining above analysis finishes the proof.
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Lemma 21. There exists a constant C = C(µ, K(·)), such that the following holds with proba-
bility at least 1 − 2δ. Define A(n) = 0.25 ·

√
Cd · ln(kn/δ), ∀k ∈ [c]:

En∥∇̂ fk(X)− ∇̂ fn,h,k(X)∥2 ≤
√

d
t

√
A(n)
nhd + h2R2

Proof. First we can write the following bound for the l.h.s:

En∥∇̂ fk(X)− ∇̂ fn,h,k(X)∥2 ≤ En

√
∑

i∈[d]
|∆t,i fn,h,k(X)− ∆t,i fk(X)|2 · 1An,i(X)

≤
√

∑
i∈[d]

En|∆t,i fn,h,k(X)− ∆t,i fk(X)|2 · 1An,i(X)

≤
√

∑
i∈[d]

1
t2 max

s∈{−t,t}
En| fn,h,k(X + sei)− fk(X + sei)|2 · 1An,i(X)

First observe that:

En| fn,h,k(X + sei)− fk(X + sei)|2 · 1An,i(X) ≤ En| f̃n,h,k(X + sei)− fk(X + sei)|2 · 1An,i(X)

+ En| f̃n,h,k(X + sei)− fn,h,k(X + sei)|2 · 1An,i(X)

Also notice that: En| f̃n,h,k(X+ sei)− fk(X+ sei)|2 ·1An,i(X) and En| f̃n,h,k(X+ sei)− fn,h,k(X+

sei)|2 · 1An,i(X) can be respectively bounded by two lemmas from above, thus we get with
probability at least 1 − 2δ

En| fn,h,k(X + sei)− fk(X + sei)|2 ≤ h2R2 +

√
A(n)
nhd

Combining above we get with probability at least 1 − 2δ, ∀k ∈ [c]

∥∇̂ fk(X)− ∇̂ fn,h,k(X)∥2 ≤
√

d
t

√
A(n)
nhd + h2R2

The following theorem provides a bound on En∥∇ f (X)− ∇̂ fn,h(X)∥2:

Theorem 3. With probability at least 1 − 2δ over the choice of X, we have ∀k ∈ [c]:

En∥∇ fk(X)− ∇̂ fn,h,k(X)∥2 ≤
√

d
t

√
A(n)
nhd + h2R2 + R

√d ln d
δ

2n
+
√

∑
i∈[d]

µ2(∂t,i(X ))


+

√
∑

i∈[d]
ϵ2

t,i

Proof. We start with the now familiar decomposition:

En∥∇ fk(X)− ∇̂ fn,h,k(X)∥2 ≤En∥∇̂ fk(X)− ∇̂ fn,h,k(X)∥2

+ En∥∇ fk(X) ◦ In(X)− ∇̂ fk(X)∥2 + En∥∇ fk(X) ◦ In(X)∥2

By Lemma 17 we bound En∥∇ f (X) ◦ In(X)∥2; by Lemma 18 we bound En∥∇ f (X) ◦
In(X)− ∇̂ f (X)∥2; by Lemma 21 we bound En∥∇̂ f (X)− ∇̂ fn,h(X)∥2. Combining these
results concludes the proof.
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7.6 bounds on eigenvalues and eigenspace variations

In the above section, we established that EnĜ(X) is a consistent estimator of EXG(X).
In this section, we also establish consistency of its eigenvalues and eigenspaces,. The
analysis here is based upon results from matrix perturbation theory [169, 170].

7.6.1 Eigenvalues variation

We begin by considering the following lemma for eigenvalues variation from matrix
perturbation theory:

Lemma 22. [169] Suppose both G and Ĝ are Hermitian matrices of size d × d, and admit the
following eigen-decompositions:

G = XΛX−1 and Ĝ = X̂Λ̂X̂−1

where X and X̂ are nonsingular and

Λ = diag(λ1, λ2, ...λd) and Λ̂ = diag(λ̂1, λ̂2, ...λ̂d)

and λ1 ≥ λ2 ≥ ... ≥ λd, λ̂1 ≥ λ̂2 ≥ ... ≥ λ̂d. Thus for any unitary invariant norm ∥ · ∥, we
have

∥diag(λ1 − λ̂1, λ2 − λ̂2, ..., λd − λ̂d)∥ ≤ ∥G − Ĝ∥

More specifically, when considering the spectral norm, we have

max
i∈[d]

|λi − λ̂i| ≤ ∥G − Ĝ∥2

and when considering the Frobenius norm, we have√
∑

i∈[d]
|λi − λ̂i|2 ≤ ∥G − Ĝ∥F

Using the above lemma, we obtain the following theorem that bounds the eigenvalue
variation:

Eigenvalue Variation Bound

Theorem 4. Let λ1 ≥ λ2 ≥ ... ≥ λd be the eigen-values of EXG(X), let λ̂1 ≥ λ̂2 ≥ ... ≥ λ̂d
be the eigen-values of EnĜ(X). There exist C = C(µ, K(·)) and N = N(µ) such that the
following holds with probability at least 1 − 2δ. Define A(n) =

√
Cd · log(n/δ) · C2

Y(δ/2n) ·
σ2

Y/ log2(n/δ). Let n ≥ N, we have:

max
i∈[d]

|λi − λ̂i| ≤
6R2
√

n
(
√

ln d +

√
ln

1
δ
) +

3R +
√

∑
i∈[d]

ϵ2
t,i +

√
d(

hR + CY(δ)

t
)


√d

t

√
A(n)
nhd + h2R2 + R

√d ln d
δ

2n
+
√

∑
i∈[d]

µ2(∂t,i(X ))

+
√

∑
i∈[d]

ϵ2
t,i
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Proof. By Lemma 22, we bound maxi∈[d] |λi − λ̂i| with respect to ∥EnĜ(X)−EXG(X)∥2;
by Theorem 2 we bound ∥EnĜ(X)− EXG(X)∥2.

7.6.2 Eigenspace variation

First we introduce the following definition:

Definition 4. (Angles between two subspaces) Let X, X̂ ∈ Rd×k have full column rank k.
The angle matrix Θ(X, X̂) between X and X̂ is defined as:

Θ(X, X̂) = arccos((XTX)−
1
2 XTX̂(X̂TX̂)−1X̂TX(XTX)−

1
2 )

1
2

More specifically, when k = 1, it reduces to the angle between two vectors:

Θ(x, x̂) = arccos
|xT x̂|

∥x∥2∥x̂∥2

Armed with this definition, we consider the following lemma on eigenspace variation:

Lemma 23. [170] Suppose both G and Ĝ are Hermitian matrices of size d × d, and admit the
following eigen-decompositions:

G =
[

X1 X2

] Λ1 0

0 Λ2

X−1
1

X−1
2

 and Ĝ =
[

X̂1 X̂2

] Λ̂1 0

0 Λ̂2

X̂−1
1

X̂−1
2


where X =

[
X1 X2

]
and X̂ =

[
X̂1 X̂2

]
are unitary. We have

∥ sin Θ(X1, X̂1)∥2 ≤ ∥(Ĝ − G)X1∥2

minλ∈λ(Λ1),λ̂∈λ(Λ2)
|λ − λ̂|

Using the above lemma, we get the following theorem for eigenspaces variant:

Eigenspace Variation

Theorem 5. Write the eigen-decompositions of EXG(X) and EnĜ(X) as

EXG(X) =
[

X1 X2

] Λ1 0

0 Λ2

X−1
1

X−1
2

 , EnĜ(X) =
[

X̂1 X̂2

] Λ̂1 0

0 Λ̂2

X̂−1
1

X̂−1
2
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There exist constants C = C(µ, K(·)) and N = N(µ) such that the following holds with
probability at least 1 − 2δ. Define A(n) =

√
Cd · log(n/δ) · C2

Y(δ/2n) · σ2
Y/ log2(n/δ). Let

n ≥ N:

∥ sin Θ(X1, X̂1)∥2 ≤ ∥X1∥2

minλ∈λ(Λ1),λ̂∈λ(Λ2)
|λ − λ̂|

(
6R2
√

n
(
√

ln d +

√
ln

1
δ
) +3R +

√
∑

i∈[d]
ϵ2

t,i +
√

d(
hR + CY(δ)

t
)


√d

t

√
A(n)
nhd + h2R2 + R

√d ln d
δ

2n
+
√

∑
i∈[d]

µ2(∂t,i(X ))

+
√

∑
i∈[d]

ϵ2
t,i

)

Proof. By Lemma 23, we bound ∥ sin Θ(X1, X̂1)∥2 with respect to ∥X1(EnĜ(X)−EXG(X))∥2,
since ∥X1(EnĜ(X)− EXG(X))∥2 ≤ ∥X1∥2 · ∥EnĜ(X)− EXG(X)∥2, and by Theorem 2

we bound ∥EnĜ(X)− EXG(X)∥2. Combining these concludes the proof.

7.7 recovery of projected semiparametric regression model

In this section, the last on the theoretical analysis, we return to the multi-index motiva-
tion of the EGOP and EJOP discussed in the introduction to this chapter. For ease of
exposition, we restrict our discussion to the EGOP, but the same argument also works
for the EJOP.

Consider the following projected semiparametric regression model:

f (x) = g(VTx)

where V ∈ Rd×r, r ≪ d is a dimension-reduction projection matrix, and g is a non-
parametric function. Without loss of generality, we assume V = [v1, v2, ...., vr], where
vi ∈ Rd, i ∈ [r] is a set of orthonormal vectors, and the gradient outer product (GOP)
matrix of g : EX[∇g(VTX) · ∇g(VTX)T] is nonsingular. The following proposition gives
the eigen-decomposition of gradient outer product (GOP) matrix of f : EXG(x)

Proposition 3. Suppose the eigen-decomposition of EX[∇g(VTX) · ∇g(VTX)T] is given by:

EX[∇g(VTX) · ∇g(VTX)T] = ZΛZ−1

then we have the following eigen-decomposition of EXG(X):

EXG(X) =
[
VZ U

] Λ 0

0 0

Z−1VT

UT


where U = [u1, u2, ..., ud−r], ui ∈ [d − r] is a set of orthonormal vectors in ker(VT).

Proof. Since f (x) = g(VTx), we have ∇ f (x) = V∇g(VTx). Thus we get:

EXG(X) = VEX[∇g(VTX) · ∇g(VTX)T]VT = VZΛZ−1VT
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When we check the eigen-decomposition given in the proposition, the above equation
is satisfied. Moreover, since

[
VZ U

] Z−1VT

UT

 =

Z−1VT

UT

 [VZ U
]
= I

concludes the proof.

Since Z in the above proposition is nonsingular, we get that im(V) = im(VZ), which
means that the column space of projection matrix V is exactly the subspace spanned by
the top-r eigenvectors of the GOP matrix EXG(X). This point has also been noticed by
[166, 287, 289].

Lastly, we need to show that the projection matrix V can be recovered using the esti-
mated GOP matrix. This is captured in the following two theorems:

Recovery of Semi-parametric model

Theorem 6. Suppose the function f we want to estimate has the form f (x) = g(VTx), and
Ṽ ∈ Rd×r is the matrix composed by the top-r eigenvectors of EnĜ(X), then with probability at
least 1 − 2δ:

∥ sin Θ(V, Ṽ)∥2 ≤ 1
λmin

(
6R2
√

n
(
√

ln d +

√
ln

1
δ
) +

3R +
√

∑
i∈[d]

ϵ2
t,i +

√
d(

hR + CY(δ)

t
)


√d

t

√
A(n)
nhd + h2R2 + R

√d ln d
δ

2n
+
√

∑
i∈[d]

µ2(∂t,i(X ))

+
√

∑
i∈[d]

ϵ2
t,i

)

where λmin is the smallest eigenvalue of EX[∇g(VTX) · ∇g(VTX)T]. Suppose λ1, λ2, ..., λd−r

are the lowest d − r eigenvalues of EnĜ(X), and with probability at least 1 − 2δ:

maxi∈[d−r]|λi| ≤ (
6R2
√

n
(
√

ln d +

√
ln

1
δ
) +

3R +
√

∑
i∈[d]

ϵ2
t,i +

√
d(

hR + CY(δ)

t
)


√d

t

√
A(n)
nhd + h2R2 + R

√d ln d
δ

2n
+
√

∑
i∈[d]

µ2(∂t,i(X ))

+
√

∑
i∈[d]

ϵ2
t,i

)

Proof. We only sketch the proof. First of all, notice that V is a semi-orthogonal matrix,
therefore ∥V∥2 = 1. When this observation is combined with above proposition and
Theorem 5, we get a proof of the first part of the theorem. For proving the second
part of the theorem, first observe that by proposition 3, the lowest d − r eigenvalues
of EXG(X) are all zeros. This observation when combined with lemma 22 finishes the
proof.
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7.8 classification experiments

In this section, we give a brief experimental evaluation that examines the utility of the
EJOP as a technique for metric estimation, when used in the setting of non-parametric
classification. As in chapter 6, we consider non-parametric classifiers that rely on the no-
tion of distance, parameterized by a matrix M ⪰ 0, with the squared distance computed
as (x − x′)TM(x − x′).

In the experiments reported in this section, we consider three different choices for M:

1 M = I, which corresponds to the Euclidean distance

2 M = D, where D is a diagonal matrix, the notion of distance in this case corre-
sponds to a scaled Euclidean distance. In particular, in the absence of a gradients
weights [DBLP:conf/nips/KpotufeB12], [152] like approach for the multiclass case,
we instead obtain weights by using the ReliefF procedure [134], which estimates
weights for the multiclass case by a series of one versus all binary classifications.

3 M = EnGn(X), where EnGn(X) is the estimated EJOP matrix.

In particular, letting VDV⊤ denote the spectral decomposition of M, we use it to trans-
form the input x as D1/2V⊤x for the distance computation. Next, for a fixed choice of
M, we can define nearest neighbors of a query point x in various ways. We consider the
following two ways:

1 k nearest neighbors (denoted henceforth as kNN) for fixed k

2 Neighbors that have distance ≤ h for fixed h from the query. We denote this as
hNN. This corresponds to nonparametric classification using a boxcar kernel.

7.8.1 A First Experiment on MNIST

We first consider the MNIST dataset to test the quality of the EJOP metric, and if it
improves upon plain Euclidean distance. In this case, we only test it for the kNN case,
fixing k = 7. We set aside 10,000 points as a validation set, which is used to obtain the
ReliefF weights, as well as for tuning the parameter ti for i = 1, . . . , 784 in the EJOP
estimation. While the ti can be tuned separately for each class, we ignore that option in
this set of experiments. Note that no preprocessing is applied on the images, and the
metric estimation, as well as classification is done using the raw images. The results on
the test set are illustrated in the following table:
While MNIST is a considerably easy task, the improvement given by the use of the
EJOP as the distance metric over the plain Euclidean distance is substantial. This could
perhaps be improved further by tuning ti separately for each class. We will take this
approach in the experiments described in the next section.

7.8.2 Experiments on Datasets in [262] and [129]

Next, we consider the datasets considered in [262] and [129], on which experiments are
described in Chapters 3 and 4 as well. First we report experiments using plain Euclidean
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Method Error %

Euclidean 4.93

ReliefF 4.11

EJOP 2.37

Table 7.1: Error rates on MNIST using EJOP as the underlying metric, and comparison to Eu-
clidean distance and scaled Euclidean distance

distance, h-NN and k-NN when the EJOP is used as the metric. The train/test splits are
reported in the table. We split 20 % of the training portion to tune for h, k and ti, the
results reported are over 10 random runs as in Chapter 6.

Dataset d N train/test Euclidean h-NN k-NN

Isolet 172 7797 4000/2000 14.17 ± 0.7 10.14 ± 0.9 8.67 ± 0.6

USPS 256 9298 4000/2000 7.87 ± 0.2 7.14 ± 0.3 6.67 ± 0.4

Letters 16 20000 4000/2000 7.65 ± 0.3 5.12 ± 0.7 4.37 ± 0.4

DSLR 800 157 100/50 84.85 ± 4.8 41.13 ± 2.1 35.01 ± 1.4

Amazon 800 958 450/450 66.17 ± 2.8 41.07 ± 2.3 39.85 ± 1.5

Webcam 800 295 145/145 61.43 ± 1.7 24.86 ± 1.2 23.71 ± 2.1

Caltech 800 1123 550/500 85.41 ± 3.5 54.65 ± 2.6 52.86 ± 3.1

Table 7.2: Results comparing classification error rates on the datasets used in [129] using plain
Euclidean distance, hNN and kNN while using the EJOP as the metric

Next, we consider the same datasets, and report results obtained on the same folds
using three popular metric learning methods. In particular, we consider Large Margin
Nearest Neighbors (LMNN) [280], Information Theoretic Metric Learning (ITML) [63]
and Metric Learning to Rank (MLR) [184]. Since these methods explicitly optimize for
the metric over a space of possible metrics, the comparison is manifestly unfair, since
in the case of the EJOP, there is only one metric, which is estimated from the training
samples. The setup is the same as discussed above, with the following addition for the
metric learning methods: We learn the metric for k = 5, and test is using whatever k
that was returned while tuning for the EJOP. We observe that despite its simplicity, EJOP
does a decent job as compared to the metric learning methods, in some cases returning
error rates comparable to those returned by MLR and ITML.

7.9 summary of part on metric estimation

We conclude this part of the dissertation with a summary of the work undertaken,
and some potential avenues for future work. Chapters 6 and 7 made the following
contributions:
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Dataset h-NN k-NN ITML LMNN MLR

Isolet 10.14 ± 0.9 8.67 ± 0.6 8.43 ±0.3 5.3 ± 0.4 6.59 ± 0.3

USPS 7.14 ± 0.3 6.67 ± 0.4 6.57 ± 0.2 6.23 ± 0.5 6.76 ± 0.3

Letters 5.12 ± 0.7 4.37 ± 0.4 5 ± 0.7 4.1 ± 0.4 17.81 ± 5.1

DSLR 41.13 ± 2.1 35.01 ± 1.4 21.65 ± 3.1 29.65 ± 3.7 41.54 ± 2.3

Amazon 41.07 ± 2.3 39.85 ± 1.5 39.83 ± 3.5 33.08 ± 4.2 29.65 ± 2.6

Webcam 24.86 ± 1.2 23.71 ± 2.1 15.31 ± 4.3 19.78 ± 1.5 27.54 ± 3.9

Caltech 54.65 ± 2.6 52.86 ± 3.1 52.37 ± 4.2 52.15 ± 3.2 51.34 ± 4.5

Table 7.3: Results comparing classification error rates given by the EJOP, and three popular met-
ric learning methods

Summary of Part II

1 We described a simple estimator for the Expected Gradient Outerproduct (EGOP)

ExG(x) ≜ Ex

(
∇ f (x) · ∇ f (x)⊤

)
.

and demonstrated that it remains statistically consistent under mild assumptions.
The estimated EGOP was then showed to be useful in nonparametric regression
tasks when used as the underlying metric.

2 We extended the EGOP to the multiclass case, proposing a generalization that we
refer to as the Expected Jacobian Outer Product (EJOP)

ExG(x) ≜ Ex

(
J f (x)J f (x)T

)
As in the case of the EGOP, we proposed a rough estimator for the EJOP, and
also showed that it remained statistically consistent under similar assumptions.
The EJOP was then used and shown to be experimentally useful as a metric in
non-parametric classification tasks.

7.10 potential avenues for future work

7.10.1 Label Aware Dimensionality Reduction

As discussed in Chapter 5, an attractive quality of the EGOP is that it recovers the
average variation of f in all directions. It is this property that makes it useful for effective
dimension reduction, that is, finding a k << d dimensional subspace that is most relevant
to predicting the output y. As discussed in Section 7.7, this multi-index motivation also
carries through for the multiclass case by the EJOP.
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Although explored somewhat cursorily by the dissertation author, it would be interest-
ing to leverage the multi-index motivation of both the EGOP and the EJOP for the task
of dimensionality reduction of data that takes into account the labels as well. This is
contrasted to methods such as PCA, where the covariance matrix construction is com-
pletely label oblivious. Some experiments for dimensionality for the case of regression
are reported by [194, 288] and by using metric learning are reported by [281], however
not many applications were explored. The EGOP and EJOP can possibly be used to give
a handy method for class aware dimensionality reduction.

7.10.2 Operators that take into account local geometry

We have the following, somewhat hand-wavy analogy between the EGOP and EJOP
when put side by side with PCA. PCA helps recover directions according to how much
variance in the data is explained by them, whereas the EGOP and EJOP help us recover
directions according to the average variation of f . Both methods involve construction of
a covariance matrix, and lose local information. We illustrate this with the EGOP

ExG(x) ≜ Ex

(
∇ f (x) · ∇ f (x)⊤

)
.

While gradients are local objects, since in the estimation of the EGOP, we take expecta-
tion over x, all information about the local geometry is averaged out. We would like to
construct operators that don’t lose local information, and maybe give a non-linear map
to a subspace that is most relevant to predict the output.

We can perhaps take inspiration from the literature in non-linear dimensionality reduc-
tion to search for an alternative. An attractive method, that unlike PCA does retain
local information is exemplified by Laplacian Eigenmaps of Belkin and Niyogi [13]. In
such methods, dimensionality reduction is achieved by the spectral decomposition of
an operator that encodes the local geometry of the data. Usually, such an operator is a
diffusion based object, such as the Graph Laplacian, defined as:

L = I − D− 1
2 WD− 1

2

where D and W are the degree and adjacency matrices respectively, of an appropriate
nearest neighbor graph constructed on the data points. Taking a cue from this, we could
define a diffusion map using gradients W, for the regression and binary classification case
as follows:

Wi,j = W f (xi, xj) = exp

(
−

∥xi − xj∥2

σ1
−

∥ 1
2 (∇ f (xi) +∇ f (xj)(̇xi − xj)∥2

σ2

)

Such an operator has infact been discussed by [194, 288], but not explored in detail. For
the multiclass case, we could consider the following:

Wi,j = W f (xi, xj) = exp

(
−

∥xi − xj∥2

σ1
−

∥ 1
2 (|∇ fc(xi)|+ |∇ fc(xj|)(̇xi − xj)∥2

σ2

)
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Where the operation | · | takes a matrix and sums over rows. In the above case |∇ fc(x)|
would be a d dimensional object, rather than d × c.

Preliminary experiments on using the above operators for non-linear class-aware di-
mensionality reduction, as well as metric reweighing has yielded encouraging results.
However, a detailed study is left for future work.

Finally, a somewhat more challenging avenue for future work would be to obtain con-
sistent estimators for such objects, which are also cheap to estimate. Recall that in
Eignemaps type methods, proving consistency involves showing that the eigenvectors of
the graph Laplacian approach the eigenfunctions of the corresponding Laplace-Beltrami
operator in the limit (see for example [14, 274]). It is not clear if such results (akin to
those in sections 7.6 and 7.7) could be shown for the gradient based operators defined
above. However, it could be a fruitful line of work to try and extend the EGOP and
EJOP in such a way that the local geometry of the data could be taken into account.
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D I S C R I M I N AT I V E R E P R E S E N TAT I O N L E A R N I N G F O R
S P H E R I C A L D ATA

In the previous chapter we motivated group equivariant representation learning, in
particular discriminative learning of such representations. In this chapter, we give a par-
ticular example: We describe a SO(3) equivariant spherical CNN, which while learning
SO(3) equivariant representations discriminatively, also has the unusual feature that it
can operate completely in Fourier space. Work presented in this chapter has appeared
in the following publication [145].

Our starting point is the following theorem:

Theorem 7 (Kondor and Trivedi [148]). A neural network connecting layers of the form
L2(Xi, Cni) for a sequence of G-spaces Xi is G-equivariant if and only if it is a composition of
G-convolutions on the Xi spaces and nonlinearities applied to Cni

A more general result for steerable convolution appears in the recent works of Cohen et al.
[53], [54]. However, for our discussion it suffices to only consider the discussion in [148].
One of the main contributions of [148] is to give a spectral account for group equivariant
networks, making the above theorem actionable to design neural networks that are
equivariant to the action of general compact groups. In particular, [148] demonstrates
that if a compact group G acts on the inputs of the neural network, then there is a
natural Fourier transformation with respect to the group G, which gives a sequence of
Fourier matrices at each layer. In particular, the linear operation at a given layer will be
equivariant to the action of G if and only if it involves multiplying the Fourier matrices
with learnable weight matrices from the right. It is this insight that we will use to present
a neural network architecture that operates on spherical data, while being equivariant
to rotations of the sphere.

We follow recent work on Spherical CNNs by Cohen et al. [50] (also see [82]), which
presents a SO(3) equivariant spherical neural network architecture using a general-
ized SO(3) Fourier transform. One of the drawbacks of their approach is that the
non-linearity still needs to be applied in real space, which leads to a non-conventional
architecture which involves forward and backward Fourier transforms, which while be-
ing expensive can also cause numerical errors. In what follows we propose a spherical
CNN architecture that is strictly more general, but at the same time operates entirely in
Fourier space. It must be noted that our methodology is more general in its import–it
can be used to design neural networks that are equivariant to the action of any continu-
ous compact group.

In the next section, we describe the general set-up and notation to explicate on our
approach.



102 discriminative representation learning for spherical data

8.1 notation and basic definitions

8.1.1 The Unit Sphere

The sphere S2 with unit radius can be defined as the set of points x ∈ R3 such that
∥x− x0∥ = 1, where x0 is the origin. We can represent a sphere conveniently in spherical
coordinates: for some x = [x1, x2, x3] we can write x1 = r cos θ sin ϕ, x2 = r sin θ sin ϕ

and x3 = r cos ϕ, where θ ∈ [0, 2π] is the azimuthal coordinate i.e. the longitude and
ϕ ∈ [0, π] is the polar coordinate i.e. the co-latitude.

8.1.2 Signals

We work with spherical images represented by f (θ, ϕ) and corresponding filters h(θ, ϕ),
which are taken to be continuous, complex valued functions. That is:

f , h : S2 → Ck

For most of the discussion in this chapter we simply work with f , h : S2 → C for ease
of exposition.

8.1.3 Rotations

We denote a rotation R ∈ SO(3), and parametrize it by the familiar ZYZ Euler angles
α, β, γ and denote it as R(α, β, γ). Any rotation R(α, β, γ) can thus be written as the
following sequence of rotations along the z and y axes:

R(α, β, γ) = Rz(γ)Ry(β)Rz(α) α, γ ∈ [0, 2π), β ∈ [0, π]

Thus any spherical image h(θ, ϕ) when subject to rotation R could be denoted as:

hR(θ, ϕ) = Rz(γ)Ry(β)Rz(α)(h)(θ, ϕ) (8.1)

Alternatively, if x denotes the point at position (θ, ϕ), we denote it as

hR(x) = h(R−1x) R ∈ SO(3) (8.2)

8.2 correlation on the sphere

In classical convolutional neural networks, given an input feature map f : Z2 → R and
a filter g : Z2 → R, the value of the output feature map at some point (−x,−y) is
simply the inner product between the input and the filter translated by (x, y). Thus the
process of correlation here can just be seen as pattern matching: the output map would
have a stronger activation if it has a high correlation with the filter.

In order to define a spherical CNN, we would want to first state an appropriate notion
for correlation between f , g ∈ L2(S2), when g is rotated and matched with f in analogy
with the planar CNN case. The difference in this case however is that, unlike in the
planar case, where the translation group and the input (the plane) that it acts on are
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isomorphic to each other, in the spherical case, they are no longer the same. This can
lead to some consternation regarding the correct notion of spherical correlation.

However, as beautifully pointed out by Chirikjian and Kyatkin [47], a definition of cor-
relation that does not veer off from the notion of pattern matching discussed above is
rather simple:

(h ⋆ f )(R) =
1

4π

∫ 2π

0

∫ π

−π
[hR(θ, ϕ)]∗ f (θ, ϕ) cos θdθdϕ R ∈ SO(3) (8.3)

* denotes complex conjugation. Thus the spherical correlation is function on the rotation
group SO(3) rather than on S2.

At first blush, the rather foreboding double integral in equation 8.3 is what we would
want to implement in our neural network. But this is problematic, one reason for which
is that no perfectly symmetrical discretizations for spheres exist [258].

8.3 filters and feature maps in fourier space

Instead of working with f (θ, ϕ) and h(θ, ϕ) in real space, we instead move to the Fourier
domain. It is well known that for functions on the sphere f ∈ L2(S2), in direct analogy
for periodic functions on the circle, the eigenfunctions of the spherical Laplacian give a
basis. These basis functions are the so-called spherical harmonics. We can thus represent
f (θ, ϕ) and h(θ, ϕ) in terms of their spherical harmonics expansions.

f (θ, ϕ) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

f̂ ℓm(θ, ϕ)Yℓ
m(θ, ϕ) (8.4)

h(θ, ϕ) =
∞

∑
ℓ=0

ℓ

∑
m=−ℓ

ĥℓm(θ, ϕ)Yℓ
m(θ, ϕ) (8.5)

As might be already clear, Yℓ
m(θ, ϕ) are the spherical harmonics with ℓ ≥ 0 and m ∈

{−ℓ, . . . , ℓ}, and are written as:

Yℓ
m(θ, ϕ) = (−1)m

√
(2ℓ+ 1)(ℓ− m)!

4π(ℓ+ m)!
Pℓ

m(cos θ)eimϕ, m = −ℓ, . . . , ℓ (8.6)

here Pℓ
m denote the associated Legendre functions.

The coefficients of this spherical Fourier transform are found as follows:

f̂ ℓm =
1

4π

∫
(θ,ϕ)∈S2

f (θ, ϕ)Yℓ
m(θ, ϕ) cos θdθdϕ (8.7)

ĥℓm =
1

4π

∫
(θ,ϕ)∈S2

h(θ, ϕ)Yℓ
m(θ, ϕ) cos θdθdϕ (8.8)

Above we have described how to write f (θ, ϕ) and h(θ, ϕ) in Fourier space. However,
recall that correlation defined in equation 8.3 was a function on SO(3). We thus need
to work with a Fourier transform on the rotation group. Thankfully, non-commutative
harmonic analysis [47] provides us with such a notion. For functions f ∈ L2(SO(3)).
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The Fourier transform can be seen as a change of basis for the L2 space of complex
valued functions on SO(3) to the irreducible representations. More specifically, for some
function g : SO(3) → C, the SO(3)-Fourier transform is the collection of the following
matrices:

Gℓ =
∫

SO(3)
g(R)ρℓ(R)dµ(R) ℓ = 0, 1, 2, . . . (8.9)

Where ρℓ(R) ∈ C2ℓ+1×2ℓ+1 are the Wigner D-matrices, which are the irreducible repre-
sentations for the group SO(3). As a corollary of Schur’s first lemma, we also know that
the spherical harmonics also provide us with a basis for the irreducible representations
of SO(3). That is Yℓ

R = ρℓ(R)Yℓ(θ, ϕ), and the elements of ρℓ(R) are given as:

ρmn
ℓ (R) = e−imγdℓmn(cos β)e−inα m, n = −ℓ . . . , ℓ (8.10)

Where dℓmn correspond to the Wigner little-d matrices. This is a good point to revisit
the choice to keep activations and filters to be complex valued f , h : S2 → C. Note
that ρℓ matrices are complex valued, and thus allowing activations and filters to be
also complex valued simplifies implementation, as well will see when we describe our
network.

Coming back, having defined the Fourier transform, we would also need the inverse
Fourier transform, which is defined as below:

g(R) =
∞

∑
ℓ=0

Tr[Gℓρℓ(R−1)] (8.11)

Having described Fourier transforms for f ∈ L2(S2) and f ′ ∈ L2(SO(3)), we now
consider our spherical correlation formulation again:

(h ⋆ f )(R) =
1

4π

∫ 2π

0

∫ π

−π
[hR(θ, ϕ)]∗ f (θ, ϕ) cos θdθdϕ R ∈ SO(3) (8.12)

It can be shown (see [47] and Appendix of [50]) that the SO(3) correlation satisfies a
Fourier theorem, reducing finding SO(3) Fourier coefficients to simply pointwise mul-
tiplications of the spherical Fourier coefficients. That is, in the above equation, each
component is simply given as (here † denotes the hermitian conjugate):

[ĥ ⋆ f ]ℓ = f̂ℓĥ†
ℓ ℓ = 0, 1, . . . , L (8.13)

In layers s = 2, . . . , S of a spherical CNN, the filters and the activations are no longer
a function on the sphere, but rather on SO(3). In that case, rather unsurprisingly (see
equation 8.10 and preceding discussion), we have a similar convolution theorem

[ĥ ⋆ f ]ℓ = FℓH†
ℓ ℓ = 0, 1, . . . , L (8.14)

and since we are working with functions on SO(3), Fℓ and Hℓ are of course matrices.

The approach of Cohen et al. is essentially based on equations 8.13 and 8.14, where
instead of working with the continuous function f , which as we have already seen might
be complicated to work with, we work with the coefficients f̂ℓ with ℓ = 0, 1, . . . , L and
regard them as the activations of the neural network. Likewise ĥℓ with ℓ = 0, 1, . . . , L
are regarded as the learn-able filters.
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8.4 a generalized so(3)-covariant spherical cnn

In the previous section we discussed two Fourier theorems, which form the bedrock on
which the work of [50] was based. We now consider SO(3) correlation i.e. equation 8.12

again, but view it from an algebraic point of view. Specifically, we would like to first
nail down, how it behaves under rotations. To begin, we consider the fact that when a
spherical function f (θ, ϕ) is subject to a rotation as discussed in 8.1.3, then the Fourier
components are modulated by the Wigner D-matrix corresponding to the rotation R i.e.

f 7→ fR ⇐⇒ f̂ℓ 7→ ρℓ(R) f̂ℓ (8.15)

Likewise, for a function h : SO(3) → C, which is subject to a rotation R, we have an
analogous effect on the Fourier matrices i.e. they are modulated by the corresponding
Wigner D-matrix1.

h(R′) 7→ h(R−1R′) ⇐⇒ Gℓ 7→ ρℓ(R)Gℓ (8.16)

Where Gℓ are the Fourier matrices of h. The following proposition states that matrices
output in equation 8.13 exhibits similar behavior.

Proposition 4. Suppose f : S2 → C is an activation function that under a rotation R trans-
forms as f 7→ f (R−1x) R ∈ SO(3), and also suppose h : S2 → C is a filter. Then, each
component in the cross-correlation formula 8.13 transforms as:

[ĥ ⋆ f ]ℓ 7→ ρℓ(R)[ĥ ⋆ f ]ℓ (8.17)

An identical claim can be made in the context of equation 8.14, which we state separately
for the sake of completeness.

Proposition 5. Suppose f : SO(3) → C is an activation function that under a rotation R
transforms as f 7→ fR(R′) R ∈ SO(3), and also suppose h : SO(3) → C is a filter. Then,
each component in the cross-correlation formula 8.14 transforms as:

[ĥ ⋆ f ]ℓ 7→ ρℓ(R)[ĥ ⋆ f ]ℓ (8.18)

Notice that equation 8.17 describes how spherical harmonic vectors transform under
a rotation, while equation 8.18 describes the behaviour of Fourier matrices under a
rotation. This similarity is not superficial. Indeed, we could understand the latter to
mean that each column of the Fourier matrices will instead transform according to 8.17.
It is this observation that leads us to a general definition of a SO(3) covariant Spherical
CNN.

1 The usage of modulation is in analogy with classical Fourier analysis on the real line. Where a shift in the
time domain causes the frequency to be multiplied by a complex exponential x(t − t0) ⇐⇒ e−iωt0 X(ω).
In the case of Fourier analysis on compact groups, a shift in the time domain, in this case a rotation,
corresponds to a modulation by the irreducible representation in the frequency domain (in this case the
Wigner D-matrix corresponding to R). Note that while R is not compact e−iωt0 is infact an irreducible
representation for t0.
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Generalized SO(3)-covariant Spherical CNN

Definition 5. Let N be a S + 1 layer feed-forward network which takes as input f 0 : S2 → C.
We say that N is a generalized SO(3)-covariant Spherical CNN if the output of each layer can
be expressed as a collection of vectors:

f̂ s =
(

f̂ s
0,1, f̂ s

0,2, . . . , f̂ s
0,τs

0
, f̂ s

1,1, f̂ s
1,2, . . . , f̂ s

1,τs
1
, . . . . . . . . . f̂ s

L,τs
L

)
(8.19)

where each f̂ s
ℓ,j ∈ C2ℓ+1 is a ρℓ-covariant vector in the sense of 8.17. We call each individual

f̂ s
ℓ,j vector an irreducible fragment of f̂ s. The integer vector τs = (τs

0 , τs
1 , . . . , τs

L) that counts
the number of fragments for each ℓ, we call as the type of f̂ s

The above gives a concrete definition of a SO(3)-covariant spherical CNN, however, to
fully specify the neural network, we have to explicate on three things:

1 A linear transformation in each layer that involves learnable weights. Given that
the output of each layer has the form in equation 8.19, we need to specify how
they can be mixed. Moreover, the linear transformation must be covariant.

2 A covariant non-linearity on top of the linear transformation.

3 Final output that is rotation-invariant.

We consider these points one by one.

8.5 covariant linear transformations

For a neural network to be covariant, the linear transformation applied at each layer
must also be covariant. In the case of the network defined above, the prescription for
this is encapsulated in the following proposition. Note that this proposition is a special
case of the theorem introduced in the introduction of this chapter.

Proposition 6. Suppose f̂ s is a SO(3)-covariant activation function that has the form f̂ s =(
f̂ s

0,1, f̂ s
0,2, . . . , f̂ s

0,τs
0
, f̂ s

1,1, f̂ s
1,2, . . . , f̂ s

1,τs
1
, . . . . . . . . . f̂ s

L,τs
L

)
, and yet another function ĝs =

L( f̂ s), which is a linear function of f̂ s expressed similarly. Then ĝs is SO(3)-covariant iff each
ĝs

ℓ,j fragment is a linear combination of fragments from f̂ s with the same ℓ

Recall that each fragment f̂ s
ℓ,j is 2ℓ+ 1 dimensional. If we concatenate all the fragments

corresponding to a fixed ℓ into a matrix denoted Fs
ℓ , and likewise do the same for ĝ.

Then the proposition basically says that Gs
ℓ = Fs

ℓWs
ℓ for all ℓ. It is these parameters that

are learned in our network. We must also note the generality of this formulation by
considering that both equations 8.17and 8.18 are particular cases, although the Wℓ does
not yield to a good interpretation in terms of cross-correlation.
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8.6 covariant non-linearities

Next we turn our attention to the design of a non-linearity that is both differentiable as
well as covariant. The choice of non-linearity is absolutely crucial to the success of neural
networks. Besides, in the case of networks that are equivariant, usually we work with
non-linearities in real space. The reason for this to easy to understand. Being pointwise
operations, these are automatically equivariant. Designing a non-linearity that is both
covariant and differentiable in Fourier space is far more challenging. It is for this reason
that other work in group equivariant networks always apply the non-linearity in real
space. However, these backward-forward transformations can be expensive, and can be
a cause for a number of complications, including partially losing equivariance due to
quadrature.

Here we take a rather unusual route to solve this problem: We take tensor products
between fragments, but note that since each of the fragments was irreducible, after
tensor products they no longer might be so. To maintain covariance, we would want
the fragments to be irreducible. This problem can be solved exactly by the so called
Clebsch-Gordan decomposition.

In representation theory, the Clebsch-Gordan decomposition arises in the context of
decomposing the tensor product of irreducible representations in a direct sum of irre-
ducibles. In particular, for the group SO(3), it takes the form:

ρℓ1(R)⊗ ρℓ2(R) = Cℓ1,ℓ2

[
ℓ1+ℓ2⊕

ℓ=|ℓ1−ℓ2|
ρℓ(R)

]
CT
ℓ1,ℓ2

Equivalently, we can write:

ρℓ(R) = CT
ℓ1,ℓ2,ℓ

[
ρℓ1(R)⊗ ρℓ2(R)

]
Cℓ1,ℓ2,ℓ

Where Cℓ1,ℓ2,ℓ are appropriate blocks of Cℓ1,ℓ2 . The utility of the CG-transform for our
purpose is encapsulated in the following lemma:

Lemma 24. Let f̂ℓ1 and f̂ℓ2 denote ρℓ1 and ρℓ2 covariant vectors, and let ℓ denote any integer
between |ℓ1 − ℓ2| and ℓ1 + ℓ+ 2. Then

ĝℓ = CT
ℓ1,ℓ2,ℓ

[
f̂ℓ1 ⊗ f̂ℓ2

]
(8.20)

is a ρℓ covariant vector.

The algorithm then consists of finding 8.20 between all pairs of fragments and then
stacking them horizontally, resulting in possibly very wide matrices: in our parlance
the activations, or number of channels increase substantially. This can be controlled by
fixing, for each ℓ, the maximum number of fragments to be τ̄ℓ. Thankfully, this can be
done by using the learnable weight matrices (discussed in section 8.5).

8.7 final invariant layer

Since we need the network to be rotation invariant, we implement this by considering
only the f̂ S

0,j fragments in the last layer. This is because the ℓ = 0 representation is
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constant, and thus rotation invariant. We can then connect fully connected layers on top
of this last Fourier layer.

With all the ingredients in place, we now describe our experiments.

8.8 experiments

In this section we describe experiments that give a direct comparison with those re-
ported by Cohen et al. [50]. We choose these experiments as the Spherical CNN proposed
in [50] is the only direct competition to our method. Besides, the comparison is also in-
structive for two different reasons: Firstly, while the procedure used in [50] is exactly
equivariant in the discrete case, for the continuous case they use a discretization which
causes their network to partially lose equivariance with changing bandwidth and depth,
whereas our method is always equivariant in the exact sense. Secondly, owing to the na-
ture of their architecture and discretization, [50] use a more traditional non-linearity i.e.
the ReLU, which is also quite powerful. In our case, to maintain full covariance and
to avoid the quadrature, we use an unconventional quadratic non-linearity in Fourier
space. Because of these two differences, the experiments will hopefully demonstrate the
advantages of avoiding the quadrature and maintaining full equivariance despite using
a purportedly weaker nonlinearity.

Cohen et al. present two sets of experiments: In the first sequence, they study the numeri-
cal stability of their algorithm and quantify the equivariance error due to the quadrature.
In the second, they present results on three datasets comparing with other methods.
Since our method is fully equivariant, we focus on the second set of experiments.

8.8.1 Rotated MNIST on the Sphere

We use a version of MNIST in which the images are painted onto a sphere and use two
instances as in [50]: One in which the digits are projected onto the Northern hemisphere
and another in which the digits are projected on the sphere and are also randomly
rotated.

The baseline model is a classical CNN with 5 × 5 filters and 32, 64, 10 channels with a
stride of 3 in each layer (roughly 68K parameters). This CNN is trained by mapping the
digits from the sphere back onto the plane, resulting in nonlinear distortions. The sec-
ond model that we compare to is the Spherical CNN proposed in [50]. For this method,
we use the same architecture as reported by the authors i.e. having layers S2 convolu-
tion – ReLU – SO(3) convolution – ReLU – Fully connected layer with bandwidths 30,
10 and 6, and the number of channels being 20, 40 and 10 (resulting in a total of 58K
parameters).

For our method we use the following architecture: We set the bandlimit Lmax = 8, and
keep τl = ⌈ 12√

L+1
⌉, using a total of 5 layers as described in section ??, followed by a

fully connected layer of size 256 by 10. We use batch normalization [118] on the fully
connected layer, and a variant of batch normalization that preserves covariance in the
Fourier layers. This method takes a moving average of the standard deviation for a
particular fragment for all examples seen during training till then and divides by it, the
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parameter corresponding to the mean in usual batch normalization is kept to be zero
as anything else will break covariance. Finally, we concatenate the output of each Fs

0 in
each internal layer, which are SO(3) invariant scalars, along with that of the last layer to
construct the fully connected layer. We observed that having these skip connections was
crucial to facilitate smooth training. The total number of parameters was 342086, the
network was trained by using the ADAM optimization procedure [132] with a batch
size of 50 and a learning rate of 5 × 10−4. We also used L2 weight decay of 0.00001 on
the trainable parameters.

We report three sets of experiments: For the first set both the training and test sets were
not rotated (denoted NR/NR), for the second, the training set was not rotated while the
test was randomly rotated (NR/R) and finally when both the training and test sets were
rotated (denoted R/R).

Method NR/NR NR/R R/R

Baseline CNN 97.67 22.18 12

Cohen et al. 95.59 94.62 93.4

Ours (FFS2CNN) 96 95.86 95.8

We observe that the baseline model’s performance deteriorates in the three cases, effec-
tively reducing to random chance in the R/R case. While our results are better than
those reported in [50], they also have another characteristic: they remain roughly the
same in the three regimes, while those of [50] slightly worsen. We think this might be a
result of the loss of equivariance in their method.

8.8.2 Atomization Energy Prediction

Next, we apply our framework to the QM7 dataset [21, 226], where the goal is to regress
over atomization energies of molecules given atomic positions (pi) and charges (zi). Each
molecule contains up to 23 atoms of 5 types (C, N, O, S, H). We use the Coulomb Matrix
(CM) representation proposed by [226], which is rotation and translation invariant but
not permutation invariant. The Coulomb matrix C ∈ RN×N is defined such that for a
pair of atoms i ̸= j, Cij = (zizj)/(|pi − pj|), which represents the Coulomb repulsion,
and for atoms i = j, Cii = 0.5z2.4

i , which denotes the atomic energy due to charge. To
test our algorithm we use the same set up as in [50]: We define a sphere Si around pi
for each atom i. Ensuring uniform radius across atoms and molecules and ensuring no
intersections amongst spheres during training, we define potential functions Uz(x) =

∑j ̸=i,zj=z
ziz

|x−pi | for every z and for every x on Si. This yields a T channel spherical signal
for each atom in a molecule. This signal is then discretized using Driscol-Healy [75] grid
using a bandwidth of b = 10. This gives a sparse tensor representation of dimension
N × T × 2b × 2b for every molecule.

Our spherical CNN architecture has the same parameters and hyperparameters as in the
previous subsection except that τl = 15 for all layers, increasing the number of parame-
ters to 1.1 M. Following [50], we share weights amongst atoms and each molecule is rep-
resented as a N × F tensor where F represents Fs

0 scalars concatenated together. Finally,
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we use the approach proposed in [295] to ensure permutation invariance. The feature
vector for each atom is projected onto 150 dimensions using a MLP. These embeddings
are summed over atoms, and then the regression target is trained using another MLP
having 50 hidden units. Both of these MLPs are jointly trained. The final results are pre-
sented below, which show that our method outperforms the Spherical CNN of Cohen et
al.. The only method that delivers better performance is a MLP trained on randomly per-
muted Coulomb matrices [191], and as [50] point out, this method is unlikely to scale
to large molecules as it needs a large sample of random permutations, which grows
rapidly with N.

Method RMSE

MLP/Random CM [191] 5.96

LGIKA (RF) [216] 10.82

RBF Kernels/Random CM [191] 11.42

RBF Kernels/Sorted CM [191] 12.59

MLP/Sorted CM [191] 16.06

Spherical CNN [50] 8.47

Ours (FFS2CNN) 7.91

8.8.3 3D Shape Recognition

Finally, we report results for shape classification using the SHREC17 dataset [228],
which is a subset of the larger ShapeNet dataset [46] having roughly 51300 3D models
spread over 55 categories. It is divided into a 70/10/20 split for train/validation/test.
Two versions of this dataset are available: A regular version in which the objects are
consistently aligned and another where the 3D models are perturbed by random ro-
tations. Following [50] we focus on the latter version, as well as represent each 3D
mesh as a spherical signal by using a ray casting scheme. For each point on the sphere,
a ray towards the origin is sent which collects the ray length, cosine and sine of the
surface angle. In addition to this, ray casting for the convex hull of the mesh gives addi-
tional information, resulting in 6 channels. The spherical signal is discretized using the
Discroll-Healy grid [75] with a bandwidth of 128. We use the code provided by [50] for
generating this representation.

We use a ResNet style architecture, but with the difference that the full input is not
fed back but rather different frequency parts of it. We consider Lmax = 14, and first
train a block only till L = 8 using τl = 10 using 3 layers. The next block consists of
concatenating the fragments obtained from the previous block and training for two
layers till L = 10, repeating this process till Lmax is reached. These later blocks use
τl = 8. As earlier, we concatenate the Fs

0 scalars from each block to form the final
output layer, which is connected to 55 nodes forming a fully connected layer. We use
Batch Normalization in the final layer, and the normalization discussed in 8.8.1 in the
Fourier layers. The model was trained with ADAM using a batch size of 100 and a
learning rate of 5 × 10−4, using L2 weight decay of 0.0005 for regularization. The total
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number of parameters was roughly 2.3M. We compare our results using the SHREC
competition evaluation script to some of the top performing models on SHREC (which
use architectures specialized to the task) as well as the model of Cohen et al.. Our
method, like the model of Cohen et al. is task agnostic and uses the same representation.
Despite this, it is able to consistently come second or third in the competition (while
being neck to neck with Cohen et al.), showing that it affords an efficient method to
learn from spherical signals.

Method P@N R@N F1@N mAP NDCG

Tatsuma_ReVGG 0.705 0.769 0.719 0.696 0.783

Furuya_DLAN 0.814 0.683 0.706 0.656 0.754

SHREC16-Bai_GIFT 0.678 0.667 0.661 0.607 0.735

Deng_CM-VGG5-6DB 0.412 0.706 0.472 0.524 0.624

Spherical CNNs [50] 0.701 0.711 0.699 0.676 0.756

FFS2CNNs (ours) 0.707 0.722 0.701 0.683 0.756

8.9 conclusion

In conclusion, in this chapter, we presented a SO(3)-equivariant neural network archi-
tecture for spherical data, that operates entirely in Fourier space, while using tensor
products and the Clebsch-Gordan decomposition as the only source of non-linearity.
We report strong (and perhaps surprising) experimental results. While we specifically
presented a spherical CNN, our approach is more widely applicable in that it also pro-
vides a formalism for the design of fully Fourier neural networks that are equivariant
to the action of any continuous compact group.
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C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

9.1 part i

9.1.1 Conclusions

In chapter 2 we reviewed some relevant literature on metric learning; following which,
in chapter 3, we proposed a metric learning method that makes a more direct attempt
to optimize for k-NN accuracy than existing methods. While the approach is more gen-
eral in its formulation (in that it can handle non-linear metrics as well), in chapter 3 we
demonstrated its efficacy for learning Mahalanobis metrics while comparing to a num-
ber of popular competing methods. In chapter 4, we proposed a number of extensions
of this approach, applying it to asymmetric similarity learning, discriminative learning
of Hamming distance, and metric learning for improving k-NN regression performance.
In each case we reported competitive results. Below we underline some straightforward
avenues for future work:

9.1.2 Future Directions

1 A drawback of the approaches presented in Part i, with the exception of section
4.3, is poor scalability. For every gradient update, the procedures require exact
inference and loss-augmented inference. For small dataset sizes this is desirable,
however being expensive operations (see section 3.4.1.4) they restrict scaling these
methods to very large datasets. One future avenue of work is to make these
methods more scalable while retaining some of their positive characteristics as
constrasted to methods such as Large Margin Nearest Neighbors (LMNN). Some
strategies to achieve this could take the route of doing exact inference for h∗ and
ĥ for a fixed number of gradient updates N′ << N (where N is the number of
training examples) in the beginning of the optimization. Once the initial Euclidean
metric is improved to a somewhat better performing metric, the sets h∗ and ĥ can
be fixed for the next p gradient updates, after which they are updated again by
doing exact inference. This process could be repeated to convergence. Another
route could be to pick large batches and do exact inference in only a given batch,
and not the entire dataset.

2 Yet another avenue for future work is to propose approximate inference proce-
dures for h∗ and ĥ, and combining them with the approaches outlined above.

3 Extending the approach using deep neural networks to do the mapping is also
an obvious extension. This was explored by the dissertation author, but not ex-
tensively. It is arguable that the metric thus learned could be a better proxy for
similarity than approaches based on triplet based losses.
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4 For section 4.3, unlike other approaches presented in Part i, the inference proce-
dures were intractable. We thus resorted to a modification of the loss function to
make inference tractable. It would be interesting to explore approximation algo-
rithms for the original, intractable formulations for h∗ and ĥ. Yet another approach
to this problem, explored by the dissertation author to some degree, is to keep the
original intractable objective, and devising a Metropolis-Hastings type procedure
for sampling sets and then updating the metric. Lastly, it would also be interesting
to cast the framework in section 4.3 as a structured prediction energy network in
the spirit of Tu and Gimpel [269].

9.2 part ii

9.2.1 Conclusions

In part ii of the dissertation, we proposed a simple estimator for the Expected Gradient
Outerproduct (EGOP)

ExG(x) ≜ Ex

(
∇ f (x) · ∇ f (x)⊤

)
,

moreover, we also showed that it remains statistically consistent under mild assump-
tions. The primary use of the estimated EGOP was as the underlying metric in non-
parametric regression, and we showed that it improved performance as compared to
the Euclidean distance in several real world datasets. We also generalized the EGOP
to the multiclass case, proposing a variant called the Expected Jacobian Outer Product
(EJOP)

ExG(x) ≜ Ex

(
J f (x)J f (x)T

)
,

for which we also proposed a simple estimator and showed that it remained statistically
consistent under similarly mild assumptions. We also showed that the estimated EJOP
improved non-parameteric classificaiton when used as a metric.

9.2.2 Future Directions

1 One immediate use case for the approaches presented in Part ii, namely, the es-
timated Expected Gradient Outer Product (EGOP) and Expected Jacobian Outer
Product (EJOP), is for dimensionality reduction, that unlike PCA type methods
recover a subpsace most relevant to predicting the output. This has not been ex-
plored in detail and could potentially be a useful addition to the standard toolbox
for dimensionality reduction.

2 The EGOP and the EJOP use gradients, which are local objects, but due to the
expectation taken over x, they lose all local information, only giving the average
variation of the unknown regression or classification function f in direction v. It
would be interesting to explore the utility of diffusion based objects that take into
account local geometry as well, first analogous to the EGOP

Wi,j = W f (xi, xj) = exp

(
−

∥xi − xj∥2

σ1
−

∥ 1
2 (∇ f (xi) +∇ f (xj)(̇xi − xj)∥2

σ2

)
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and then analogous to the EJOP

Wi,j = W f (xi, xj) = exp

(
−

∥xi − xj∥2

σ1
−

∥ 1
2 (|∇ fc(xi)|+ |∇ fc(xj|)(̇xi − xj)∥2

σ2

)

| · | takes a matrix and sums over rows, and explore them for both recovering a
metric, as well as for non-linear label-aware dimensionality reduction.

3 For the operators defined above it would also be interesting to obtain consistency
results, similar in spirit to those obtained for Laplacian Eigenmaps type methods
[14, 274]. For such methods, demonstrating consistency amounts to showing that
the eigenvectors of the graph Laplacian converge to the eigenfucntions of the cor-
responding Laplace-Beltrami operator in the limit. However, this promises to be
a rather challenging project, which might also require considerable refinement in
definitions of these objects.

9.3 part iii

9.3.1 Conclusions

In chapter ?? we briefly reviewed work on discriminative group equivariant representa-
tion learning, arguing that equivariance to symmetry transformations affords a strong
inductive bias in various tasks. In chapter 8, following recent work by Kondor and
Trivedi [148], we proposed a SO(3)-equivariant neural network architecture for spheri-
cal data, that operates entirely in Fourier space, while using tensor products and the
Clebsch-Gordan decomposition as the only source of non-linearity. We reported strong
experimental results, and emphasized the wider applicability of our approach, in that
it also provides a formalism for the design of fully Fourier neural networks that are
equivariant to the action of any continuous compact group.

9.3.2 Future Directions

1 We first outline a future avenue for work that relates directly to the contributions
presented in Chapter 8. Although the network architecture presented is the most
general possible for the problem and mathematically elegant in its conception,
while also giving excellent performance, it does lead to networks that are consid-
erably bulkier than networks trained by [50]. In view of the dissertation author this
inefficiency might be a consequence of the non-locality of filters. In vision tasks, it
is perhaps much better motivated to use filters that operate on a small, spatially
contiguous domain of the input. Thus, the use of more global filters could be
the reason that the networks slid toward having more parameters to also pick up
more local features on their own. Enforcing locality of filters in order to improve
the efficiency of our network further is the most immediate line of future work.
This should have relevance to not just SO(3)−equivariant networks that operate
on data that lives on S2, but to networks for vision tasks that are required to be
equivariant to the action of general compact continuous groups.
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2 More directly related to the more general theme covered in Part iii of this disserta-
tion, is to design convolutional neural networks that encode more structure from
the data and task at hand, by considering different groups and their homogeneous
spaces. A simple example would be to design a SIM(3)−equivariant architecture,
to follow works that present SE(3)−equivariant networks (for example see [278]).
This could perhaps be considered low-hanging fruit, notwithstanding the fact that
fast implementations of such architectures may require considerable engineering
effort.

3 There are many applications where exact invariances to symmetry transformations
are important, such as in Robotics and motion planning, tomography, camera cal-
ibration, molecular dynamics, protein kinematics etc. In these areas there already
exists a large literature on using non-commutative harmonic analysis for functions
defined on some homogeneous space of a group of interest. An extensive review of
such approaches and half a dozen applications is given in [47]. Naturally, design-
ing equivariant architectures that extend older approaches to also avoid feature
engineering is an obvious line of work to pursue.

4 Most of the work on group equivariant neural networks reviewed in chapter ?? re-
lies on the assumption that the functions are defined on a suitable homogeneous
space of the symmetry group of interest. Indeed, the architecture presented in
chapter 8 is rooted in the fact that the manifold S2 is a homogeneous space of
the rotation group SO(3). There is recent interest in extending the convolutional
neural network formalism to more general manifolds [182] that might not come
equipped with a clear group action. Work that prescribes construction of theoreti-
cally well motivated convolutional networks on such spaces promises to be a very
fruitful line for future work.

5 In most of the work discussed thus far, we have considered neural networks that
are equivariant to explicit (and known) symmetry transforms. A considerably dif-
ficult project would be to instead to learn the symmetry group, without prior knowl-
edge of symmetries in the data. The only work that we are aware of in this direc-
tion is that of Anselmi et al. [2].

6 The theory and design of covariant neural architectures in the context of recurrent
neural networks and general dynamical systems also promises to be an interesting
project. A simple situation that illustrates this occurs in Koopman mode analysis
[34], where we want the Koopman invariant subspace to respect some underlying
symmetry (for example if the physical system is subject to a rotation). To our
knowledge there is no work toward this very reasonable end goal.

7 It would be interesting to explore connections and usages of equivariant networks
in the context of Pattern Theory [195], which is a mathematical formalism to study
patterns from the bottom up–with a focus on building compositional vocabularies.
While pattern theory has influenced directly, or indirectly many modern machine
learning algorithms, it by itself has largely been forgotten in the machine learning
mainstream. However, the general philosophy and approach of Pattern Theory re-
mains relevant and can be seen as echoed in many recent works in group equivari-
ant architectures, and could also provide inspiration for future work. While broad
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in its coverage, it would be useful to consider salient aspects in some notable works
within pattern theory. First is the construction of shapes, manifolds and surfaces.
Second is the comparison of such objects, and lastly is a methodology to define
variability (deformations) and using appropriate probability measures for infer-
ence. Usually the space of variability of such objects is an orbit under symmetry
transformations. As already hinted, yet another important aspect about Pattern
Theory is its focus on compositionality. The case for general covariant composi-
tional architectures has been made in recent work [116], [147], and it would also
be interesting to extend these works to also be able to define probabilistic mod-
els in the spirit of [195].There is rich mathematical literature on probabilities on
algebraic structures (see for example [101]) that Pattern Theory draws upon and
could also provide fertile ground for the growth of more general, topologically
sane work in neural networks.
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